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Abstract

To understand gene function, genetic analysis uses large perturbations such as gene deletion, knockdown or over-
expression. Large perturbations have drawbacks: they move the cell far from its normal working point, and can thus be
masked by off-target effects or compensation by other genes. Here, we offer a complementary approach, called noise
genetics. We use natural cell-cell variations in protein level and localization, and correlate them to the natural variations of
the phenotype of the same cells. Observing these variations is made possible by recent advances in dynamic proteomics
that allow measuring proteins over time in individual living cells. Using motility of human cancer cells as a model system,
and time-lapse microscopy on 566 fluorescently tagged proteins, we found 74 candidate motility genes whose level or
localization strongly correlate with motility in individual cells. We recovered 30 known motility genes, and validated several
novel ones by mild knockdown experiments. Noise genetics can complement standard genetics for a variety of phenotypes.
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Introduction

To understand which proteins contribute to a biological

phenomenon, current approaches use perturbations such as gene

knockdown, over-expression or knockout. These approaches

have provided the basis for much of what we know about cell

biology. However, such perturbations also have drawbacks.

Perturbations currently used are usually large - a protein

expression is either markedly reduced or increased, and the

measurement is therefore far from the cells normal working

condition. This can lead to artificial off-target effects or to

masking of the perturbation by changes in the cell that

compensate for the loss of a protein. It is thus possible that

some of the information about protein function has remained

hidden due to these features of current methods.

To offer a complementary way to understand protein function,

we present an approach called noise genetics. Noise genetics uses

the natural cell-cell variation in protein levels and localization [1–

8] as a source of mild perturbations to reveal protein function.

Since natural fluctuations are mild, the risk of compensation is

reduced. The idea is to correlate the protein levels and

localization in individual cells to the phenotype in the same

cells. Notably, cell-cell variation in protein level changes slowly

over time: cells keep their individual levels for about a cell

generation [7]. Thus, the noise we use is a type of cell

individuality (Figure S1). Cells have individual character in many

of their phenotypes as well, that also last for about a cell

generation [9,10].

Previous studies used noise for understanding regulatory

interactions between a few proteins in bacteria [1,11], whereas

here we screen hundreds of proteins. As a model system, we use

the motility phenotype of human cancer cells. Motility of cancer

cells is of general interest both as a well-studied biological

phenotype [12], and as a feature of normal physiology and cancer

metastasis [13]. Wide scale genetic screens, including siRNA

knockdowns, have revealed numerous genes involved in motility

[14–16]. Moreover, natural phenotypic variability and fluores-

cent microscopy were used to study the shape of motile cells [10]

and the cytoskeleton dynamics [17].We use a library of human

cancer cell clones each with a different protein fluorescently

tagged at its endogenous chromosomal locus [18,19] to follow the

natural variability of proteins, and the natural variability of

motility in the same cell. Proteins whose level or localization

correlate with motility are identified as candidate motility

proteins.

We find that about 15% of the 566 highly expressed proteins

that we tested exhibit a significantly high correlation between their

protein features and motility in individual cells. This correlation

can suggest that the protein has a role in cell motility. About half of

these candidate proteins were previously known to be involved in

cell motility. We validated a sample of these candidates using mild

siRNA knockdown.
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Results

Level and localization of 566 unique proteins were
analyzed in time-lapse movies

To study natural variability between individual cells, we used

the LARC library of human clones with tagged proteins [18–20].

The library is made of clones of a parental human lung cancer cell

line, H1299. In each clone, a full-length protein is fluorescently

tagged with YFP as an internal exon (Figure 1A). The protein is

tagged at its endogenous chromosomal locus, preserving the

natural promoter and regulatory sequences (Figure 1B). Previous

studies suggest that most (70–80%) of the tagged proteins preserve

their wild-type dynamics and localization [18,20].

The parental clone also expresses proteins tagged with red

florescence using mCherry. This red fluorescence is used for image

analysis of time lapse movies (Figure 1C), allowing automated

segmentation and tracking of the nucleus and cytoplasm in all

clones (Figure 1D). The tagged proteins are XRCC5 and DAP1,

both not known to be involved in motility.

A previous study employed this library to follow 1260 clones

with different tagged proteins as they responded to an anti-cancer

drug using time-lapse movies [18]. Here, we re-analyzed these

movies, that also included the 24 h period before drug addition,

together with movies from a recent study on protein half-lives

using the same library and microscopy system (Eden et al, 2011)

and chose 704 unique proteins with high quality movies for further

analysis (movies chosen had 4 fields of view totaling at least 20 cells

at each time-point). Of these, we chose only known proteins (as

opposed to ESTs) with subcellular localization matching the

literature. This results in a final set of 566 different proteins. These

proteins have diverse cellular localizations and functions (Supple-

mentary File S1).

Correlation between protein and motility features was
tested for each cell

We tracked the protein level and localization in each cell, and

also the motility of the same cells. Protein level is given by the

summed YFP fluorescence of all pixels in the cell. Most proteins in

our dataset did not show large translocation events between cell

compartments such as nucleus and cytoplasm. To parameterize

protein localization, we therefore characterized the spatial

distribution inside the cell, using two well-known measures from

image analysis: contrast (the existence of sharp changes in

intensity) and texture (also called texture correlation, the linear

dependency of grey levels on those of neighboring pixels) [21–23].

Cell motility was quantified in terms of speed and angle change

of the motion (Figure 2A). Cell velocity was measured as the

change in cell center of mass between frames (20 min). The angle

change of cell movement in frame i was calculated based on the

deviation of the cell in frame i+1 from its movement between

frame i-1 and frame i. Persistent motion results in low values of

angle change (Figure 2B). We found that angle change was

negatively correlated with cell velocity (Figure S2).

If a protein is involved in motility, we expect a significant

positive or negative correlation between at least one of the protein

parameters and one of the motility parameters. For example, if

cells that express protein X at high levels move faster, whereas cells

that express it at lower levels move slower, we predict that protein

X is a candidate motility gene (Figure 1E). A similar conclusion is

reached if contrast or texture correlate with motility. For example,

if cells that show a homogenous spatial distribution of protein Y

move slower than cells that express protein Y in more punctuate

manner (high contrast of fluorescence across the cell), one may

predict that Y is a candidate motility gene. The contrast and

texture differences we observe between cells are subtle, not gross

changes such as transitions between organelles. Images of cells are

provided in S3–S5.

We compared the three protein properties (protein level,

contrast and texture) to the two motility parameters (speed, angle

change) in each cell and each time-point using Spearman and

Pearson correlations (Figure 2C, Figure S6). The observed

correlation values are centered at around zero and range from

20.4 to 0.4.

In order to test the significance of the calculated correlation

values, we compared them to correlations in randomized data. To

make a stringent comparison, we note that data from different

time-points of the same cell are not independent. Furthermore,

cells from the same field of view are potentially more dependent

than cells in other fields of view, due to possible systematic effects

in the experiment. We thus constructed the randomized dataset by

associating the motility parameters for cell i at all time points with

the protein properties from a different cell j at the same time points

in the same field of view, with i and j randomly chosen. This

provides a randomized control of the same size as the original

data.

The permuted datasets showed correlations between protein

and motility parameters mainly (90%) in the range 20.1 to 0.1

(gray bars in Figure 2D). Comparing the randomized distribution

to the measured data (black bars in Figure 2D) shows proteins with

correlations higher or lower than expected by chance. In this

study, we define a candidate motility gene if its absolute

correlation coefficient |R| exceeds 0.15 in both Pearson and

Spearman correlations. Based on the comparison to randomized

data, the rate of false positives is expected to be 15% for

comparisons of protein level to cell velocity (Figure S7), 23% for

contrast versus velocity, 30% for texture versus velocity. To test

this, we conducted a new set of time-lapse microscopy experiments

on a random sample of 19 candidate motility proteins, and found

that 16/19 showed the same above-threshold correlations as in the

original movie dataset, consistent with a false-detection rate of

about 15% (see Supplementary File S3).

Similar false discovery rates were obtained for the comparison

between angle change and the protein properties (Figure S7).

Several examples of proteins with positive and negative high

correlations are shown (Figure 2E) along with examples of proteins

Author Summary

Inferring the function of proteins and the role they play in
cellular processes is essential for our understanding of cell
biology, genetics and biology in general. Standard genetic
approaches use large perturbations to cells such as gene
knockout, knockdown or over expression of genes. Such
methods are powerful, but have the drawback of taking
the cell far from its normal working point. Here, we provide
a new and much milder approach, which uses the natural
cell-cell variation in protein level and expression pattern as
a source of mild perturbation. We monitor individual live
cancer cells under the microscope and correlate their
protein levels and localization with phenotype in the same
cells. We use the motility of human cancer cells as a model
system that is highly important for understanding metas-
tasis in cancer. We find that our approach uncovers most
of the known motility proteins, as well as new ones which
we validate using knockdown experiments. Our novel
approach is widely applicable to any phenotype that can
be visualized in individual cells, and for any organism for
which one can measure proteins in individual cells.

Noise Genetics

PLOS Genetics | www.plosgenetics.org 2 March 2014 | Volume 10 | Issue 3 | e1004176



that did not show a significant correlation between the protein

level and the motility in individual cells (Figure 2F).

Many of the motility candidate genes are known to play
a role in motility

We found 74 candidate motility genes (Supplementary File S1,

S2). Of these, 31 (41%) correlate by protein level. The rest of the

proteins correlate with motility by contrast (25%) or texture (23%),

and 15% of the candidate proteins correlate by more than one

measure.

The candidate genes are highly enriched in genes previously

known to play a role in motility: 41% (30/74) were previously

characterized as motility genes (hypergeometric p = 0.0009)

according to the Genecards database (see Methods). Among the

candidate genes are actin regulators in the ARP complex

(ARPC3 [24]), two actin related proteins (ACTR2 and AC-

TR1A), RAC1 [25] that is essential for cell migration and

WASF2 [26] that is part of the WAVE complex that regulates

lamellipodia formation [12]. (Other examples are described in

Figure 3A). Some of the candidate genes have no known role in

motility (Figure 3B).

The subcellular localization of the candidate genes is enriched

in the cytoskeleton (hypergeometric p-value = 0.0008), the plasma

membrane (p = 0.02) as well as the ER/golgi (p = 0.06)

(Figure 3D).

In an attempt to estimate the false-negative rate of this assay,

we considered the 13 genes out of the 566 in this study that were

listed as motility genes in a recent review of motility (Ridley,

2011). Among these 13 relatively well-characterized genes, 7

genes were not identified as candidate motility genes in this

study (Figure 3C). This suggests a false-negative rate on the

order of 50%. However, some of these false negative genes

showed a relatively high correlation in one of the examined

comparisons and would be scored positive in a less stringent

threshold choice. A more extensive false-negative test compared

the present assay to all 110 genes in our set of 566 that are listed

Figure 1. Overview of the noise genetics approach. (a) We used a library of endogenously tagged proteins in human H1299 cells. Briefly, a
retrovirus introduced YFP as an artificial exon into the introns of genes. Fluorescent clones were selected and sequenced. The clones express full
length protein under endogenous control, with an internal YFP tag. (b) We selected 566 unique proteins with high quality movies and correct
localization, and performed, or used existing, 24 h time-lapse movies(c) under controlled conditions. (d) Automated image analysis enabled by a
mCherry tag in the parental clone enabled automatic tracking of protein level and localization as well as motility of each individual cell over time. (e)
To find candidate motility genes, we sought proteins with high absolute correlation between protein level or localization (contrast, texture) and
motility parameters (velocity, persistence). We tested a sample of the candidate motility genes by siRNA knockdown.
doi:10.1371/journal.pgen.1004176.g001
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as motility related in the Genecards database. Of these, only 29

are found in our assay. Our analysis is not expected to find all

motility genes due to several limitations that will be addressed

below.

Mild knockdown experiments were used to validate
some of the candidate genes

In order to test the involvement of the candidate genes in the

motility process, we used siRNA directed against the YFP tag to

Figure 2. Candidate motility genes were found with high correlation between protein and motility features in individual cells. (a)
Cell velocity and angle change (persistence) for a cell in three consecutive frames i21,i and i+1. (b) Three protein features were compared to two
motility features. Contrast and texture sum over pixels in a cell and employs the occurrence matrix p (i, j) equal to the probability that pixels of
intensity i and j are adjacent. Texture uses the mean and standard deviation (std) of pixel intensity levels mu and sigma. (c) Pearson correlation
coefficients R between protein and motility features show a group of proteins with high absolute correlation. Blue/red denotes low/high R values. (d)
Randomized data (gray) showing lower correlations than real data (black) is used to establish a threshold correlation (dashed line) for detecting
motility candidate genes with low false discovery rates. (e) Candidate motility genes show positive or negative correlation to protein level or
localization measures. Data is shown in density plot along with the regression line of the linear fit. (f) An example for a non-motility candidate that
show low absolute correlation.

Noise Genetics
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lower the expression level of the tagged proteins. Since we

introduced YFP as an exon to all clones, the anti-YFP siRNA can

be used to knockdown expression in any clone from the library.

The knockdown is mild (at most half-knockdown) because only

one allele is tagged with YFP. Thus, a 50% reduction in YFP

corresponds to a 25% reduction in total protein due to the

expression from the untagged allele. We chose 11 candidate genes

that had positive correlation between protein level and motility or

a significant correlation between a protein feature and motility. Of

these candidate genes, 4 are previously known motility genes and 7

are novel, randomly chosen from the candidate list. We also tested

4 control genes that did not correlate with motility. We took time-

lapse movies for 48 hours starting 24 hours after the siRNA

infection (Figure 4A).

We used the YFP fluorescence to observe the extent of

knockdown (Figure 4B). The mCherry labeling of the cells was

not influenced by the siRNA (Figure S8). 10 out of the 11

candidate motility gene clones showed significantly lowered

velocity (reduction of 15–35%), whereas 3 of the control genes

(GAPDH and TOP1 and one gene of unknown function) showed

no measurable reduction in velocity (Figure 4C).

One control gene – the ribosomal gene RPS3, not known to

affect motility, showed a motility defect upon mild knockdown. It

was not picked up as a candidate motility gene in the noise

genetics assay based on cell-cell variations. This may point to a

difference between knockdown that affects only a single gene in a

module such a ribosome, and noise genetics, where fluctuations in

all genes in a module (e.g. all ribosomal genes) are expected to be

correlated [7,8].

In total, candidate motility genes, both previously known and

novel were validated by mild knockdown at a level of about 90%.

We further tested proteins with a negative correlation between

their protein level and motility and the results are summarized in

the supplementary information (see Supplementary File S4).

Discussion

In this study, we presented ‘noise genetics’ - an approach to

assign function to proteins that uses the natural noise in protein

level and localization and correlates it to the variation in

phenotype of the same individual cells. We demonstrated this

using the motility phenotype of cancer cells. Noise genetics

recovers 30 of the known motility genes in our clone library and

also 43 novel motility candidates, of which 10 were validated by

siRNA knockdown (Figure 4).

Noise genetics can complement standard genetic perturbations.

Among its advantages are the non-invasive and mild nature of the

natural variations used, which keep the cell near its normal

working point. Proteins whose knockdown is lethal are hard to

evaluate using standard genetics, but can potentially be picked up

by the assay. Similarly, proteins whose knockdown effects are

masked by compensation from other proteins in the same module

may be picked up by noise genetics, because one expects the entire

module to show correlated noise [7,8]. Noise genetics compares

individual cells from the same field of view, and therefore contains

a type of internal control for systematic errors. In standard

perturbation assays, one needs to compare perturbed cell

populations to a separate experiment with unperturbed cell

populations in order to control for experimental systematic errors.

Among the limitations of noise genetics as implemented here are

the need for a fluorescent cell library or other means of observing

cell-cell variation in both protein and phenotype. Such libraries

exist, for example, in S. cerevisae [27], E. coli [28,29], C. elegans [30]

and Zebrafish [31]. If the phenotype of interest can be observed in

fixed cells, individual cell imaging of proteins [32] or mRNA [33–

35] might be used for noise genetics. Such an approach has been

used with pre-selected genes, for example, to explore the effect of

protein variability on stem-cell differentiation [36], sporulation

timing in Bacillus subtilis [37] and meiosis timing in Saccharo-

myces cerevisiae [38]. We currently tested only linear correlation;

more elaborate time-series analysis methods or non-linear

correlation analysis may be able to improve the resolution of this

approach [39].

The cells in this study are diploid (or multiploid), but only one

copy of each gene was labeled with YFP. Therefore, the

fluorescence measurement does not necessarily reflect the total

protein level or distribution. Previous work with the present cell

system showed that there is high correlation in the expression of

two alleles of the same ribosomal gene [7]. Future work is needed

to test the present approach with all alleles tagged.

Noise genetics can miss proteins whose effect on phenotype is

small in the working point of the cell. Such proteins can be picked

up by standard genetics which makes large perturbations.

Similarly, if natural variations in proteins or phenotypes are very

small, noise genetics may not be applicable. Importantly, noise

genetics on its own can only detect correlations, and additional

experiments such as the mild knockdown performed here, are

needed to gain evidence for causality.

Noise genetics uses natural cell-cell variation in proteins to

discover links with phenotypes. Additional phenotypes that can be

readily studied include cell size and shape, and any other

phenotype measurable by time-lapse microscopy.

Methods

Time-lapse microscopy movies
Movies from previous studies [18,20] were used for this analysis,

as well as new movies on 19 clones. In the previous studies, 4

movies (fields of view) were taken for each of the 1,000 clones

totaling about 4,000 movies. In each movie, 10–20 cells were

tracked over 24 hours at least, every 20 minutes. Some of these

clones were filmed more than once and some clones represent the

same protein. For the present analysis, we combined all data for

the same protein from all relevant movies. Each time point

included transmitted light image (phase contrast) and two

fluorescent channels (red and yellow). Of the original movie sets,

we chose 566 unique protein clones as described in the text. The

566 known proteins that were used in our analysis tend to have

high expression levels (so that they are picked up in the LARC

library construction which used FACS to select for fluorescent

clones).

Image analysis of time-lapse movies
We used the image analysis software described in [18] with

minor modifications. The main steps in this software include

background correction (flat field and background subtraction),

segmentation, cell tracking, and automated identification of cell

Figure 3. Candidate motility genes recover many of the known motility proteins in the screen. (a) Examples of known motility genes
found in the present assay, with their correlation coefficient. (b) New candidate motility genes found in the assay. (c) Known motility genes included
in the screen but not found in the assay. Note that three of the genes have marginal R values. (d) Sub-cellular localization of candidate motility genes
is enriched for cytoskeleton, Golgi/ER and plasma membrane, similar to all known motility genes (gene-cards).
doi:10.1371/journal.pgen.1004176.g003
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Figure 4. Novel motility genes are validated by mild knockdown experiments. (a) We used anti-YFP siRNA to produce knockdown of the
tagged gene in each clone, and tested protein level and motility in 48 time-lapse movies. (b) Examples of known and novel candidate motility genes
after knockdown, as well as control genes, that are not known to be involved in the motility process. On the left, the effect of the knockdown on the
expression of the protein is shown. In all knockdown experiments, protein fluorescence level was reduced at least by half. On the right, the effect of
the knockdown of the gene on cell speed is shown. In the examples shown, candidate motility genes showed a reduction in velocity after knockdown
compared to mock treatment, whereas control genes showed no significant reduction in motility. (c) Velocity reduction in knockdown experiments
compared to mock treatment shows that 10/11 candidate genes showed a motility defect upon knockdown (blue bars), in contrast to control genes
not known to be involved in motility, for which 3 out of 4 showed no significant defect (red bars). Stars denote known motility genes also found in
our assay. Error bars stands for standard deviations (SD).
doi:10.1371/journal.pgen.1004176.g004
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phenotypes (mitosis and cell death). Cell and nuclei segmentation

was based on the red fluorescent images of the two red tagged

proteins found in all clones, localized to the cytoplasm (DAP1) and

nucleus (XRCC5), with intensity which is very uniform across cells

and clones. Segmentation used global image threshold and seeded

watershed segmentation. The cell-tracking procedure maps each

cell to the appropriate cells in the preceding and following frames

as described [40]. Texture parameters (contrast and correlation) of

the proteins were measured for each cell in each time point based

on the YFP image of the tagged protein as described below.

In our previous studies with the same movies, we also analyzed

the protein concentration by taking the average or median

fluorescent intensity inside the cell, as opposed to the total

intensity. We find this measure to be more sensitive to image

outlier pixels - even when using the median pixel intensity [23]; we

therefore use total fluorescent intensity in the present study.

Texture and contrast calculation
To calculate texture and contrast, we first evaluated a gray-level

(fluorescence intensity) co-occurrence matrix (GLCM) from each

fluorescent image of the cells [41]. Each element (i, j) in GCLM

specifies the number of times that the pixel with gray-level i

occurred horizontally adjacent to a pixel with gray-level j.

From the matrix one can compute the various texture features.

For example, contrast is
P

i,j i{jj j2p(i,j) giving a value of 0 for a

constant intensity image and high values when adjacent pixels

have different intensity. Our second measure, ‘texture’ or

‘correlation texture’ is
P

i,j
(i{mi)(j{mj)p(i,j)

sisj
. The correlation texture

measures the linear dependency of grey levels on those of

neighboring pixels. The two measures are weakly anti-correlated

(Fig. 2C). We verified that the texture and contrast values that

were calculated after removing the background and after rescaling

to 64 gray levels have a low sensitivity to rotations (Figure S5).

Correlation analysis
For each protein, we collected all cells in all fields of view at all

time frames. For each cell, 3 protein parameters (total protein,

contrast and texture) and 2 motion parameters (velocity and angle

change) (See Figure 2A) were calculated. Then, 6 correlation

values (between all pairs) were calculated using Pearson and

Spearman correlation. No binning was used to compute these

correlations. The correlation values are summarized in Supple-

mentary File S1. We tested other texture features as well

(homogeneity and energy), but these did do not add known genes

to the list of candidates (data not shown). Next, we collected only

cells that were tracked from the beginning of the movie until its

end and repeated the same calculation.

In order to establish a threshold that minimizes the false positive

rate, we generated permuted datasets. In each permuted dataset,

for each of the protein parameter and for each of the motion

parameter, the protein values from one cell time trace were

correlated to the motion values in another cell time trace in the

same field of view. We repeated this permutation 10 times for each

of the 6 comparisons (and both for Pearson and Spearman

calculations) and generated 6 correlation distributions, for all

proteins. These correlation values are summarized in the

Supplementary File S3. We chose to use both Spearman and

Pearson correlations since using only Spearman correlation results

in marginally higher false positives (Data not shown). A correlation

value of R = 0.15 (or similar) was chosen in order to minimized

false positives, while maximizing potential true candidates (See

Figure S7). We further tested for all the proteins with significant

correlation values in which the correlation still holds even when

calculating it only in one field of view (FOV) for most of its FOVs.

The final candidate list includes only proteins that passed this test.

The shape of the cell is known to affect its motility [10]; in order

to estimate this effect in our dataset, we calculated the correlations

between the aspect ratio (major axis/minor axis) of each cell and

the cell velocity and found no significant correlation in the

examined clones (Figure S9).

Validation analysis
We conducted new experiments by performing time-lapse

movies for 19 of the candidate clones. Of the 19, 13 proteins were

chosen randomly out of the list of novel candidate proteins, and

the other were candidates that were also known motility genes. 16

out of the 19 showed a correlation that is similar to the previous

calculated correlation. (Results are shown in Supplementary File

S3).

Function analysis
Several databases were used to annotate whether genes are

known to be involved in motility (Supplementary File S2). We used

GeneCards (http://www.genecards.org/) to download all genes

with the keywords ‘‘motility’’ or ‘‘migration’’. We further

considered genes that were identified as part of the ‘‘adhesome’’

(http://www.adhesome.org/). Finally, well-studied characterized

genes listed in the Review by [12] were also considered as motility

genes.

Subcellular localization assignment and enrichment test
We used subcellular localization according to GeneCards

(http://www.genecards.org/) and other databases as provided in

the LARC database (http://www.weizmann.ac.il/mcb/UriAlon/

DynamProt/). All clones used here have localization in the

experiment that agrees with the previously known localization.

When more than one localization was assigned to a protein, the

first localization in the list was used for the category assignment.

The subcellular information and categories are list in the

‘‘Candidate_genes.xls’’ file. Hypergeometric p-value [42] was

used to calculate the enrichment of specific subcellular localization

categories in the candidate genes group over all the 566 genes used

in this analysis.

Mild knockdown experiments
To knockdown the expression of the tagged protein in clones

from our library, we used siRNA against GFP (QIAGEN,

1022064) transfection using lipofectamin (Invitrogen) as described

in their protocol. As a control siRNA, we used the non-targeting

siRNA (Dharmacon, D-001810-10-05). No significant difference

between siRNA used from QIAGEN or Dharmacon was detected

in our system (Figure S10).

Briefly, 26104 cells were grown on 12-well glass bottom

MatTek plates. The next day, siRNA transfection was performed.

We used 24 pmol of si-RNA for each well and 0.8 ul lipofectamin

and incubated it for 6 hours, then we replaced with fresh media

and let cells grow overnight. The next day, we took a time-lapse

movie of the plate for 48 hours. We took fields of view from each

well. We used the same exposure time for the well with the non-

targeting siRNA (where no decrease in expression is expected) and

the well with the si-GFP (which showed a decrease in the YFP

fluorescent and not in the mCherry fluorescent).

Supporting Information

Figure S1 Cell individuality. (A) Protein level dynamics in

individual cells (NOL7 and ARPC3 clones) are shown. Note that if
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a cell has higher than average or lower than average level of a

protein, it remains so for about a cell generation or more. (B)

Contrast level of individual cells are shown in the ARPC3 clone.

Again, though contrast level varies along time, cells have

correlation times of about a cell cycle. (C) Autocorrelation

function for 2 single cell trajectories of the NOL7 protein to

illustrate cell individuality.

(PDF)

Figure S2 Correlation between velocity and angle change. The

velocity and angle change is shown for thousands of cells. Note

that a general anti-correlation is evident.

(PDF)

Figure S3 Images of individual cells. Images of individual cells

from different clones are shown along with their contrast value (on

the left) and their velocity (mM/20 minutes). The white point

represents the location of the cell in the previous frame, the light

blue point represents the cell location in the current frame and the

blue point represents the location in the next frame.

(PDF)

Figure S4 Different individual cells of the ARPC3 clone in one field

of view. Four different cells from the ARPC3 clone are shown along

with information about their contrast values and their different

trajectory along 13 consecutive frames (frames taken every 20 minutes).

(PDF)

Figure S5 Texture features calculations of images. (A) Cell

images from the ARPC3 clone are shown along with their contrast

and texture correlation values, calculated without rotation and

after averaging the contrast and texture correlation values (after 4

rotations). The contrast is plotted against the velocity for the

ARPC3 clone when calculating the contrast without rotation (C)

and after averaging the contrast values after 4 rotations (D) A high

correlation (R = 0.99) is evident between the contrast values

without rotation and the average contrast values after rotation. (E)

A high correlation (R = 0.97) is evident between the texture

correlation values without rotation and the average texture

correlation values after rotation. Similar results were obtained

for the different clones.

(PDF)

Figure S6 Correlation coefficients R between protein and

motility features. Similar to Figure C2, a correlation coefficients

matrix between the 3 protein parameters and the two motility

features is shown. On the right, a group of proteins with high

absolute correlation is shown. Blue/red denotes low/high R

values.

(PDF)

Figure S7 Comparisons between the real and permuted

correlation values. The correlation values calculated from the real

dataset are in dark grey, while the correlation values calculated

from 10 permuted datasets are in light grey. This analysis helped

us to choose a threshold that would minimize the number of hits in

the permuted dataset compared to the number of hits in the real

dataset. The chosen threshold for each comparison is written on

the right of the plot.

(PDF)

Figure S8 Knockdown experiments specifically decrease the

expression of the YFP tagged protein and not the mCherry tagged

protein. A typical field of view of the ARPC3 clone is shown after

si-GFP experiment and after the control experiment (with non-

targeting si). The parental clone has 2 proteins tagged with

mCherry to help with the segmentation of the nucleus and the

cytoplasm. No decrease in mCherry expression is evident.

However, the ARPC3 is tagged with YFP and a significant

reduction is shown in the YFP expression. On the bottom, a

quantification of 4 different FOVs of the ARPC3 clone

demonstrates similar results. Similar results were obtained for all

the examined clones.

(PDF)

Figure S9 Aspect ratio does not correlate with velocity in our

system. The aspect ratio of single cells, a measure that describes

cell shape, was plotted against the velocity of cells in the same

clones as in figure 2F, E. No significant correlation is evident for

any of these clones.

(PDF)

Figure S10 Control knockdown experiments. GAPDH clone

was used as a negative control since it is not a candidate motility

gene. siRNA against GAPDH (Dharmacon) was used, as well as

siRNA against GFP (QIAGEN) that should target any gene in our

library that is tagged with YFP and also non-targeting siRNA

(Dharmacon) that is not targeted against any specific gene and is

widely used as a negative control. As expected, no significant

change in the velocity was observed between these 3 conditions.

Therefore, in all our following experiment, we used the siGFP that

is expected to lower the expression of the target gene and the non-

targeting siRNA that serves as a negative control for the siRNA

experiment.

(PDF)

Figure S11 Negative correlation between protein and motility.

Knockdown experiments were carried out for 4 genes that showed

a negative correlation between protein level and motility. Analysis

was done as described in Figure 4C. Velocity reduction in

knockdown experiments compared to mock treatment shows that

4/4 candidate genes showed a motility defect upon knockdown

(blue bars), in contrast to control genes not known to be involved

in motility, for which 3 out of 4 showed no significant defect (red

bars). Stars denote known motility genes also found in our assay.

Error bars stands for standard deviations (SD).

(PDF)

File S1 Correlation values. Pearson and Spearman correlations

values are shown for all the genes in our dataset for all six

comparisons.

(XLSX)

File S2 Candidate motility genes. 74 candidate motility genes

are shown along with their correlation values (both Spearman and

Pearson), correlation values after binning, gene description,

subcellular localization, etc.

(XLSX)

File S3 Tacked cells and permuted values. Pearson and

Spearman correlations values are shown for all the genes in our

dataset only for cells that were tracked along all frames for all six

comparisons. Correlation values after the permutation are also

shown. The results of the validation analysis of the 19 genes are

shown as well.

(XLSX)

File S4 Negative correlation between protein and motility. A

short discussion on genes in our analysis that presented a negative

correlation with motility.

(DOCX)
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