
RESEARCH Open Access

Flexible docking-based molecular dynamics
simulation of natural product compounds
and Ebola virus Nucleocapsid (EBOV NP): a
computational approach to discover new
drug for combating Ebola
Mochammad Arfin Fardiansyah Nasution, Erwin Prasetya Toepak, Ahmad Husein Alkaff
and Usman Sumo Friend Tambunan*

From 5th International Work-Conference on Bioinformatics and Biomedical Engineering
Granada, Spain. 26-28 April 2017

Abstract

Background: Ebola still remains as one of the most problematic infectious diseases in Africa with a high rate of
mortality. Although this disease has been known for an almost half-century, there are no vaccines and drugs
available in the market to treat Ebola. Zaire ebolavirus (EBOV), a single-stranded RNA virus which belongs to
Filoviridae family and Mononegavirales order, is one of the virus causing Ebola. As one of seven proteins that EBOV
encodes, Ebola virus nucleoprotein (EBOV NP) plays an imperative role in EBOV proliferation cycle. Therefore, the
development of a new Ebola treatment can be targeted towards EBOV NP.

Results: In this work, we screened about 190,084 natural product compounds from ZINC15 database through in
silico virtual screening and flexible docking simulation. Furthermore, the bioavailability and toxicity prediction have
been conducted as well. Two best ligands according to the simulation and prediction tests were progressed into
the molecular dynamics simulation.

Conclusion: In the end, we found that our proposed ligands, namely α-lipomycin (ZINC56874155) and 3-(((S)-1-
amino-1,2,3,4-tetrahydroisoquinolin-5-yl)methyl)-5-((5-((5R,7S)-5,7-dihydroxy-3-oxodecyl)-2-hydroxyphenoxy) methyl)
pyrrolo[3,4-b]pyrrol-5-ium (ZINC85628951), showed the promising results to be developed as a lead compounds for
treating Ebola. Therefore, an experimental study is required to validate their inhibition activities against EBOV NP.
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Molecular dynamics simulation
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Background
Ebola, previously known as Ebola hemorrhagic fever or
Ebola virus disease is an acute viral infection with fever
followed by bleeding diathesis marked by high mortality
rate in human and nonhuman primates [1]. Typically, the
initial infection shows no symptoms. After incubation for
about 4–10 days, patient exhibits the flu-like nonspecific
symptoms such as fever, myalgia, and malaise. As the infec-
tion progresses, the disease develops into severe bleeding,
coagulation abnormalities, and a range of hematological
irregularities. The neurological symptoms such as coma, de-
lirium, and convulsions may also develop during the late
stage of infection [2]. The patients die around 6–9 weeks
after the symptoms [3]. World Health Organization (WHO)
has recognized Ebola as one of the most dangerous diseases
in the world due to its non-specific symptoms, severe mor-
bidity, and high mortality rate [4].
Since it was first discovered in 1976, twenty-five Ebola

outbreaks have been occurred in the world, most which
mainly took place in Western and Central Africa region
countries [4]. The last outbreak in 2014–2016 was the most
extensive and deadliest Ebola outbreak recorded. It began
in the rural area of Guinea in December 2013 and spread
to urban centers of Guinea and its neighboring countries,
Sierra Leone and Liberia [5]. Ebola has claimed 11,310 lives
out of 28,616 reported cases when the outbreak ends in
March 2016 [4, 6]. Even though the damage caused by Ebola
is beyond measure, there are no FDA-approved antiviral
treatments for Ebola until now. Therefore, the deployment
of new antiviral drugs for Ebola is really necessary right now.
Ebola is caused by Ebolavirus, an enveloped, nonseg-

mented, negative-sense, single-stranded RNA virus which
belongs to Filoviridae family along with Marburgvirus and
Cuevavirus [7, 8]. Ebolavirus is subdivided into five spe-
cies; Zaire ebolavirus (EBOV), Sudan ebolavirus (SUDV),
Tai Forest ebolavirus (TAFV), Bundibugyo ebolavirus
(BDBV), and Reston ebolavirus (RESTV) [9, 10]. The esti-
mated case fatality rate for infection by Ebolavirus was
65.4% (Confidence Interval, CI, 95%). Out of five species,
EBOV comes as the most devastating virus which has the
highest case-fatality rate at 76% (CI 95%) [11]. On the
other hand, RESTV can only infect nonhuman primates
such as gorillas and chimpanzees [12, 13].
The EBOV viral genome consists of around 19,000 bases

[14]. It encodes seven proteins which have an imperative
role in EBOV viral life cycle, namely nucleoprotein (NP),
glycoprotein (GP), RNA-dependent RNA polymerase (L),
matrix protein (VP40) and three nucleocapsid proteins
(VP24, VP30, and VP35) [15, 16]. The genome itself is
arranged as follows: 3′-leader-NP-VP35-VP40-GP-VP30-
VP24-L-trailer-5′ [14, 17].
As a negative-sense single-stranded RNA virus (-ssRNA),

the RNA genome of EBOV cannot exist alone. Thus, NP
must encapsidate it and further complexed with L to form

ribonucleoprotein (RNP). The RNP is essential to facilitate
virus replication, transcription, and assembly [18, 19]. In-
side the host cell, the virion releases the RNP which serves
as the template in which the L transcribes mRNAs from
the RNA genome. In the late viral replication stage, the
positive-strand RNA (cRNA) which complementary to the
RNA genome is also produced in the form of RNP. The
RNP filled with cRNA serves as the template that produces
the RNP that ready to be packaged in the virion [19, 20].
Ebola virus nucleoprotein (EBOV NP) consists of 739

amino acids. Its structure can be separated into N-tail,
N-lobe, C-Lobe, non-conservative region, and C-tail. [21].
This protein mediates the interaction between L and RNA
genome in the virion during the transcription process [19].
NP also protects the RNA genome from degradation by ex-
ogenous nucleases or innate immune system in a host cell.
As a result, NP plays a vital role for RNP to accomplish
viral replication throughout the viral life cycle [22]. The
EBOV -ssRNA proliferation gets disturbed with functional
disorder of NP [21]. As such, EBOV NP which involves dir-
ectly in the transcription, assembly, and budding of virion
might become an attractive target for the antiviral develop-
ment of Ebola [23, 24].
Natural products are the compounds isolated from the

living organisms produced by the secondary metabolism
pathways [25]. This class of compounds has been consid-
ered to be a crucial source for medicines and drugs be-
cause of their interesting bioactivities and therapeutic
potential [26–28]. With the extensively available reservoir,
the natural product substances can be investigated with
the intention of identifying new compounds that can be
either used directly as medicines or can serve as lead
structures for the development of a new and more com-
plex drug molecule, especially as new antiviral agents [29].
In addition, the natural product compounds generally
have a favorable bioavailability in comparison with the
synthetic drug [26]. Some successful antiviral drugs have
been developed from natural product compounds, for ex-
ample, zanamivir, peramivir, and lanamivir octanoate [30].
Currently, the in silico method is rapidly gaining

popularity for its implementation and application in the
field of medical science. This approach can leverage
chemical and biological information about ligands and/
or target. Most importantly, the compounds with un-
desirable properties can be eliminated while the most
promising candidates can advance to the next analysis
[31]. One way to investigate the potency of a ligand as
an inhibitor of a target is molecular docking and mo-
lecular dynamics (MD) simulation. Molecular simula-
tion estimates the ligand-target binding energy and
dynamic stability by evaluating the phenomena involved
in the intermolecular interaction process [32]. Cost and
time of wet laboratory experiments can be drastically
reduced by in silico method.
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In this research, we tried to find a novel inhibitor for
EBOV NP from natural product database through in silico
method by employing molecular docking and MD simula-
tion. In addition, the bioavailability and health effect pre-
diction have also been conducted. Therefore, the potential
natural product compounds that can performed as drug
candidate of Ebola can be established.

Methods
This research was conducted based on the validated com-
putational approach that is developed by our research
group (Fig. 1) [33, 34]. In this research, we used Personal
Computer (PC) with Intel Core i7 7700 K Processor with
NVidia GeForce GTX 1080 Graphics Card. We used Win-
dows 7 Professional as Computer Operating System.

Construction of potential natural product database
We collected about 190,084 natural product com-
pounds from ZINC15 database [35]. To eliminate the
undesirable compounds, we screened these compounds
based on their toxicity properties and druglikeness
score. In this research, DataWarrior v.4.5.1 software
was used to predict the druglikeness and toxicity of
these natural product compounds [36]. Compounds
with druglikeness score below 0 and/or have either mu-
tagenic, tumorigenic, irritant and reproductive-effect
properties have been removed from the database. Fur-
thermore, we also applied Lipinski’s Rule of Five (RO5)
and Veber’s rule, with several adjustment, to reduce the
number of compounds in the database [37, 38]. All of
the remaining ligands were selected as potential com-
pounds and prepared for the next step.

Structure preparation of protein and natural product
database
In this study, the structure of EBOV NP with PDB ID:
4Z9P was obtained from RCSB Protein Databank (RCSB-
PDB) [21, 39]. The unwanted molecules such as water
molecules in the protein structure were removed using
Molecular Operating Environment 2014.09 (MOE 2014.09)
software [40, 41]. We used ‘LigX’ feature on MOE to

protonate and minimize the 3D structure of this protein.
Parameters such as AMBER10:EHT force field, ‘Gas Phase’
solvation, and RMS gradient of 0.05 were chosen in EBOV
NP structure preparation process. The “Allow ASN/GLN/
HIS ‘Flips’ in Protonate3D” option was unchecked, and the
default parameters were utilized on the rest.
The compounds in potential natural product databases

were also prepared using the same software. These com-
pounds were also prepared by using the default parameters
in 'Wash' and 'Energy Minimization' features, with a
MMFF94x force field and RMS gradient of 0.001 kcal/
mol.Å were applied.

Molecular docking simulations of natural products
database
The compounds in natural product database were docked
into the active site of EBOV NP using MOE 2014.09 soft-
ware. The ‘Site Finder’ feature on MOE 2014.09 was used
to predict the active site of EBOV NP [42]. The docking
process was conducted three times. The first and second
docking were performed by using ‘Rigid Receptor’ proto-
col. In this simulation, ‘Triangle Matcher/London dG’ and
‘Forcefield/GBVI-WSA dG’ parameters were chosen as
the placement and refinement methods, respectively. Fur-
thermore, the retain value of 30 and 100 were also se-
lected as the retain value on placement methods in first
and second docking, respectively, while the retain value of
1 was kept in both simulations on refinement method.
The third docking was carried out by using ‘Induced Fit’

protocol. In this step, the protein was made flexible to fit
the conformation with the desired ligand. The rest of pa-
rameters in this docking were made with the same param-
eters as the previous docking simulation. At the end of the
simulation, we chose the best ten ligands according to
their Gibbs free binding energy (ΔGbinding), root mean
square deviation (RMSD), and binding affinity between li-
gands and the EBOV NP.

Bioavailability and pharmacokinetic prediction
SwissADME (http://www.swissadme.ch/), Toxtree v2.6.13
software [43], and FAF-Drugs3 were used to predict

Fig. 1 Research flowchart that was used in this study. The number inside the circles mark the number of ligands that have been used in the
respective step
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bioavailability and pharmacokinetic properties of the best
ligand from previous step result [44]. The best two out of
ten ligands, based on the result of this tests, were selected
to be used in the MD step.

Molecular dynamics simulations
The stability of the EBOV NP protein complex with the
best selected natural product compound was determined
using MD simulations. These simulations were performed
using MOE 2014.09 software. First, the selected EBOV
NP-natural product compound complex was extracted
from the previous simulation and saved in .moe format.
This complex was then prepared using the same protocol
from Section “Structure Preparation of Protein and Nat-
ural Product Database”, but instead of ‘Gas Phase’, we
chose the ‘Born’ solvent as a parameter. The MD simula-
tions were conducted by using Nosé-Poincaré-Andersen
(NPA) equations in 20 ns (20.000 ps). The MD simula-
tions have been carried out by heating the complex system
from 300 K up to 312 K (temperature from the normal
environment into the body temperature of Ebola patient).
The simulations were ended with a cooling stage to obtain
the complex structure with the lowest energy. In the end,
the binding interactions of the selected compound from
MD simulation were compared with the interactions from
the docking simulation. Furthermore, the root mean
square deviation (RMSD) values that obtained during the
production stage were observed as well to determine the
stability of the ligand-receptor complex during the MD
simulation.

Results and discussion
Initial screening process
In this study, we collected about 190,084 compounds from
ZINC15 database [35] and downloaded all of them in the
.sdf format file. These compounds are the natural product
compounds; the small compounds that are produced by liv-
ing organisms [45]. Natural product compounds have fre-
quently been used, from ancient times, to treat diseases and
heal wounds [46]. Thus, natural product compounds can
be potential source of antiviral drug targeting pathogenic
virus, including Ebola. In this research, the initial screening
process was performed to eliminate the undesirable com-
pounds before it progressed into docking simulation
process using DataWarrior v.4.5.1 software [36]. To find
the molecule which has decent oral bioavailability, Lipinski’s
RO5 and Veber’s rule were deployed with several excep-
tions. In this study, any compounds, according to Lipinski’s
RO5, which has LogP lower than − 1.5 and higher than 6.6
(instead of − 0.5 and 5.6, respectively), molecular weight
(MW) higher than 600 (instead of 500), hydrogen bond ac-
ceptor higher than 12 (instead of 10) and hydrogen bond
donor higher than 6 (instead of 5), were eliminated. More-
over, the compounds which have rotatable bonds higher

than 14 and total polar surface area (TPSA) greater than
180 Å2 (instead of 10 and 140 Å2, respectively) were also
removed. Finally, any compounds with druglikeness score
above 0 and do not have any mutagenic, tumorigenic, irri-
tant and reproductive-effect properties were chosen and se-
lected for the docking simulation.
From the initial screening process, about 63,199, 104,393,

and 18,608 compounds were found to violate Lipinski’s
RO5, Veber’s rule, and having either toxicity properties or
lack of bioavailability score, respectively. Resulting only
3,884 compounds in the process. These compounds were
selected and prepared as the ligands for the next docking
simulation.

Molecular docking simulations
Molecular docking simulation is defined as a simulation
that predicts the ligand conformation and orientation (usu-
ally small molecules) in the active site of a receptor (any
macromolecular target, e.g., protein or enzyme). Moreover,
the docking simulation is also used to determine the ligand
binding energy and free energy when it is bound with its re-
spective binding site, creating a ligand-receptor complex,
which can be computed by the software to score for select-
ing the best ligand [47–49]. Over the years, the docking
simulation has been grown significantly and become an
integral part in computer-aided drug design and develop-
ment (CADDD) through virtual screening or lead-like
optimization [50]. However, the rigid docking simulation
may lead to false negative results (from non-bioactive com-
pounds) and not resembling the real characteristic of the
receptor, which can adapt to several conditions (e.g.,
temperature, and pH). Nowadays, the flexible docking,
commonly known as induced-fit docking, was introduced
to overcome this problem, which is more accurate and
precise than rigid docking simulation, although it takes a
longer time to simulate one ligand-receptor complex than
the former method [51–53].
In this research, the 3D protein structure of EBOV NP

(PDB code: 4Z9P) was obtained and downloaded from
RCSB PDB website. Followed by the elimination of the
water molecules and the addition of missing hydrogen
atoms in the protein structure. Afterwards, the optimization
and minimization of the 3D protein of EBOV NP using the
default minimization protocol on MOE 2014.09 software
were conducted. The minimization was performed with the
AMBER10:EHT force field because it is suitable for protein,
macromolecules and nucleic acid [54]. After the EBOV NP
3D structure was optimized, the ‘Site Finder’ feature was uti-
lized to predict the ideal binding site of the EBOV NP. In
this study, we located the EBOV NP binding site according
to the recent study of Fu et al. in 2016 [42]. The result from
‘Site Finder’ feature shows that the binding site of EBOV NP
comprises of twenty amino acid residues (Pro159, Lys160,
Val162, Val163, Lys171, Gln238, Arg240, Phe241, Ser242,
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Gly243, Leu244, Leu245, Ile246, Lys248, Arg298, Val305,
Asn306, Leu308, Glu309, and His310). Moreover, about six
of twenty residues (Lys160, Lys171, Gln238, Lys248, Arg298,
and His310) were determined as the RNA-binding groove
of EBOV NP, as it can be seen in Fig. 2. Therefore, if the lig-
and binds perfectly with the EBOV NP on its RNA-binding
groove, the interaction of EBOV NP and the viral ssRNA
may be disrupted and impaired the associations of viral
ssRNA [42].
In this study, about 3,884 ligands that passed the previous

initial screening process were subjected into molecular
docking simulation. All of these ligands were optimized
and minimized through the standard protocol of ‘LigX’ fea-
ture on MOE 2014.09 software. As the standard ligands, we
used licochalcone A (ZINC3873122) and 18β-glycyrrhetinic
Acid (ZINC3947479) because they were previously pre-
dicted to interact with the EBOV NP at the RNA-binding
site [42]. In this study, the molecular docking simulation
was conducted three times; the first one was performed on
3,884 ligands, including two standard ligands, using the
‘Rigid Receptor’ protocol with the retain value of 30 [55]. In
this stage, about 3,567 ligands, which have higher ΔGbinding

value than the standards, were eliminated. Resulting only
317 ligands in the process. These ligands were further se-
lected for the second docking simulation; using the ‘Rigid
Receptor’ protocol with the retain value of 100. After the
second docking simulation was conducted, we chose 100
best ligands, based on their ΔGbinding value, to be selected
for the third docking simulation; using ‘Induced Fit’ proto-
col with retain value of 100. In the end, the best ten ligands
that have the lowest ΔGbinding value of all ligands were se-
lected, as it can be seen in Table 1.
From Table 1, calbistrin C (ZINC14262121) was chosen

as the best ligand from the docking simulation because it
has the lowest ΔGbinding value of all ligands at − 7.9228 kcal/
mol, followed by α-lipomycin (ZINC56874155) as the

second-lowest ΔGbinding value ligand at − 7.8387 kcal/mol,
ZINC85596639 (− 7.4919 kcal/mol), ZINC504747685
(7.4020 kcal/mol) and ZINC85628951 (7.2843 kcal/mol).
These five ligands have a ΔGbinding value lower than the
standard ligands (− 5.0048 kcal/mol and− 5.0058 kcal/mol
for the licochalcone A and 18β-glycyrrhetinic acid, respect-
ively). This indicates that these five ligands have better inhib-
ition potential than the standard ligands based on the
ΔGbinding. However, we must take into account that ΔGbind-

ing value is not the sole factor for the inhibition potential.
The RMSD value and the molecular interaction should be
considered as well to determine the inhibition potential of
the ligands. RMSD value from docking simulation deter-
mines the quality of ligand conformation that generated in
the simulation. In this case, a binding pose of a ligand with
RMSD value below 2 Å is categorized as good, acceptable
binding pose. Otherwise, any ligand conformation with
RMSD value above 3 Å is unacceptable [56]. For instance,
we figured out from induced-fit docking simulation that cal-
bistrin C and α-lipomycin have RMSD value of 2.3913 and
1.7895, respectively. It means that the binding pose of
α-lipomycin is more acceptable than calbistrin C, even
though the ΔGbinding value of the former is higher (more
positive) than the latter.
The molecular interaction of the ligands in the binding

site of EBOV NP can be observed by using ‘Ligand Inter-
action’ feature on MOE 2014.09 software, after the simula-
tion was completed. Any interaction that happened in the
simulation is considered, including the hydrogen bonds and
pi-pi interactions, as well as the van der Waals interaction.
For instance, the molecular interaction of the standard li-
gands, licochalcone A and 18β-glycyrrhetinic acid, and
EBOV NP are explained in Fig. 3.

It can be seen in Fig. 3, licochalcone A ligand mainly
binds with the binding site of EBOV NP through two in-
teractions; hydrogen bonds (Lys171, Lys 171, and Arg174)

Fig. 2 The 3D structure of Ebola nucleocapsid (NP) taken from PDB ID: 4Z9P (left), along with the binding site of EBOV NP (RNA-binding groove)
according to Fu et al. in 2016

Nasution et al. BMC Bioinformatics 2018, 19(Suppl 14):419 Page 141 of 176



and van der Waals interactions (Ala237. Gln238, Arg240,
Phe241, and Lys248). Meanwhile, the interaction between
EBOV NP and 18β-glycyrrhetinic acid was also observed,
which resulting two residues that bind through hydrogen
bonds (Arg298 and Asn306) and six residues through van
der Waals interaction (Val162, Val163, Gly243, Val305,
Leu308, and Glu309). From the binding interaction above,
we can also conclude that either licochalcone A (Lys160,
Lys171, Gln238, and Lys248) and 18β-glycyrrhetinic acid
(Arg298) have directly bonded with the RNA-binding
groove of EBOV NP. Therefore, it is necessary to find an
alternative compound that has a higher binding affinity, as
well as higher Gibbs free binding energy, than these two
standard ligands. Furthermore, the binding affinities of
α-lipomycin was also observed, which is shown in Fig. 4.

α-lipomycin binds directly to three amino acid residues
in the EBOV NP binding site, namely Val162 (-OH with
the carbonyl group at the Val backbone), Lys171 (-COO−

and –OH with the amine group at the Lys side chain), and
Arg174 (-COO− with the guanidine group at the Arg side
chain). Moreover, the hydrophilic area, which located in
the aliphatic site of the α-lipomycin, interacts with Val163
through van der Waals interaction. Additionally, several
residues, such as Pro159, Val161, Gln175, Val178, and
Gln238, were also observed to interact with α-lipomycin
through van der Waals interaction. Thus, α-lipomycin can
be considered as good inhibitor since it blocked the
Lys171 through hydrogen bond interaction, which is the
one of the important residues in RNA-binding groove of
EBOV NP.

Table 1 The Gibbs free binding energy (ΔGbinding), RMSD value and two-dimensional (2D) molecular structure of the ten best
ligands, including two standard ligands, from docking simulation

No ZINC Code
(Molecule Name)

ΔGbinding (RMSD)

Rigid Docking Induced-fit Docking

1 ZINC14262121
(Calbistrin C)

− 7.1685 kcal/mol
(3.4650)

−7.9228 kcal/mol
(2.3913)

2 ZINC56874155
(α-Lipomycin)

−7.0181 kcal/mol
(2.5151)

− 7.8387 kcal/mol
(1.7895)

3 ZINC85596639
((R)-4-(ethylamino)-5-(2-hydroxy-5
-((2S,4S,6S)-4-hydroxy-6-(4-hydroxy-3-methoxyphenethyl)
tetrahydro-2H-pyran-2-yl)-3-methoxyphenoxy)
pentanoic acid)

−6.5605 kcal/mol
(2.2021)

− 7.4919 kcal/mol
(2.0385)

4 ZINC504747685 / ZINC218110007
(3-[(2Z)-6-hydroxy-3-oxo-2-(pyridin-3-ylmethylidene)-1
-benzofuran-7-yl]-3-[3-methoxy-4-[(1-methylimidazol-2-yl)
methoxy]phenyl]propanoic acid)

−7.1475 kcal/mol
(1.5076)

−7.4020 kcal/mol
(1.8379)

5 ZINC85628951
(3-(((S)-1-amino-1,2,3,4-tetrahydroisoquinolin-5-yl)methyl)-5
-((5-((5R,7S)-5,7-dihydroxy-3-oxodecyl)-2-hydroxyphenoxy)
methyl)pyrrolo[3,4-b]pyrrol-5-ium)

−7.2411 kcal/mol
(1.8548)

− 7.2843 kcal/mol
(1.7994)

6 ZINC85570811

(2,3-dihydroamentoflavone 7,4′-dimethyl ether)

− 6.1927 kcal/mol
(2.4844)

−7.2385 kcal/mol
(1.8455)

7 ZINC5431307
(Lappaol C)

− 6.5308 kcal/mol
(2.4881)

− 7.2291 kcal/mol
(2.0008)

8 ZINC24986227
(5-(2-(4-(3-chlorophenyl)piperazin-1-yl)ethoxy)-2
-(5-methyl-4-phenyl-1H-pyrazol-3-yl)phenol)

− 6.3802 kcal/mol
(2.0664)

− 7.1857 kcal/mol
(2.1222)

9 ZINC85569343
((7aS,10S,11R,11aS)-2,6,10-trihydroxy-3-(4-hydroxy-3
-(3-hydroxybenzyl)-5-isobutylphenyl)-11-(hydroxymethyl)
-7a,10,11,11a-tetrahydro-1H,7H-pyrano[2,3-c]xanthen-1-one)

− 6.5689 kcal/mol
(1.7370)

−7.1604 kcal/mol
(1.7080)

10 ZINC85837484

(Rhusflavone)

− 6.8751 kcal/mol
(1.4505)

− 7.1453 kcal/mol
(1.6734)

S1 ZINC3873122
(Licochalcone A)

−5.0048 kcal/mol
(2.3374)

S2 ZINC3947479
(18β-Glycyrrhetinic Acid)

−5.0058 kcal/mol
(3.8390)
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The molecular interaction of ZINC85596639 and EBOV
NP can be seen in Fig. 4 as well, from the figure we can
observe that there are five interactions that occur in the
complex, mainly pi-pi aromatic interactions (through
Ser242 and Gly243) and hydrogen bond interaction (via
Arg205, Gly243, and Lys248). Additionally, twelve amino
acid residues were also interacted through van der Walls
interaction (Pro159, Lys160, Val162, Val163, Gly238,
Arg240, Phe241, Leu244, Val305, Leu308, Glu309, and
His310). Thus, we confirmed that ZINC85596639 ligand
might be considered as one of the potential inhibitors of
EBOV NP since it can interact with four different
RNA-binding groove sites through various interactions.
Finally, the molecular interaction of ZINC85628951 and

EBOV NP was also observed. From the Fig. 4 we can see
that six major interactions were found in the EBOV
NP-ZINC85628951 complex through pi-pi interaction
(Arg298 and Glu309), as well as hydrogen bond inter-
action (Asn307 [2×], Glu309, and His310). Furthermore,
nine residues were also interacted with the ligand through
van der Waals interaction. The potency of this ligand to
become an inhibitor for EBOV NP is quite strong due to
its interaction with Arg298 and His310, two of the RNA-
binding groove site residues.

Computational bioavailability, toxicity, and
pharmacokinetics prediction
To obtain the best ligand which can be used as a lead drug
for EBOV NP, the best ten ligands which previously
obtained based on their Gibbs free binding energy and
molecular interactions were tested for their toxicity and
pharmacological properties. In order for these ligands to
be functioned as a drug and can be taken orally, this lig-
and must pass through various tests.
In this research, the computational predictions were con-

ducted to determine the bioavailability and pharmacokinet-
ics, as well as physicochemical properties, of the selected
ligands from the previous simulation. In this stage, we
deployed ten ligands from docking simulation to be pre-
dicted by using SwissADME (http://www.swissadme.ch/)
and FAF-Drugs3 [44]. As shown in Table 2, except
ZINC24986227, all of the ligands have violated any of
Lipinski’s RO5 or Veber’s rule, most of them by having
higher MW than 500, or greater TPSA value than 140 Å2.
The enormous MW and TPSA value of these ligands may
affect the gastrointestinal (GI) absorption, as most of the li-
gands were predicted to have low absorption on this sys-
tem. Moreover, the bioavailability score of all ligands were
not impressive, as it can be seen in Table 3, with two out of

Fig. 3 The 3D (left) and 2D (right)molecular interaction between RNA-binding groove of EBOV NP with Licochalcone A (top) and 18β-
Glycyrrhetinic Acid (bottom)
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ten ligands (ZINC14262121 and ZINC504747685) have the
highest bioavailability score at 0.56, indicate that the bio-
availability of these two ligands is slightly better than the
other eight ligands. However, as shown in the table, the oral
bioavailability of all ligands was considered as good, according
to Egan et al. [57]. It indicates that all of the ligands may be
suitable and absorbed well in our body. However, it has to be
confirmed later on through in vivo studies to measure the
oral bioavailability rate of these compounds.
In addition to oral bioavailability and pharmacokinet-

ics prediction, the medicinal chemistry aspects of these
ligands were also observed, which generated by FAF-
Drugs3 software. In this study, we checked the
pan-assay interference compounds (simply known as
PAINS). Compounds that belong to PAINS have pro-
miscuous behavior that shows apparent bioactivity. Not

only that, but these compounds could also interfere the
readouts from an assay. Compounds which have a sub-
structure of PAINS are unsuitable to be lead com-
pounds, in particular for the drug [58–60]. From Table
3, we found out that all of our ligands were not indi-
cated to have any PAINS compounds, which means
that all of the ligands are not likely to produce
false-positives in high-throughput screen test [58].
Moreover, the potency of these ligands to become CYP
inhibitors were also observed. This test was completed
by using SwissADME software as well. In this study, all
of the ligands, apart from ZINC85596639 and
ZINC85628951 have the potency to become the CYP
inhibitors. Surprisingly, licochalcone A ligand was pre-
dicted to inhibit at least four out from five CYP en-
zymes that simulated in this study, namely CYP1A2,

Fig. 4 The 2D (left) and 3D (right) molecular interaction between RNA-binding groove of EBOV NP with α-lipomycin ligand (top), ZINC85596639
ligand (center), and ZINC85628951 ligand (bottom)
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CYP2C19, CYP2D6, CYP3A4. Therefore, this study ex-
plains that ZINC85596639 and ZINC85628951 ligands
can be prepared as drug compounds without worrying
that these ligands would be transformed into another
compound by CYP enzymes in the human body.
The final toxicity test in this research was performed to

determine the mutagenicity and carcinogenicity potential
of the ligands, based on the Benigni-Bossa rule. This rule
states that the mutagenic and carcinogenic potency of the
ligand can be found through the fragments of the func-
tional groups that the ligand possessed. The functional
groups that have been identified as either mutagenic or
carcinogenic by this rule are acyl halide, haloalkene, epox-
ide, aliphatic halogen, alkyl nitrate, aldehyde, hydrazine,
isocyanate, polyaromatic hydrocarbon, azide, alkyl/aro-
matic nitro, coumarin, diazo aromatic, benzyl sulfinyl

ether, alkyl halide and thiocarbonyl [61]. This prediction
test was done by using Toxtree v2.6.13 software, which
the results can be seen in Table 4.
The parameters outlined in this test include genotoxic

carcinogenicity, non-genotoxic carcinogenicity, QSAR car-
cinogenicity, and mutagenic potential of Salmonella typhi-
murium bacteria. Genotoxic carcinogens occur as a result
of direct irreversible DNA genetic damage, whereas
non-genotoxic carcinogens occur as a result of inducing
cancer via other mechanisms, such as modulation of cer-
tain hormones or proteins, immune system disorders, and
intercellular communication disorders, and do not directly
affect DNA [61].
Based on these tests, it appears that seven out of ten

ligand inhibitors have no carcinogenic or mutagenic
properties, with α-lipomycin, 2,3-dihydroamentoflavone

Table 2 The physiochemical properties of the best ten and two standard ligands

No ZINC ID Physicochemical Properties

MW LogP (o/w) H-Acc H-Bond TPSA

1 ZINC14262121 542.66 3.67 8 4 141.36

2 ZINC56874155 587.70 3.41 9 4 153.83

3 ZINC85596639 533.61 2.23 10 5 146.94

4 ZINC504747685 527.52 2.88 9 2 133.00

5 ZINC85628951 573.70 1.95 8 5 140.41

6 ZINC85570811 568.53 4.04 10 4 155.89

7 ZINC5431307 554.58 2.90 10 5 155.14

8 ZINC24986227 489.01 4.71 4 2 64.62

9 ZINC85569343 586.63 4.03 9 6 160.82

10 ZINC85837484 540.47 3.25 10 6 177.89

S1 Licochalcone A 338.40 3.98 4 2 66.76

S2 18β-Glycyrrhetinic Acid 470.68 5.15 4 2 74.60

Table 3 The pharmacokinetics properties, oral bioavailability, and toxicity properties prediction of the best ten and two standard ligands

No ZINC ID Pharmacokinetics MedChem Oral
Bioavailability

GI Absorption Bioavailability Score CYP Inhibitor Solubility Index PAINS Veber Egan

1 ZINC14262121 Low 0.56 CYP3A4 Good 0 Low Good

2 ZINC56874155 Low 0.11 CYP3A4 Good 0 Low Good

3 ZINC85596639 Low 0.55 None Good 0 Low Good

4 ZINC504747685 Low 0.56 CYP2C9, CYP3A4 Good 0 Good Good

5 ZINC85628951 High 0.55 None Good 0 Low Good

6 ZINC85570811 Low 0.55 CYP2C9 Reduced 0 Good Good

7 ZINC5431307 Low 0.55 CYP3A4 Reduced 0 Low Good

8 ZINC24986227 High 0.55 CYP2C19, CYP2D6 Reduced 0 Good Good

9 ZINC85569343 Low 0.17 CYP2C9 Reduced 0 Good Good

10 ZINC85837484 Low 0.17 CYP2C9 Reduced 0 Good Good

S1 Licochalcone A High 0.55 CYP1A2, CYP2C19, CYP2D6, CYP3A4 Good 0 Good Good

S2 18β-Glycyrrhetinic Acid High 0.56 None Reduced 0 Good Good
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7,4′-dimethyl ether, and rhusflavone were predicted to
be a non-genotoxic carcinogenic agent. Surprisingly,
α-lipomycin were also predicted as a genotoxic carcino-
genic agent as well; this may happen due to the α,β un-
saturated carbonyl fragment that lies in the ligand, while
substituted n-alkyl carboxylic acid that also resides in
α-lipomycin was the main reason why this ligand was pre-
dicted to be a non-genotoxic carcinogen agent. Further-
more, 2,3-dihydroamentoflavone 7,4′-dimethyl ether and
rhusflavone were predicted as non-genotoxic carcinogenic
ligands because they have o-phenylphenol fragments in
their molecular structure. However, based on this test,
both standard ligands were also observed and predicted to
be genotoxic carcinogenic agents as well, due to the alke-
nyl benzene and α, β-unsaturated carbonyl fragments in
the licochalcone A and 18β-glycyrrhetinic acid molecule
structure, respectively.
After the computational bioavailability, toxicity, and

pharmacokinetics prediction were conducted, α-lipomycin

and ZINC85628951 ligands were chosen for the prepar-
ation of MD simulation, based on the results of docking
simulation, as well as from bioavailability and pharmacokin-
etics prediction. The former ligand was chosen because it
has the second-lowest of the ΔGbinding value of all ligands
and good oral bioavailability (according to Egan, but not
with Veber), although it potentially harmful to our body
due to being a carcinogenic agent, while the latter ligand
was selected not only because it has high GI absorption
and solubility, but also predicted to be a safe compound be-
cause it is not predicted to be either carcinogenic or muta-
genic agent. Moreover, ZINC85628951 ligand was also
predicted to become non-CYP enzymes inhibitor as well.

Results of molecular dynamics simulations
In computational drug discovery, the MD is essential to
mimic the conditions of wet experiments, either in vivo or in
vitro. This technique could provide the insight about the
cryptic or allosteric binding sites of the protein, conformation

Table 4 The mutagenicity and carcinogenicity prediction of the best ten and two standard ligands

No ZINC ID Negative for genotoxic
carcinogenicity

Negative for nongenotoxic
carcinogenicity

Potential Salmonella typhimurium
TA100 mutagen based on QSAR

Potential carcinogen
based on QSAR

1 ZINC14262121 Yes No No No

2 ZINC56874155 No No No No

3 ZINC85596639 Yes Yes No No

4 ZINC504747685 Yes Yes No No

5 ZINC85628951 Yes Yes No No

6 ZINC85570811 Yes No No No

7 ZINC5431307 Yes Yes No No

8 ZINC24986227 Yes Yes No No

9 ZINC85569343 Yes Yes No No

10 ZINC85837484 Yes No No No

S1 Licochalcone A No Yes No No

S2 18β-Glycyrrhetinic Acid No Yes No No

Fig. 5 The RMSD curve from molecular dynamics simulation at 20 ns (20.000 ps). The x-axis represents the simulation time (at ps), while the y-axis
represents the RMSD value (at nm).
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of ligand-protein complex and could be used to enhance-
ment virtual screening inhibitors methodologies for drug dis-
covery. In the MD simulation, the protein and the ligand
could be simulated in condition with varying temperature,
time or in any condition that mimics the real-life experiment.
It is a beneficial technique to simulate conditions that hard
to perform in the wet experiments [62, 63]. In this study, the
selected ligands were simulated in MD simulation to deter-
mine the stability of the ligand-protein complex when the
ligand binds to the protein at its binding site. The simulation
comprises of three stages: the first is equilibration stage, this
stage was conducted in 100 ps. Also, this stage was also per-
formed to do heating process of the complex, from 300 K to
312 K, to simulate the human body temperature when it in-
fected with Ebola virus and suffered Ebola. After that, a
20,000 ps (20 ns) production stage was performed on the
ligand-protein complex to determine its stability. At the end
of the simulation, the RMSD value could be observed to pre-
dict the ligand-complex complex stability from MD simula-
tion, as it can be seen in Fig. 5. Moreover, the 10 ps-cooling
stage was also carried out to see the final interaction in the
complex after MD simulation was conducted.
According to Fig. 5, both standard and the best two

ligands have retained its binding affinity and still firmly
bound to their respective binding site. While the RMSD
value that produced in each complex were different; the
α-lipomycin complex was stable at 0.80 nm, and
ZINC85628951 at 0.60 nm. These results indicate that
the complexes that were formed are less stable than the
standard ligands (licochalcone A at 0.30 nm and 18β-
glycyrrhetinic acid at 0.60 nm, respectively). Moreover,

the RMSD graphs of all three best ligands fluctuated
before the simulations ended. This is different than
EBOV NP-licochalcone A complex, which the complex
was more stable because its RMSD value tends to be
stable at 0.30 nm, only fluctuated once at 16 ns.
Finally, the molecular interactions of the complex were

compared before and after MD simulation was conducted.
In this case, EBOV NP-ZINC85628951 complex was
chosen for this study. According to Fig. 6, when the EBOV
NP-ZINC85628951 complex had entered from equilibra-
tion stage into production stage (at 0 ns), the ligand still
interacted with Glu309 and Arg298 through pi-pi inter-
action and hydrogen bond interaction. Moreover, the
interaction between Asn307 with the ligand through
hydrogen bond interaction was also observed. While the
hydrogen bond interaction between His310 with the lig-
and was vanished. Interestingly, although the Glu309 was
still retaining its interaction with ZINC85628951 until the
simulation ended, the interaction was briefly lost during
the 10 ns dynamics simulation, and the Glu309 interacted
through the different site of the ligand. Additionally, at the
end of 20 ns dynamics simulation, ZINC85628951 still
interacted with two RNA-binding grooves (Arg298 and
His310) even though the van der Waals interaction was
occurred instead of hydrogen bond interaction (during the
docking simulation). Thus, although these ligands have
potential to become EBOV NP inhibitor due to their ac-
ceptable interactions at the RNA-binding site, even after
the MD simulation occurred, more computational studies
are recommended to determine the stability of these
ligand-protein complexes in longer time simulations.

Fig. 6 The 3D (top) and 2D (bottom) molecular interaction between EBOV NP and ZINC85628951 at the RNA-binding groove after equilibration
process (left), when 10 ns (center), and 20 ns (right) dynamics simulation was occurred
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Conclusions
Natural product compounds, due to their outstanding
bioactivities and unique bioavailability, have been highly
regarded as one of the most potent sources of many
drugs, with their antiviral activities have been known in
recent decades. In this study, about 190,084 natural
product compounds from ZINC15 database were ob-
tained to undergo several simulations, including mo-
lecular docking simulation, computational ADMET
test, and MD simulation. In the end, we discovered that
two natural product compounds, namely α-lipomycin
(ZINC56874155) and ZINC85628951, were potential to
be developed as a novel drug candidate for Ebola, tar-
geting EBOV NP. Thus, we expected that these com-
pounds could be further studied through another
computational study and wet lab experiments to prove
their inhibition activity and drug potential against
EBOV NP.
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