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Over the last years, an increasing number of outbreaks of vaccine-preventable infectious
diseases has been reported. Besides elderly and immunocompromised individuals,
newborns and small infants are most susceptible to infections, as their immune system
is still immature. This vulnerability during infancy can be mitigated by the transplacental
transfer of pathogen-specific antibodies and other mediators of immunity from mother
to the fetus during pregnancy, followed postnatally by breast milk-derived immunity.
Since this largely antibody-mediated passive immunity can prevent the newborn from
infections, neonatal immunity depends strongly on the maternal concentration of
respective specific antibodies during pregnancy. If titers are low or wane rapidly after
birth, the protection transferred to the child may not be sufficient to prevent disease.
Moreover, emerging concepts propose that mothers may transfer active immunity to the
newborns via vertical transfer of pathogen-specific T cells. Overall, a promising strategy
to augment and prolong neonatal immunity is to vaccinate the mother before or during
pregnancy in order to boost maternal antibody concentrations or availability of specific
T cells. Hence, a large number of pre-and postconceptional vaccine trials have been
carried out to test and confirm this concept. We here highlight novel insights arising from
recent research endeavors on the influence of prenatal maternal vaccination against
pathogens that can pose a threat for newborns, such as measles, pertussis, rubella
and influenza A. We delineate pathways involved in the transfer of specific maternal
antibodies. We also discuss the consequences for children’s health and long-term
immunity resulting from an adjustment of prenatal vaccination regimes.
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EARLY LIFE IMMUNITY AND TIME WINDOWS PERMITTING
PATHOGEN THREATS FOR NEONATES

After birth and during their first months of life, human newborns are not yet equipped with a fully
matured immune system (1, 2). Hence, they are highly susceptible to infectious pathogens, such
as measles, pertussis, rubella, and influenza. These pathogens can cause a severe course of disease
in neonates and infants, which may even be fatal (3–5). The availability of safe and immunogenic
vaccines against infectious diseases, i.e., the combined measles-mumps and rubella vaccine, does
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not mitigate this threat to neonatal health, as the vaccines
contain living pathogen components; hence, their use is not
recommended to be administered to children under the age of
12 months. Similarly, the vaccination with the combined tetanus-
diphtheria-pertussis (Tdap) vaccine and the inactivated influenza
vaccines (IIV) is not recommended until 2 or 6 months of age,
respectively (6, 7). These restrictions to vaccination leave a pivotal
gap of neonatal immunity against these pathogens until routine
immunization can be administered (8).

This gap in immunity is – at least in part – covered
by the active, transplacental transfer of maternal pathogen-
specific antibodies. Mothers convey passive immunity to their
newborns through the transplacental transfer of antibodies,
hereby providing a shield for the infant from pathogen-
mediated diseases (1, 9). The amount of transferred antibodies
can differ between individuals and is mainly dependent on
maternal antibody concentrations (10, 11). Based on this
natural immunity mediated by the mother, maternal vaccination
strategies during pregnancy are vividly discussed. Such strategies
could increase maternal antibody concentrations, enhance the
levels of transplacental antibody transfer and, in consequence, the
degree of passive immunity for the neonate (12).

In the light of the recent outbreaks of vaccine-preventable
diseases such as measles even in countries with high vaccine
coverage, the topic of immunization has received significant
attention by medical professionals and the lay community.
Measles infection has caused more than 140,000 deaths
globally in 2018, most of them among children under five
years of age (13). Promoting the immunity of newborns via
maternal vaccination holds the potential to become an effective
and low-cost approach to prevent neonatal morbidity and
mortality caused by communicable diseases (14–16). In the
present article, we comprehensively discuss recent research
studies on maternal vaccination against common childhood
infections such as pertussis, influenza, measles, and rubella.
We further highlight pathways involved in the transplacental
transfer of antibodies as well as mechanisms through which
neonatal immunity can be improved irrespective of maternal
antibodies (Figure 1).

OBSERVATIONS FROM VACCINATION
STUDIES AGAINST TETANUS,
DIPHTHERIA AND PERTUSSIS DURING
PREGNANCY

A number of recent studies confirm that vaccination with the
combined tetanus, diphtheria, and acellular pertussis vaccine
(Tdap) can be recommended during pregnancy, since vaccine
trials carried out on a large scale and in various countries have
generally demonstrated its safety and immunogenicity in mothers
and their infants (Table 1). The World Health Organization
(WHO) reports a 96% reduction of death by neonatal tetanus
through implementation of recommended elimination practices
from 1988 to 2015, including the vaccination of pregnant
women (17). Similarly, the burden of diphtheria disease has been

reduced (18). Unfortunately, comparable achievements have not
been made with regard to pertussis elimination. Outbreaks
of whooping cough have recently been occurring worldwide,
exposing young infants to a particularly high risk of severe
infections. Thus, we here mainly discuss studies that focus on the
outcome of pertussis vaccination in pregnant women.

Amongst others, the authors of a recent study aimed to
evaluate the safety and immunogenicity of Tdap administration
during pregnancy in mothers and their infants and to assess
the possible interference of maternal antibodies with subsequent
infant immunizations (19). Apart from mild and self-limiting
local reactions at the vaccination site, no adverse events
caused by the immunization with Tdap were reported in
mothers and their infants. Anti-pertussis toxin (PT) antibodies,
which primarily mediate protection against Bordetella pertussis-
induced disease (20), and anti-pertactin (PRN) antibodies,
which convey protection by opsonization and subsequent
phagocytosis of Bordetella pertussis (21), were significantly
increased in mothers vaccinated with Tdap during pregnancy,
compared to the placebo group. Accordingly, both anti-PT
and anti-PRN were significantly higher at birth in infants
of vaccinated mothers. Irrespective of prenatal vaccination,
cord blood antibody titers exceeded maternal titers assessed
at delivery, indicating an active transplacental transport of
antibody. However, anti-PT and anti-PRN decreased quickly
until the age of 2 months.

The investigators also pointed out differences in anti-PRN
and anti-PT seroresponses following routine infant vaccinations
at 2 and 4 months of age with a combined tetanus, diphtheria,
pertussis, polio and Hib vaccine (19). After vaccination, infants
of placebo-receiving mothers showed a greater increase of anti-
PT levels compared to infants of Tdap-vaccinated mothers,
indicating an interference of maternal antibodies with the
child’s seroresponse to vaccination. Surprisingly, opposed to the
response to PT, an anti-PRN response was not mounted in
these infants, irrespective of maternal Tdap vaccination. This
is in contrast to a study focusing on infants’ response to Tdap
vaccination during early life, in which a significant seroresponse
to both PT and PRN was mounted (22). An explanation for the
ambiguity between the vaccination responses observed in these
two studies cannot be deduced from the respective articles, but
may be due to different cohort sizes, variations in the procedure
of specimen preparation or the different ELISA kits used to
determine antibody concentrations.

Another study focusing on the influence of maternal
vaccination with Tdap during the second trimester of pregnancy
(23) revealed that anti-PT IgG could be detected in 92% of infants
born to vaccinated mothers, whilst anti-PT IgG was undetectable
in infants of unvaccinated mothers. Although this study has
some limitations, for example the lack of initial maternal anti-
PT levels and the ELISA-based analysis allowing for detection
of antibody presence or absence only, but no concentrations, it
shows that maternal immunization with Tdap during the 2nd
trimester of pregnancy significantly increases the percentage of
seropositive newborns.

Not only immune responses of mother and child toward
Tdap immunization during pregnancy have been investigated,
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FIGURE 1 | Overview of maternal immunity and recommended vaccinations before, during and after pregnancy as well as consequences for maternal and children’s
health.

but also vaccine safety. By using information from different
national databases, Griffin et al. (24) identified a large
cohort of women who were eligible to receive governmental
funded Tdap vaccination between gestational week 28 and
38. Hospitalization for severe pregnancy complications was set
as the primary outcome and hospitalizations for less critical
pregnancy complications as secondary outcomes. Key finding of
this study was that the hazard ratio for primary or secondary
outcomes did not increase when Tdap was administered during
pregnancy. Intriguingly, the authors also report that Tdap
vaccination during pregnancy significantly reduced the risk for
hospitalization due to severe pre-eclampsia, as well as the risk
for antenatal bleeding and preterm labor and delivery. Upon
inspection of the studied population, these risk reductions might
be biased by the demographic characteristics that distinguish
vaccinated and unvaccinated women. Vaccinated women tended
to be European, have a higher income level and receive

care from an obstetrician. Since pregnancy complications as
well as mother and infant mortality are rather associated
with lower socioeconomic status and non-caucasian ethnicity
(25–27), it is tempting to assume that higher rates for primary
and secondary outcomes observed in this study may be
due to confounders.

Noteworthy, New Zealand had been facing a large pertussis
epidemic from 2011 to 2013. However, only 11.9% of the
individuals eligible to receive Tdap in the study by Griffin et al.
have been vaccinated. This example shows the urgent need for
further education of the population regarding the effectiveness of
immunization against pertussis.

Whilst the evidence for safety and immunogenicity of Tdap
is steadily increasing, Saul et al. also emphasized on the
effectiveness of maternal Tdap vaccination with regard to infant
hospitalization due to pertussis infection (28). The authors report
a 39% vaccine effectiveness (VE) to prevent pertussis infection
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TABLE 1 | Overview of studies and trials assessing safety, effectiveness and outcome of vaccinations with Tdap, IIV, and MMR during child-bearing years, pregnancy or
infancy in humans.

Aim of study Study design N References

Pathogens: C. tetani, C. diphtheriae, and B. pertussis

Assessment of immunity against vaccine preventable diseases Prospective, observational study 194 (1)

Safety and immunogenicity of Tdap matVac, interference of matAB Randomized double-blind controlled clinical trial 171 (19)

Effect of 2 doses of pertussis vaccine before 2 months of age Randomized non-blinded clinical trial 76 (22)

Assessment of B. pertussis titers in third trimester and newborns Observational, cross-sectional study 111 (23)

Maternal outcome upon Tdap matVac Retrospective observational study 68,550 (24)

Assess effectiveness of Tdap matVac Matched case-control study 234 (28)

VE in protecting newborns from pertussis infection Matched case-control study 88 (29)

Comparative analysis of Tdap matVac timepoint and AB yield in newborn Prospective study 81 (30)

Determination of optimal GW for Tdap matVac in third trimester Prospective study 154 (31)

Comparative analysis of Tdap matVac in second or third trimester Prospective observational study 335 (32)

Effect of Tdap booster dose between two pregnancies Prospective study 144 (72)

Comparative analysis of maternal and cord blood AB and proteins at term Observational study 16 (73)

Analysis of neutralizing antibodies in infants after vaccination against
diphtheria

Prospective study 44 (94)

Effect of matVac with Tdap and IIV on infant AB responses Prospective study 369 (95)

Influence of Tdap booster dose during pregnancy on infant’s matAB levels
and immune responses

Prospective controlled cohort study 99 (96)

Safety and immunogenicity of Tdap matVAc and effect on infant immune
responses

Randomized, double-blind, placebo-controlled trial 80 (97)

Pathogen: Influenza A

Assessment of safety and immunogenicity of seasonal trivalent IIV matVac Prospective, randomized, double-blind clinical trial 100 (40)

Risk assessment for neonatal birth defects after first trimester IIV exposure Observational study 425,944 (41)

Persistence of HAI titers and VE of IIV3 in subsequent influenza season in
women

Double-blind, randomized, placebo-controlled trial 479 (43)

Duration of infant protection upon IIV matVac Substudy of randomized, double-blind,
placebo-controlled clinical trial

322 (44)

Clinical effectiveness of IIV matVac; safety and immunogenicity of
pneumococcal vaccines

Prospective, controlled, blinded, randomized study 340 (45)

Risk assessment for infant hospitalization due to lower respiratory infection
after IIV matVac

Secondary analysis of randomized controlled trial 52 (46)

Effect of IIV matVac on risk for influenza in infants < 6 months of age Non-randomized, prospective, observational cohort
study

1169 (47)

Influence of IIV matVac on subsequent B. pertussis infection rates in
mothers

Retrospective testing of samples collected in
randomized controlled trial

3125 (48)

Effect of vitamin A supplementation on immune response to IIV matVac Prospective study 112 (70)

Investigation of sensitization to IIV antigens in utero Prospective observational study 126 (74)

Effect of maternal influenza vaccination on influenza-specific IgA levels in
breast milk

Prospective, blinded, controlled trial 340 (80)

Effect of cross-reactive cellular immunity on symptomatic influenza illness in
AB- naïve individuals

Prospective study 342 (90)

Pathogens: Measles, Mumps, and Rubella Virus

Repertoire of maternal anti-viral AB in newborns at birth Prospective study 78 (10)

Assessment of safety of MMR vaccination in adults Retrospective observational study 3175 (51)

Assessment of B cell impairment upon measles-associated
immunosuppression

Prospective observational study 29 (54)

Identification of measles infection long- term effects on immune system Prospective study 196 (55)

Association of maternal age and vaccination status with cord blood matAB Observational study 206 (57)

MatAB transfer in vaccinated or naturally immune mothers to preterm/term
infants

Prospective study 195 (58)

Quantification of AB against MMR and varicella zoster in mothers and
infants

Prospective observational study 138 (59)

Duration of presence of matAB to measles in infants Prospective study 207 (60)

(Continued)
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TABLE 1 | Continued

Aim of study Study design N References

Seronegativity in infants < 6 months and serologic response to measles
vaccine

Cross-sectional study 203 (61)

Prenatal fetal infection among women (re-) infected with rubella during
pregnancy

Prospective observational study 40 (62)

Detection of rubella-specific IgM in subclinical rubella reinfection in
pregnancy

Case report 8 (63)

Criteria for defining rubella reinfection Case report 5 (64)

Fetal infection after maternal rubella reinfection during pregnancy Case report 1 (65)

Seroepidemiology of anti-measles, -mumps and -rubella AB in pregnant
women and neonates

Prospective study 353 (71)

Assessment of transplacental transport of IgG immune complexes Prospective study 152 (75)

Immunogenicity of measles vaccine in infants < 12 months Cohort study 72 (92)

Studies on breast milk immunity

Assessment of gut microbiota bound by breast milk IgA Observational study 69 (81)

Effects of infections during pregnancy on colostrum IgA levels Cross- sectional study 900 (82)

matVac, maternal vaccination during pregnancy; Tdap, Tetanus, diphtheria, acellular pertussis vaccine; matAB, maternal antibody; VE, vaccine effectiveness; GW,
gestational week; AB, antibody; IIV(3), (trivalent) inactivated influenza vaccine; MMR, measles, mumps, rubella vaccine; HAI, hemagglutination inhibition assay.

for infants < 6 months and of 69% for infants younger than
3 months of age; the overall VE against hospitalization due
to severe pertussis infection was 94%. These results clearly
demonstrate that maternal Tdap vaccination is predominantly
effective in preventing severe cases of pertussis disease, with
maternal vaccination attenuating the intensity of the illness rather
than preventing it. Furthermore, the authors identified that
breastfeeding may have a protective effect on pertussis infection
of the infant. These findings are in line with a very similarly
set up of a study conducted in the same year (29). Here, the
authors found a 90.9% VE of maternal Tdap vaccination during
pregnancy in protecting infants < 3 months from laboratory
confirmed pertussis; yet, VE was calculated from a small
cohort. Also, apart from maternal vaccination, breastfeeding
was identified as the only other significant influence on infant
protection against pertussis. This effect could be observed not
only in mothers vaccinated during pregnancy, where maternal
IgA could be passed via the breast milk, but also in those who
had not been vaccinated against or in contact with pertussis
for the last 10 years. The authors suggest that this might be
attributed to other breast milk components which were not
further specified.

There is still ambiguity with regard to vaccination timepoint
recommendation by national health services. The National
Health Service (NHS) in the United Kingdom and the Advisory
Committee on Immunization Practices (ACIP) in the US suggest
two different vaccination schedules. While the NHS recommends
Tdap administration between 16 and 32 weeks of gestation
(30), the ACIP proposes that Tdap should be administered at
a later timepoint between 27 and 36 weeks of gestation (6).
Using cord blood concentrations of pertussis-specific IgG as a
read out parameter, one study reports highest levels if mothers
had been vaccinated with Tdap between 27 and <31 weeks of
gestation, as compared to vaccination at 31 weeks or later (31).
Another study suggested that the optimal timepoint for Tdap
administration is between 28 and 32 weeks of gestation, based

on higher cord blood anti-pertussis antibody concentrations
resulting from vaccination at this timepoint as compared to
later in gestation (32). Conversely, another study with a higher
number of participants reports that maternal Tdap vaccination
between gestational week 13 and 25 results in higher cord blood
anti-pertussis antibody concentrations than immunization after
26 weeks of gestation (33). A longer period of time between
vaccination and childbirth allows for a greater transfer window,
which may explain the observed higher cord blood titers. Re-
scheduling the recommended vaccination to an earlier timepoint
during pregnancy might therefore be beneficial, not only for
preterm neonates (33).

Taken together, Tdap immunization should be recommended
to each pregnant woman in every pregnancy, regardless of the
previous vaccination status. This will yield to high maternal
antibody concentrations toward the end of pregnancy, so that
antibodies can be transferred at greater extent to the fetus. Whilst
vaccination of the mother during the 2nd or 3rd trimester of
pregnancy is safe and efficacious, the best strategy to ensure
high neonatal anti-pertussis antibody concentrations seems to be
vaccination between gestational week 13 and 25. Besides maternal
vaccination, passive protection of the neonate via reduction of
pathogen exposure can result from a so-called cocooning effect,
achieved by vaccination of family members and caregivers of the
newborn (34, 35). By combining these protective techniques, the
risk for pertussis infection during the first months of life, until the
neonate has mounted humoral and cellular immunity against this
pathogen, can be reduced.

INSIGHTS FROM VACCINATION
STUDIES AGAINST INFLUENZA DURING
PREGNANCY

Apart from Tdap, vaccination against influenza using inactivated
influenza vaccines (IIV) is the only other recommended
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vaccination during pregnancy. Pregnant women are at
high risk for severe influenza disease outcomes due to
a multi-faceted failure to mount an anti-viral response.
As shown in basic science approaches, this less stringent
selective environment can promote the emergence of mutated
influenza variants which mediate increased viral pathogenicity
(36). The Robert Koch Institute, the governmental central
scientific institution safeguarding public health such as
the surveillance and prevention of infectious diseases in
Germany, recommends vaccination against influenza for all
pregnant women during the second and third trimester. For
women with increased morbidity risk or preexisting medical
conditions, vaccination is even recommended during the first
trimester (37). Similar recommendations have been made
by the ACIP in the United States (38), where vaccination
against influenza is recommend at any time during normally
progressing pregnancy.

These recommendations result from a wealth of studies
carried out worldwide on safety, immunogenicity and efficacy
of influenza vaccination during pregnancy. These studies have
clearly demonstrated the advantages of protecting mother and
infant from influenza disease, as extensively reviewed elsewhere
(14, 15, 39).

Moreover, independent studies (Table 1) have assessed
the impact of influenza vaccination on pregnancy outcomes
and confirmed that the risk for structural birth defects or
pregnancy complications is unaffected by maternal vaccination
against influenza (40, 41). On the contrary, the frequency
of infants born small for gestational age was lower among
vaccinated women and the overall birth weight was higher (42).
Immunogenicity analyses using hemagglutination inhibition
assay (HAI) revealed that the overall reactogenicity to the
inactivated influenza virus vaccine was similar between non-
pregnant and pregnant individuals (40). Here, it was also
reported that higher maternal age negatively correlates with
seroconversion and -protection, whilst data supporting this
observation have not been shown. However, another study
showing that HAI titers were likely to remain elevated one year
after immunization especially in women younger than 25 years of
age supports the link between maternal age and immunogenicity
to IIV (43).

Besides the maternal response to influenza vaccination during
pregnancy, the subsequent children’s outcome upon maternal
vaccination has also been the focus of a number of studies.
Here, an overall beneficial response could be identified, such
as a lower hospitalization rate and milder disease course of
infants < 6 months, not only related to influenza infection (44,
45), but also to all-cause lower respiratory tract infection (ALRI),
including diseases induced by pathogens such as B. pertussis,
respiratory syncytial virus (RSV) and rhinovirus (42, 46, 47).
This broad protection from lower respiratory tract infections
has been explained by an increased susceptibility to pathogens
affecting the airway system subsequent to an influenza infection,
from which neonates with maternally inherited passive immunity
against influenza are protected to a higher degree (46, 48).
However, large-scale studies are urgently needed to confirm this
suggestion. Once confirmed, such insights will likely increase

the vaccination compliance of pregnant women, which is still
surprisingly low (49).

VACCINES CONTRAINDICATED FOR
IMMUNIZATION DURING PREGNANCY

Unlike vaccinations against tetanus, diphtheria, pertussis and
influenza, which can be recommended during pregnancy, live
attenuated vaccines like the combined measles-mumps-rubella
(MMR) vaccine are contraindicated in pregnant women due
to the hypothetical risk of transplacental viral transmission
and infection of the fetus (50). However, observations from
prenatal MMR immunization administered during the first
trimester to women unaware of their pregnancy revealed that
the risk for adverse pregnancy outcomes such as spontaneous
abortion, hydrocephalus, vaginal bleeding and preterm birth is
not significantly increased compared to the general population.
Also, fetal infection has not been reported (51).

Resulting from the global rise of vaccine hesitancy, one of the
10 threats to global health (52), transmission of measles is rapidly
spreading, which poses a significant hazard to children’s health.
Besides common complications related to measles infection in
children, such as diarrhea, middle ear infection and pneumonia
(53), it has recently been identified that measles can obliterate
existing humoral immune memory against a repertoire of
pathogens (54, 55). The incomplete reconstitution of the naïve
B cell pool and the depletion of previously expanded B memory
clones account for this obliteration of immune memory (54).
Hence, the susceptibility toward subsequent infections is greatly
enhanced after measles infection, which strongly underpins
the urgency not only for vaccination of children, but also for
women with the intention to become pregnant. This will close
a vulnerable gap of neonatal susceptibility toward measles prior
to the recommended vaccination at the age of one year and allow
to achieve global measles elimination.

In Germany, immunization of adults with MMR is only
recommended for individuals with an incomplete or unclear
vaccination history (37). Since the age of women at the time of
giving birth to their first child has increased by approximately a
decade during the last 50 years (56), the window between routine
childhood vaccination and onset of pregnancy has also increased.
Hence, antibody concentrations might have waned substantially
at the time of pregnancy. It has been observed that a MMR
vaccination dose administered close to pregnancy induces higher
matAB levels in the offspring, irrespective of the total number
of vaccine doses given to the mother (57). In countries where
pathogens such as measles still circulate within the population
and hence, natural infections and boosting through recurrent
exposures to the wild-type pathogens are frequent, antibody
concentrations are higher compared to those mounted by
immunization (57). Vice versa, in highly vaccinated populations
with low pathogen circulation, antibody concentrations in
mothers and their children tend to be lower due to faster
decrease of vaccine-induced antibodies and a lack of natural
boosting through pathogen exposure (58–60). Gonçalves et al.
quantified this observation by measuring anti-measles-IgG in
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cord blood and found that in infants born to MMR-unvaccinated
mothers, who most likely gained their immunity through
natural infection, anti-measles-IgG reached 1849 mIU/ml, while
cord blood of infants born to MMR-vaccinated mothers only
contained 987 mIU/ml of anti-measles-IgG (57). It has been
suggested that immune responses toward measles may differ
if mounted by natural infection or by vaccination, because
different antibody subclasses may be induced and that infants of
vaccinated mothers lose passive acquired immunity at an earlier
age compared to naturally immune mothers (61).

Studies observing the impact on the neonate in case of
rubella reinfection during pregnancy (62–64) have reported that
rubella reinfection can occur both in naturally immune women
and in women immunized against rubella during childhood.
Noteworthy, immunized women are at greater risk for such
reinfection, which might be due to differences in the immune
response following vaccination or natural infection. The course
of rubella reinfection is mostly subclinical, but may have severe
consequences such as the congenital rubella syndrome (CRS),
though this has been described only in one case (65). Thus,
MMR booster doses can be recommended to women planning
to become pregnant in order to avoid serious illness of the child
if exposed to measles or rubella virus during gestation or during
the first months of life.

MECHANISMS OF TRANSFERRING
IMMUNITY TO THE NEWBORN:
TRANSPLACENTAL TRANSPORT OF
MATERNAL ANTIBODIES

The wealth of studies summarized so far highlights that maternal
antibodies against specific pathogens can be vertically transferred
to the fetus and subsequently protect the neonate from infections.
Thus, the mechanism of such vertical transfer is a key modulator
of neonatal immunity and shall be reviewed in the following.

Generally, the placenta poses a barrier which can – at least
partially – control and hinder the transmittance of harmful
substances from mother to fetus. Hence, a specific and active
transport mechanism is needed in order to transfer maternal
pathogen-specific antibodies to the fetus. In this respect, the
neonatal Fc-receptor (FcRn) plays a key role. It is, amongst
other tissues, expressed in placental syncytiotrophoblasts and
belongs to the Fcγ receptor family, which characteristically
binds the Fc fragment of IgG antibodies and promotes their
transport to body sites where specific immunity is needed
(66). The IgG binding characteristics of FcRn are highly pH-
dependent (67); in acidic environments, FcRn shows a much
higher affinity to IgG compared to the physiological pH of 7.4,
which is present in maternal and fetal blood. Thus, maternal
antibodies are unable to bind to FcRn at the apical side of the
syncytiotrophoblasts, which is bathed on maternal blood, but
need to be taken up by endocytosis (Figure 2). The amount
of antibody that can be transferred to the fetus depends on
the amount of FcRn expressed by syncytiotrophoblasts. If all
FcRn are engaged in IgG transport, additional IgG molecules

will be degraded in the lysosome, as they are not receptor-
bound. Thus, antibody transfer is a saturable process and will
stagnate once maternal antibody concentrations reach a certain
level, which has been defined as a total IgG of 15 g/L (68).
Transplacental IgG transport starts early in gestation (10, 69),
though still at low efficacy. With the continuation of pregnancy,
FcRn expression and transplacental transport increase, peaking
during the last four weeks of gestation (9). It is tempting to
speculate that the increased cell mass of the growing placenta
accounts for the mere increase in FcRn and related higher
antibody transport rate.

To date, research on factors influencing the FcRn expression
is scarce. In one study, the effect of vitamin A supplementation
during pregnancy on the immune response following maternal
influenza vaccination during pregnancy has been assessed. Here,
a possible influence of vitamin A on FcRn expression has been
proposed, but this aspect is still highly speculative and data are
based on a small sample size (70). Data on sex-specific differences
in placental FcRn expression is also currently lacking.

Interestingly, not all IgG subclasses are equally transferred,
as FcRn mainly transports IgG1, with decreasing efficacy for
IgG4, IgG3, and IgG2 (69). Structurally different antigens
have been shown to induce different IgG subclasses and thus,
are transferred in varying amounts. While protein antigens,
such as pertussis toxin and pertactin, tetanus toxin or the
measles virus elicit IgG1, polysaccharide antigens, as found
on the surfaces of bacteria like Haemophilus influenzae type
b or Neisseria meningitidis, induce IgG2 (2). Since the latter
subclass is being transported less efficiently, newborns might
lack specific immunity toward pathogens which mainly present
polysaccharide antigenic structures, such as most bacteria.

The most predictive factor of transplacental antibody transfer
is the level of maternal antibody (10). Higher gestational age,
recent maternal vaccinations, a balanced maternal nutritional
status and male gender of the newborn have been shown to
positively influence maternal antibody concentrations in the
infant (1, 71, 72).

Observations dating back some decades indicate that apart
from IgG being transported across the placenta as a single
molecule, it can also be transported as an IgG-immune complex
(IgG-IC) involving IgG and it’s respective antigen (73). In
this study, serum tetanus antigen reached nearly the same
levels in mother and infant at birth, suggesting an active
transfer of anti-tetanus IgG-IC. Active transfer could not be
observed for different pregnancy-related proteins such as alpha-
fetoprotein (AFP) and human chorionic gonadotropin (hCG), as
their concentrations highly differed between mother and child,
indicating a transmission by low-rate diffusion. More recently,
influenza-specific fetal IgM could be detected in cord blood upon
maternal influenza vaccination during pregnancy, suggesting that
anti-influenza IgG-IC had been transferred to the fetus, followed
by a fetal B- and T-cell immune response against influenza elicited
by the IC in utero (74). Together with the observation that IgE,
which plays a major role in allergy pathogenesis, can also be
transported via the placenta as an IgG-IgE-IC (75), these findings
have a great impact on understanding neonatal immunity and the
development of atopy in children.
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FIGURE 2 | Mechanisms of antibody transfer via placenta and breast tissue. Top: Circulating IgG antibody is taken up into the syncytiotrophoblast cell, where two
IgG molecules per FcRn bind at the inner membrane of the acidic endosome. Upon opening of the endosome at the basolateral side of the cell facing the fetal
circulation, FcRn releases the IgG molecules due to the increased pH and can then be recycled to perform another transport cycle. Bottom: The joining chain of the
dimeric IgA molecule is bound by the polymeric Ig-receptor (pIgR) and both are internalized via endocytosis. At the apical membrane, secretory IgA (sIgA) is being
released to the breast milk, as the secretory component of pIgR remains bound to the IgA antibody.

MECHANISMS OF TRANSFERRING
IMMUNITY TO THE NEWBORN:
TRANSFER OF MATERNAL ANTIBODIES
VIA BREASTMILK

Another substantial element of neonatal immunity is the intake of
breast milk, which contains a significant amount of secretory IgA.
Also, maternal immune cells, such as IgG-producing memory B
cells and CD4+ T cells, can be detected in breast milk (9, 76).

The dimeric IgA antibodies are produced by plasma cells in
the mammary gland as well as in other tissues associated with
mucosal surfaces. The epithelial cells of the mammary acini
transport the IgA molecules from the connective tissue to the
breast milk via transcytosis, involving the polymeric Ig receptor
(pIgR) (77, 78) (Figure 2). The two IgA subclasses present in
humans, IgA1 and IgA2, are distributed differently along mucosal
membranes, with IgA1 being mainly present in the respiratory
tract, saliva, serum and skin and IgA2 being the main secretory
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antibody of the intestine (79). In their seminal review, Hanson
and Winberg already concluded that breast milk IgA is not
absorbed by the infant’s gut, but rather coats the mucosal surface
of the intestine to protect it from pathogens (80).

Several studies have unveiled that the consumption of breast
milk by the neonate is beneficial to its health (Table 1). One
example is the enhanced transfer of influenza-specific and
neutralizing IgA to the neonate upon influenza vaccination
of the mother during pregnancy (81), which was associated
with a decreased number of respiratory illness of the infants
during the first six months of life. Whether this effect results
from the increased amount of specific breast milk IgA or from
the transplacental transfer of maternal influenza-specific IgG
remains to be elucidated. Cross-fostering may provide an answer
and considering the growing number of milk banks, such studies
may become feasible.

Another study recently highlighted a breast milk IgA-
mediated protection from necrotizing enterocolitis (NEC) in
preterm infants (82). The pathogenesis of NEC seems to be
mainly driven by an altered sIgA binding pattern of intestinal
bacteria in the newborn, since the proportion of IgA-bound
bacteria was much lower in infants developing NEC compared
to healthy newborns. Formula-fed infants were more likely to
develop NEC than breastfed infants, presumably due to the
absence of maternal IgA in formula alimentum.

Moreover, in women with respiratory tract infections during
pregnancy, the proportion of IgA1 in colostrum was higher,
while in women with gastrointestinal infections, levels of IgA2
were increased (83). These observations suggest that the mother’s
immune system seeks to shield the infant from the specific
pathogens of the surrounding environment. Similarly, as shown
in basic science models, maternal antibodies can potentially
retain microbial molecules and transmit them to the offspring via
the placenta and breastfeeding. Subsequently, the offspring are
able to avert an inflammatory response to microbial molecules
and allow colonization of intestinal microbes (84).

Overall, the beneficial effect of breastfeeding for infant’s
health seems to affect various mucosal membranes, such as
the respiratory and gastrointestinal tract, hereby protecting the
neonate from infections. Thus, the current recommendations
of the WHO to exclusively breastfeed an infant during its first
6 months of life (85) may indeed provide optimal starting
conditions for the child’s postnatal immunity.

MECHANISMS OF TRANSFERRING
IMMUNITY TO THE NEWBORN:
MATERNAL MICROCHIMERISM

Besides antibody-mediated immunity transferred during
pregnancy, it is also conceivable that pathogen-specific maternal
immune cells migrate to the unborn child. It is well known
that maternal immune cells can be transferred to the fetus via
the placenta (86), and also via breast milk (76). These cells can
then remain in the offspring until adulthood, as shown among
lymphoid and myeloid compartments of peripheral blood in
healthy adult women (87). Due to the low frequency of these cells

in the offspring, they are referred to as maternal microchimeric
cells and a considerable percentage of such cells are T cells, which
can be retained for a long period of time (88).

In general, upon infection, pathogen-specific CD8+ T cells
remain in peripheral tissues and act as sentinels. Upon antigen
re-encounter, they rapidly produce inflammatory cytokines and
thereby induce a state of alertness in the local environment and
recruit inflammatory cells. Thereby, a small number of pathogen-
specific T cells can provoke a fast and fulminant response (89, 90).
Interestingly, in the context of pregnancy, there is direct evidence
for such transfer of protective maternal T cells. In a human
infant with severe combined immunodeficiency suffering from
Epstein-Barr virus (EBV) infection, large numbers of maternal
CD8+ T cells could be detected. These cells were phenotypically
activated and secreted IFN-γ in response to EBV antigen. Other
hematopoietic cells were of offspring genotype, indicating that
the CD8+ T cells originated from mature maternal T cells and
not form transferred hematopoietic stem cells (91). Moreover,
high frequencies of pre-existing effector CD8+ T cells directed
against conserved core protein epitopes of influenza virus strains
correlate with a milder course of influenza infection caused by
other influenza virus strains, thus providing strong evidence for
a cross protective function of memory CD8+ T cells against
heterologous influenza strains (92). Based on these empirical
evidences, it is appealing to speculate that pathogen-specific
maternal microchimeric T cells also convey passive cellular
immunity to the offspring.

THE DOWNSIDE OF NEONATAL PASSIVE
IMMUNITY: MATERNAL ANTIBODIES
INTERFERE WITH THE INFANT’S
RESPONSE TO VACCINATION

Despite the significant health benefits resulting from maternal
vaccination during pregnancy for mother and infant, there is
also a downside to it. Many studies have demonstrated that
high levels of maternal antibodies in the infant hamper the
immune response required to mount humoral immunity upon
routine childhood vaccinations (68). This inhibitory effect of
maternal antibodies on the antibody generation by the infant’s
immune system, which is commonly referred to as “blunting,”
can affect neonatal immunity for up to more than one year of
age, depending on the level of maternal antibodies in the neonate
at birth. Interestingly, blunting occurs irrespective of the type
of vaccine applied, including measles, influenza and pertussis
vaccines (68).

The most common explanation for blunting involves a cross-
link between the B cell receptor (BCR) and the Fcγ receptor
FcγRIIB (68, 93), both expressed on the surface of B cells.
Each BCR has a unique affinity to a certain pathogen epitope,
which can also be recognized by specific maternal antibodies.
These again can be ligated to the FcγRIIB by their Fc fragment.
When the infant is being vaccinated, pathogen fragments enter
its circulation and can be bound both by BCR and maternal
antibodies at the same time, which leads to contradicting signals
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FIGURE 3 | Upon exposure of the neonate to vaccine antigens, the antigen is recognized by its specific B cell receptor (BCR). If maternal antibodies are present in
the child’s circulation, they bind to the vaccine antigen as well as to the Fc-receptor FcRIIB that is also expressed on B cells. Thus, a cross-link between BCR and
FcRIIB is formed, which inhibits antibody production of the B cell in response to antigen recognition.

within the B cell. While the BCR recognizes the new antigen
and emanates signals leading to plasma cell differentiation and
antibody production, FcγRIIB signalizes the presence of specific
antibody to this particular antigen and inhibits further antibody
production. In consequence, the stimulatory BCR signal is being
inhibited and no antibody production can be initiated by the
infant’s immune system (Figure 3).

Very recently, a large study has thoroughly addressed the topic
of blunting by maternal antibodies (94). Here, children’s antibody
responses to routine early life vaccinations against Hepatitis B,
tetanus, diphtheria, pertussis, polio, pneumococcus, rotavirus,
MMR, and meningococcus have been associated with maternal
vaccine responses using inactivated influenza vaccine or Tdap
during pregnancy. While maternal influenza vaccination did
not affect the infant’s vaccine responses, maternal immunization
with Tdap resulted in significantly lower vaccine responses to
specific (diphtheria and pertussis) and heterologous antigens
(polio and pneumococcus) in the child. This observation has
sparked the notion that maternal antibodies present in the
neonate bind to the diphtheria-toxin derived carrier protein of
the pneumococcal vaccine before the neonatal host can mount an
immune response against the heterologous antigens bound to the
carrier protein. Also, reduced blunting has been described upon
infant immunization with acellular as compared to the whole cell
pertussis vaccine (19). In order to support maternal vaccination
strategies, the consequence of Tdap-booster immunization at 13
or 15 months of age upon maternal Tdap vaccination during
pregnancy has been assessed. Here, Tdap booster doses overcame
an initially observed blunting effect caused by high maternal
antibody levels (95, 96).

Approaches seeking to bypass the process of blunting are
nowadays tested, such as alternative vaccination routes and
the simultaneous injection of antigen-specific IgM or agents

that stimulate the production of interferon-α along with the
vaccine (68). These adjuvants have been suggested to counteract
the inhibitory signal produced by FcγRIIB, thus leading to B
cell activation and antibody production following immunization
even in the presence of maternal antibodies. Additionally, as
reported by studies dating back two decades and more, maternal
antibodies do not interfere with T cell priming of the infant (97–
99). These observations support that sufficient protection can still
be reached at the time when maternal antibodies have completely
waned in the infant at an age of approximately 6 months, even
if the first vaccination did not trigger a significant humoral
immune response.

There is still ambiguity regarding the occurrence of a blunting
effect, as it was not confirmed in all studies assessing it (22).
Hence, future studies are required to confirm the underlying
mechanisms of blunting and T cell priming in order to ensure
highest efficacy of neonatal immunization. Clearly, blunting of
vaccine responses in infants might increase the susceptibility to
certain early life infections. Considering the advantages related
to maternally derived passive immunity for the neonate, blunting
however, has been described as an acceptable trade-off (94).

Noteworthy, a number of articles published in the 1980s
support that anti-idiotypic antibodies are also transferred from
the mother to the fetus via the placenta (100) and by breast
milk. Anti-idiotypic antibodies are directed against molecular
patterns (idiotypes) located close to the antigen-binding site of
pathogen-specific antibodies and are being elicited as part of
the regular immune response. A proportion of anti-idiotypic
antibodies carry an “internal image” of the antigen for which their
idiotype antibodies are specific. Thus, anti-idiotypic antibodies
are thought to stimulate B-cells in an antigen-independent
manner and subsequently lead to the production of antigen-
specific, idiotype-carrying antibodies with neutralizing ability
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(101–104). Low levels of maternally derived anti-idiotypic
antibodies have been shown to provide a significant priming
effect on the immune system of the neonate, protecting neonatal
mice from pathogen challenges (104). Conversely, a high dose
of maternally derived idiotype and anti-idiotypic antibodies,
acquired via transplacental transfer or breastfeeding, may yield
to the observed blunting effect. Hence, based on the immune
network theory by Jerne (105), complex regulatory mechanisms
involving idiotype and anti-idiotypic antibodies underlie the
infant’s vaccine responses. Strikingly, using monoclonal anti-
idiotypic antibodies as a vaccine to immunize against measles,
mumps and rubella, against which to date can only be vaccinated
later in life, could allow to induce protection already at birth. This
would overcome a major window of vulnerability and reduce the
burden of disease in young infants.

VACCINATION COMPLIANCE DURING
PREGNANCY

Despite all these evidences highlighting the benefit of
vaccinations during pregnancy for mother and child, poor
vaccination compliance among women during their reproductive
years is still an alarming clinical problem. This poor vaccination
compliance is the result of a number of factors, including the
neglect of healthcare providers to offer vaccination, limited
availability and high costs of vaccines, doubts of the effectiveness
of vaccinations, concerns about the safety of the vaccine for
mother and fetus (106, 107). Continuous accumulation of
evidence that vaccination strategies can yield to significant health
advantages for mother and child and the communication to
researchers, lay individuals and stake holders will hopefully
improve the vaccination compliance in the near future.

CONCLUSION

A wealth of published evidence strongly underpins that
vaccination during pregnancy is advantageous not only for
maternal health, but also for children’s well-being. Especially
maternal vaccination against tetanus, diphtheria, pertussis and

influenza has been convincingly demonstrated by a large number
of studies to be safe, immunogenic and to provide significant
immunity to the newborn. The latter could not only be confirmed
by the mere presence of maternally derived pathogen-specific
antibodies in newborns, but indeed a reduced risk for pertussis
and a broad protection from lower respiratory tract infections,
even beyond infection with the influenza virus. Noteworthy,
the downside of high levels of maternal antibodies against
pathogens, the induction of immunological blunting in the
infant, seems to dampen the neonatal response to early life
vaccinations and causes a threat to neonatal health. The reduced
risk for neonatal infections due to maternally derived immunity
however, clearly proves that blunting-related disadvantages are
outweighed by the advantages. This has been confirmed by a
recent study which reports that measles vaccination of infants
in the presence of maternal anti-measles antibody significantly
reduced overall infant mortality, compared to vaccinated infants
without maternal antibodies (108). Lastly, the poor vaccination
compliance is a challenge that must urgently be met, for example
by implementing maternal immunization platforms through
which education and communication of vaccination-related
benefits are facilitated and vaccines are routinely offered in order
to increase the willingness and subsequently the vaccination rate
of pregnant women.
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