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Abstract: In this paper, we consider the optimal resource allocation problem for multiple-input
multiple-output non-orthogonal multiple access (MIMO-NOMA) systems, which consists of beam-
forming, user clustering and power allocation, respectively. Users can be divided into different
clusters, and the users in the same cluster are served by the same beam vector. Inter-cluster orthogo-
nality can be guaranteed based on multi-user detection (MUD). In this paper, we propose a three-step
framework to solve the multi-dimensional resource allocation problem. In step 1, we propose a
beam-forming algorithm for a given user cluster. Specifically, fractional transmitting power control
(FTPC) is applied for intra-cluster power allocation. The considered beam-forming problem can
be transformed into a non-constrained one and the limited-memory Broyden–Fletcher–Goldfarb–
Shanno (L-BFGS) method is applied to obtain the optimal solution. In step 2, optimal user clustering
is further considered. Channel differences and correlations are both involved in the design of user
clustering. By assigning different weights to the two factors, we can produce multiple candidate
clustering schemes. Based on the proposed beam-forming algorithm, beam-forming can be done for
each candidate clustering scheme to compare their performances. Moreover, based on the optimal
user clustering and beam-forming schemes, in step 3, power allocation can be further optimized.
Specifically, it can be formalized as a difference of convex (DC) programming problem, which is
solved by successive convex approximation (SCA) with strong robustness. Simulations results show
that the proposed scheme can effectively improve spectral efficiency (SE) and edge users’ data rates.

Keywords: NOMA; MIMO; user clustering; power allocation; analog beam forming

1. Introduction

Traditional orthogonal multiple access (OMA) has met a bottleneck, since the limited
spectrum resources cannot meet the ever-growing demand for mobile data traffic. As an
alternative, non-orthogonal multiple access (NOMA) has attracted considerable attention
since it allows multiple users to occupy the same spectrum resource simultaneously. Ac-
cording to NOMA protocols, users can be divided into different clusters based on their
channel characteristics. The signals of the users in the same cluster will be further transmit-
ted utilizing the same time-frequency resource [1]. In each cluster, the channel differences
among different users should be large enough to perform successive interference cancel-
lation (SIC) successfully [2–4]. Moreover, weak users can be compensated in the power
allocation process, which not only improves edge users’ performances, but helps to better
identify multiplexed users in the power domain [5–8].

Moreover, multiple-input multiple-output (MIMO) also serves as a promising tech-
nique by which to multiply the spectrum efficiency (SE) gain [9–11]. In massive MIMO
systems, beam-forming can effectively improve SE based on spacial diversity [12]. Con-
ventionally, a specific beam vector can be designed for each user. The interference among
multiple users can be eliminated when the number of antennas is greater than that of users.
Specifically, the beam vector of each user can be set orthogonal to the channel vectors of
others based on the zero-forcing beam-forming (ZF-BF) algorithm [13,14].
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In this passage, SE can be further improved by exploiting both the spacial and power
domain, i.e., MIMO-NOMA. We divide users into different clusters and further design a
beam vector for each cluster. For each user, the inter-cluster interference can be transformed
into the inter-beam interference, which is further eliminated based on ZF-BF [14–16].
Moreover, the beam vector of each cluster mainly depends on the channel characteristics of
strong intra-cluster users [17]. The gaps between strong users and weak users will continue
to widen, which is favored by NOMA.

1.1. Related Works

MIMO-NOMA has received considerable research interest for its ability to improve
SE. Optimal user clustering for a downlink NOMA system was considered in [4], where
the users were divided into different clusters based on an improved sorting algorithm.
The authors of [5] applied NOMA to a MIMO system and demonstrated that the combined
application can bring extra SE improvements only when the channel correlations among
multiplexed users were sufficiently high. In [9], beam-forming and power allocation were
jointly optimized for MIMO-NOMA based on semi-definite programming (SDP). In [12],
simultaneous wireless information and power transfer (SWIPT) was applied in cooperation
with NOMA, with the aim of enhancing edge users’ data rates. The angle domain was
exploited in [16] to identify those users occupying the same spectrum resources, and the
beam-forming problem was further considered based on an estimation of users’ angle
information. In [17], receiver antenna selection (RAS) was applied in an uplink MIMO-
NOMA system to ensure that cell-edge users could be more likely to participate in the
communication process. The authors of [18] proposed a beam-forming algorithm for
MIMO-NOMA. An effective channel vector was obtained for each cluster to describe the
channel characteristics of intra-cluster users, which provided a compatible dimension for
ZF-BF. Moreover, high-speed beam-forming for MIMO-NOMA was studied in [19]. The
authors of [20] integrated device-to-device (D2D) communications with MIMO-NOMA to
further improve SE. Consequently, in [20], a novel resource allocation scheme was proposed
for the integrated system to overcome interference. Research on the problem of resource
allocation in NOMA has also been expanded to a multi-cell scenario. [21] investigated the
resource allocation problem for multi-cell MIMO-NOMA-based internet of things (IoT)
networks. Moreover, [22] investigated the energy efficiency (EE) maximization problem
for multi-cell, massive MIMO-NOMA networks with wireless power transfer. The authors
of [22] proposed a novel joint power, time, antenna and subcarrier allocation scheme, which
could properly allocate the time for energy harvesting and data transmission.

1.2. Our Contributions

In MIMO-NOMA systems, SIC is of great significance in reducing intra-cluster inter-
ference. While a user is decoding the signals of others based on SIC, past research has
tended to set a lower bound for the received signal to interference and noise ratio (SINR) to
ensure the decoding process goes smoothly. In [23], the optimal power allocation scheme
for the downlink of NOMA system was obtained based on Karush-Kuhn-Tucker (KKT)
conditions with a SINR bound of 0.3. Additionally, [9] jointly optimized power allocation
and beam-forming for MIMO-NOMA with a SINR bound less than 0.5. Unfortunately,
most related works fail to obtain a feasible solution when the SINR bound is greater than 1,
which makes the received SINR for users relatively lower and, in turn, decreases system
reliability. One explanation for this is that, most related works usually consider the joint
optimization of power allocation and beam-forming. The scale of the considered problem
is relatively large, which makes it challenging for optimization tools to obtain a feasible
solution. To address this issue, we decompose the multi-dimensional resource allocation
problem into three sub-problems. The scope of each sub-problem is relatively small, which
helps to obtain a feasible solution with strong robustness.
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Moreover, most existing works only consider channel difference characteristics while
determining the clustering scheme for MIMO-NOMA. However, since the users in the same
cluster are served by the same beam vector, their channel correlations should be relatively
high to bring the advantages of MIMO into full play. The clustering criterion in [9–12]
was to make the channel differences among multiplexed users as big as possible, which
neglected channel correlations characteristics and was not directly related to the ultimate
system performance. In this paper, channel correlations and differences are both involved
in the design of user clustering. By assigning different weights to the two factors, we can
produce multiple possible clustering schemes. Beam-forming can be done for each possible
clustering scheme to compare their performance, which ensures the ultimate clustering
scheme achieves the maximum SE performance.

In addition, some related literature only considers the resource allocation problem
for a two-user-cluster. In this paper, the size of each cluster is not fixed, which makes the
proposed scheme more practical. The main contributions of this paper are summarized as
below:

1. We present a system model for MIMO-NOMA. Multiple users can be divided into
different clusters and the size of each cluster is not fixed. The users in the same cluster
are served by the same beam vector. Each user is assumed to detect signals based on
a specific receiving coefficient to ensure inter-cluster orthogonality. Moreover, SIC is
applied to users to alleviate intra-cluster interference.

2. We propose a three-step framework to solve the multi-dimensional resource allocation
problem. In step 1, a beam-forming algorithm is proposed to obtain the optimal
beam vector for a given user cluster. Specifically, fractional transmitting power
control (FTPC) is applied to perform intra-cluster power allocation. The considered
beam-forming problem can be transformed into a non-constrained one and the limited-
memory Broyden–Fletcher–Goldfarb–Shanno (L-BFGS) method is applied to obtain a
local optimal with less complexity.

3. In step 2, user clustering is further considered, based on the proposed beam-forming
algorithm. For each user k, we define a utility function to describe its preference on
each cluster n. The utility function consists of two terms, which depict the channel
differences and correlations between user k and the existing users in cluster n, re-
spectively. A relative weight is introduced for the two factors to balance the tradeoff
between channel differences and correlations. Based on the utility function, user k
can be further assigned to its favorite cluster. In this paper, the relative weight is ob-
tained by particle swarm optimization (PSO). In PSO, we can simultaneously produce
multiple possible solutions for the relative weight, each corresponding to a possible
clustering scheme. Based on the proposed beam-forming algorithm, beam-forming
can be done for each possible clustering scheme to compare their performance, which
ensures the ultimate clustering scheme achieves the maximum SE performance.

4. In step 3, power allocation is further optimized based on the optimal user clustering
and beam-forming schemes. As mentioned before, it can be formalized as a difference
of convex (DC) programming problem utilizing the specific characteristic of the
objective function, which can be solved by successive convex approximation (SCA)
through limited iterations. We evaluate the performance of the proposed scheme and
some other existing schemes to illustrate the significance of the proposed scheme.

The rest of the paper is organized as follows: Section 2 presents the system model for
MIMO-NOMA and further provides a mathematical expression of the optimal resource
allocation problem. Section 3 introduces more details about the proposed beam-forming
algorithm. Sections 4 and 5 introduce the user clustering and power allocation schemes,
respectively. The performance of the proposed scheme is evaluated in Section 6. Section 7
concludes this paper.
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2. System Model

Consider a single-cell downlink MIMO-NOMA system, in which there is one base
station (BS) equipped with N antennas and K single-antenna users. Let U = {1, 2, . . . , K} de-
note the set of users. Without loss of generality, the users are indexed by the descending or-
der of channel gains, i.e., |h1|2 > |h2|2 > . . . > |hK|2, where hk ∈ CN×1 (k ∈ {1, 2, . . . , K})
denotes the channel vector of user k. All the K users will be further divided into S different
clusters. Let Un = {in(1), in(2), . . . , in(mn)} (n ∈ {1, 2, . . . , S}) denote the set of users as-
signed to cluster n, where mn denotes the size of Un, and in(l) (l ∈ {1, 2, . . . , mn}) denotes
the index of the l-th user in Un. Specifically, the users in Un are sorted in the ascending
order of their indexes, i.e., in(1) < in(2) < . . . < in(mn). The superposed signal at the BS is
given by

ss =
S

∑
n=1

wn

mn

∑
l=1

√
pin(l)sin(l) (1)

where wn ∈ CN×1 denotes the beam vector of cluster n, sin(l) and pin(l) denote the signal
and power of user in(l), respectively. Assume the beam vector of each cluster has constant
modulus (CM) elements. The received signal at user in(l) is given by

rin(l) = hin(l)
Hwn

√
pin(l)sin(l)

+ hin(l)
H ∑

q∈{1,2,...,S}\{n}
wq

mq

∑
a=1

√
piq(a)siq(a)︸ ︷︷ ︸

inter−cluster−interference

+ hin(l)
Hwn ∑

b∈{1,2,...,mn}\{l}

√
pin(b)sin(b)︸ ︷︷ ︸

intra−cluster−interference

+ωin(l)

(2)

where hin(l) denotes the channel vector of user in(l). The first term in (2) represents the
received desired signal. The second and third term represent the inter-cluster and intra-
cluster interference, respectively. The noise term ωin(l) is a zero-mean complex additive
white Gaussian noise (AWGN) with variance σ2. One can observe that the received inter-
ference is significantly larger. To solve this problem, each user is assumed to detect signals
via a specific receiving coefficient, given by

αin(l) = vH
in(l)hin(l) (3)

where αin(l) denotes the receiving coefficient of user in(l), vin(l) ∈ CN×1. Then, the received
signal at user in(l) can be re-written as

r̄in(l) = αin(l)rin(l)

=vH
in(l)Hin(l)wn

√
pin(l)sin(l)

+ vH
in(l)Hin(l) ∑

q∈{1,2,...,S}\{n}
wq

mq

∑
a=1

√
piq(a)siq(a)

+ vH
in(l)Hin(l)wn ∑

b∈{1,2,...,mn}\{l}

√
pin(b)sin(b) + ω̄in(l)

(4)

where Hin(l) = hin(l)h
H
in(l)

. For user in(l), the interference from cluster q (q 6= n) can be
eliminated when the following condition satisfies:
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vH
in(l)Hin(l)wq = 0 (5)

Let h̃q
n,l = Hin(l)wq, and let H̃n,l = [h̃1

n,l, h̃2
n,l, . . . , h̃n−1

n,l , h̃n+1
n,l , . . . , h̃S

n,l]. For user in(l),
the inter-cluster interference can be totally eliminated by setting vin(l) as the left singular
vector of H̃n,l corresponding to the zero singular value. It is worth noting that there is a
constraint for this operation, i.e., N ≥ S− 1. In addition, αin(l) should be normalized to

ensure that it will not bring extra SE gains, i.e.,
∣∣∣vH

in(l)
hin(l)

∣∣∣ = 1.
Accordingly, the received signal at user in(l) can be transformed into

r̄in(l) = vH
in(l)Hin(l)wn

√
pin(l)sin(l)

+ vH
in(l)Hin(l)wn ∑

b∈{1,2,...,mn}\{l}

√
pin(b)sin(b) + ω̄in(l)

(6)

Moreover, SIC is performed at users to further reduce intra-cluster interference. Accord-
ing to SIC, in each cluster, a user can decode the signals of the others with poorer channel
conditions. Conventionally, since Un is a sorted sequence, user in(b) (b ∈ {1, 2, . . . , mn}\{l})
can decode the signals of user in(l) if and only if b < l. However, in MIMO-NOMA system,
users’ channel gains depend not only on the physical environments but on the beams, i.e., the
decoding priority may not be fixed and is subject to the beam-forming scheme. Specifically,
user in(b) can decode the signals of user in(l) when the following condition satisfies:

wH
n hin(b)h

H
in(b)wn −wH

n hin(l)h
H
in(l)wn > 0 (7)

Obviously, beam-forming affects the decoding order by adjusting users’ effective
channel gains. Accordingly, we introduce a decoding indicator λb,l

n to depict whether or
not user in(b) can decode the signals of user in(l), given by

λb,l
n =

1
2
(1 + sgn(wH

n hin(b)h
H
in(b)wn −wH

n hin(l)h
H
in(l)wn)) (8)

Here, the sign function is introduced to denote the decoding priority, which returns 1
when its input is positive, and −1 otherwise. From (8), if user in(b) can decode the signals
of user in(l), λb,l

n = 1; otherwise, λb,l
n = 0. When λb,l

n = 1, there is an implicit power
constraint, given by

pin(l) − pin(b) > 0 (9)

From (9), when λb,l
n = 1, the power of user in(l) should be larger than that of user in(b)

to make in(l) more easily detected. The received SINR at user in(l) can be expressed as

SINRin(l) =
pin(l)gin(l)

1 + ∑b∈{1,2,...,mn}\{l}λ
b,l
n pin(b)gin(l)

(10)

where gin(l) =
wH

n hin(l)h
H
in(l)wn

|ω̄in(l)|
2 denotes the normalized channel gain of user in(l). Based on

the discussion above, the considered problem can be mathematically expressed as below:

max
P,W,I

:
S

∑
n=1

mn

∑
l=1

log(1 +
pin(l)gin(l)

1 + ∑b∈{1,2,...,mn}\{l}λ
b,l
n pin(b)gin(l)

) (11a)

s.t.
pin(l)gin(b)

1 + ∑j∈{1,2,...,mn}\{l}λ
j,l
n pin(j)gin(b)

> Γ, λb,l
n = 1 (11b)
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pin(l) − pin(b) > 0, λb,l
n = 1 (11c)

|[wn]c| =
1√
N

, ∀n, ∀c = 1, 2, . . . , N (11d)

S

∑
n=1

mn

∑
l=1

pin(l) ≤ Ptot (11e)

mn ≤ M, ∀n (11f)

where P = {pk, k = 1, 2, . . . , K}, W = {wn, ∀n} and I = {Un, ∀n} denote the power
allocation, beam-forming and user clustering schemes for MIMO-NOMA, respectively.
(11b) denotes the constraint on SIC, where Γ denotes the SINR threshold for a successful
decoding. (11c) denotes the implicit power constraint. (11d) denotes the CM constraint,
where [wn]c denotes the c-th element in wn. Constraint (11e) provides power budget Ptot
for the considered system. Constraint (11f) indicates that each NOMA cluster can serve at
most M users.

3. Beam-Forming Algorithm for a Given User Cluster

Problem (11) considers the joint optimization of user clustering, beam-forming and
power allocation for MIMO-NOMA, which is challenging to be solved in a polynomial
time. Due to the orthogonality among different clusters, in this section, we first consider
the beam-forming problem for a given user cluster (the optimal user clustering and power
allocation schemes will be further discussed in Sections 4 and 5, respectively). Without loss
of generality, we assign the first m users of U to cluster n, i.e., in(l) = l, ∀l = 1, 2, . . . , m.
The beam-forming problem for n can be mathematically expressed as below:

max
wn ,Pn

:
m

∑
l=1

log(1 +
pl gl

1 + ∑b={1,2,...,m}\{l}λ
b,l
n pbgl

) (12a)

s.t.λb,l
n =

1
2
(1 + sgn(wH

n hbhH
b wn −wH

n hlhH
l wn)), ∀b, l ∈ {1, 2, . . . , m}, b 6= l (12b)

pl − pb > 0, λb,l
n = 1 (12c)

m

∑
l=1

pl ≤
Ptot

S
(12d)

|[wn]c| =
1√
N

, ∀c = 1, 2, . . . , N (12e)

where Pn = {pl , ∀l = 1, 2, . . . , m} denotes the power allocation scheme for the m considered
users. For the sake of simplify, the SINR constraint is omitted here and will be further
considered in Section 5. Each cluster is assumed to have the same power budget, denoted
by Ptot

S . Due to (12e), the beam vector can be represented as wn = 1√
N
(ejφ1 , ejφ2 , . . . , ejφN )T ,

where φc denotes the phase of the c-th element in wn. The beam vector is obtained
once the phases of its elements are determined. Inspired by this observation, we treat
Φ = [φ1, φ2, . . . , φN ] as variables. Based on perfect square formula, users’ normalized
channel gains can be expressed in terms of Φ (for the details of derivation, see Appendix A).

gl =
1

|ω̄l |2N
‖hl‖2

2 +
2

|ω̄l |2N

N

∑
c=1

N

∑
d=c+1

κl,cκl,d cos(φc − φd − (ϕl,c − ϕl,d) (13)

where κl,c and ϕl,c denote the amplitude and phase of the c-th element in hl, respectively.
However, problem (12) is still difficult to solve due to (12c) and (12d). To predigest the scope
of (12), we first produce a feasible solution for Pn and then maximize (12a) by optimizing Φ.
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Specifically, the power allocation scheme can be obtained based on FTPC, i.e., the transmit
power of user l can be represented by:

pl =
Ptot

S
g−γ

l
m
∑

j=1
g−γ

j

(14)

where γ denotes the decay factor. With FTPC, constraint (12d) always holds since ∑
l

pl =
Ptot
S .

Moreover, γ determines the correlation between users’ channel gains and transmitting
power. When γ = 0, transmitting power is totally unrelated to normalized gains, i.e., each
user has the same transmitting power. Moreover, pl and gl will be negatively correlated as
γ increases, which is consistent with (12c) and thus makes (14) a feasible solution.

Accordingly, problem (12) can be transformed into

max
Φ

:
m

∑
l=1

log(1 +
Ptot
S g1−γ

l
m
∑

j=1
g−γ

j + Ptot
S ∑b∈{1,2,...,m}\{l}λ

b,l
n g−γ

b gl

) (15)

However, it is still challenging for us to solve (15) since the sign function in (12b) is
non-differentiable. To solve this problem, we produce an approximation of λb,l

n , given by

λ̄b,l
n =

1
1 + exp(gl − gb)

(16)

The Sigmoid function is introduced which is first-order differentiable. From (16), when
gb − gl → +∞, λ̄b,l

n → 1; when gb − gl → −∞, λ̄b,l
n → 0. Since the output of (16) ranges

from zero to one, we consider (16) as the probability that user b successfully decodes the
signals of user l.

Then, (15) can be re-written as

max
Φ

: f (Φ) =
m

∑
l=1

log(1 +
Ptot
S g1−γ

l
m
∑

j=1
g−γ

j + Ptot
S ∑b∈{1,2,...,m}\{l}

g−γ
b gl

1+exp(gl−gb)

) (17)

Consider the partial derivatives:

∂ f
∂φc

=
m

∑
l=1

∂ f
∂gl

∂gl
∂φc

(18)

∂gl
∂φc

=
2

ω̄l N

N

∑
d=1

κl,dκl,c sin(φd − ϕl,d − (φc − ϕl,c)) (19)

Since problem (17) is a differentiable non-constrained problem, a quasi-Newton
method named L-BFGS can be applied to solve it in limited iterations. In each itera-
tion, L-BFGS produces an updating direction for Φ based on the information from the last
T iterations. Once the update direction is determined, the Armijo rule is applied to obtain a
proper step size. More details about the proposed algorithm are as shown in Algorithm 1.
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Algorithm 1 Beam-forming Algorithm for A Given Cluster

Require: Un
Ensure: Φ

1: Initialize T, η.
2: Yn = ∅, Sn = ∅, Rn = ∅.
3: Randomly initialize Φ.
4: gpre ← the gradient of f at Φ.
5: Calculate the updating direction y= −gpre.
6: Obtain the optimal step size µ based on the Armijo rule.
7: y← µy, Φ← Φ + y.
8: gcur ← the gradient of f at Φ.
9: s← gcur − gpre.

10: ρ← yHs.
11: while |gcur| ≥ η do
12: gpre ← gcur.
13: Insert y to Yn.
14: Insert s to Sn.
15: Insert ρ to Rn.
16: L← the number of the elements in Yn.
17: if L > T then
18: Pop the first element in Yn.
19: Pop the first element in Sn.
20: Pop the first element in Rn.
21: L← L− 1.
22: end if
23: (Back Propagating)
24: for i = L:−1:1 do
25: s← the i-th element in Sn.
26: y← the i-th element in Yn.
27: ρ← the i-th element in Rn.
28: χi ← ρsHgcur.
29: gcur ← gcur − χiy.
30: end for
31: (Forward Propagating)
32: res← gcur.
33: for i = 1:L do
34: s← the i-th element in Sn.
35: y← the i-th element in Yn.
36: ρ← the i-th element in Rn.
37: βi ← ρyHres.
38: res← res + (χi − βi)s.
39: end for
40: y = −res.
41: steps (6)–(10)
42: end while

4. User Clustering for MIMO-NOMA System

In this section, optimal user clustering is further considered based on Algorithm 1.
In each cluster, the channel differences among multiplexed users should be large enough
to perform SIC successfully. Moreover, since the users in the same cluster are served by
the same beam vector, their channel correlations should also be emphasized to bring the
advantages of MIMO into full play. Accordingly, the optimal clustering scheme will be
obtained with consideration for both the two factors.

Due to SIC, the strongest user in each cluster is in fact served by OMA, which can
achieve good performance with less power when its channel gain is relatively large. There-
fore, the first S users of U will be assigned to S different clusters, respectively. Due to the
high channel gains, these users could achieve good performances with less power, which
can in turn enable more power budget for others. After initializing S clusters, the remaining
users in U will successively select a suitable cluster to join. For each user k, we define a
utility function to assess its preference on different clusters, given by
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uk(n) =
1

mn

mn

∑
l=1

∣∣∣hH
k hin(l)

∣∣∣
|hk|

∣∣∣hin(l)

∣∣∣ − θ

(|hk|+
mn
∑

l=1

∣∣∣hin(l)

∣∣∣)2

(mn + 1)(|hk|2 +
mn
∑

l=1

∣∣∣hin(l)

∣∣∣2) (20)

where uk(n) describes user k’s preference for cluster n. The first term depicts the channel
correlations between user k and the existing users in cluster n. The second term is the Jain’s
fairness index, which measures the channel difference between user k and the existing
users in cluster n. Specifically, the second term ranges from 1

mn+1 to 1 and will decrease as
the channel difference gets larger. θ denotes the relative weight for the two aspects. Based
on the utility function, user k will be further assigned to its favorite cluster nk, given by

nk = arg max
n∈{1,2,...,S}

(uk(n)) (21)

Clusters will reject users only when condition (11f) is not met. For each cluster n,
when mn = M + 1, n should reject a user to satisfy the size-constraint. Accordingly, we
can produce multiple possible user set for cluster n by removing any single user from Un.
Based on Algorithm 1, beam-forming can be done for each possible user set to compare
their performances, and the optimal user set for cluster n is obtained accordingly.

One can observe that the relative weight is of great significance in steering the ultimate
clustering scheme. When θ is relatively small, channel correlations play a decisive role in
the clustering process. As θ increases, channel differences, in turn, become the controlling
factor of the ultimate clustering scheme. With any given θ, user clustering can be performed
based on Algorithm 2. Then, Algorithm 1 can be applied to obtain a beam-forming scheme,
and the corresponding achievable SE can be denoted by w(θ).

Algorithm 2 User Clustering Scheme for MIMO-NOMA with A Given Relative Weight

1: Assign the first S users of U to S different clusters.
2: Construct the utility function as (20) based on the given relative weight.
3: for j = S + 1:K do
4: Sort multiple clusters based on user j’s preference.
5: Denote the sorted sequence by Ωj.
6: while Ωj 6= ∅ do
7: nj ← the first cluster in Ωj.
8: Insert user j to Unj .
9: NUM← the number of the users in Unj .

10: if NUM ≤ M then
11: Break.
12: else
13: for i = 1:M + 1 do
14: Remove the i-th user from Unj .
15: Obtain the optimal beam vector for cluster nj by Algorithm 1.
16: εi ← the sum rate of the users in Unj .
17: Insert the removed user to its original position.
18: end for
19: ĩ← the position of the maximum in [ε1, ε2, . . . , εM+1].
20: x ← the index of the ĩ-th user in Unj .
21: Remove the ĩ-th user from Unj .
22: end if
23: if x = j then
24: Remove cluster nj from Ωj.
25: else
26: Break.
27: end if
28: end while
29: end for
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In this section, the optimal θ is obtained by PSO. In PSO, the optimal θ can be obtained
through numerous iterations. In each iteration, PSO produces multiple possible solutions
for θ, each corresponding to a possible clustering scheme. Based on Algorithm 1, beam-
forming can be done for each possible clustering scheme to compare their performance.
We will further select the one with the maximum SE performance as the optimal clustering
scheme, and its corresponding relative weight is exactly the optimal θ obtained by PSO.
More details are as described in Algorithm 3. Note that the random variable δ in step (13)
denotes the step size, which is a real number ranging from 0 to 1.

Algorithm 3 PSO-based Optimal User Clustering

1: Initialize group size G.
2: Initialize the total number of iterations D.
3: for g = 1:G do
4: Initialize position θg for particle g.
5: ebest,g = w(θg).
6: pbest,g = θg.
7: end for
8: ḡ← the position of the maximum in {ebest,g, ∀g}.
9: Gbest = pbest,ḡ.

10: t = 1.
11: while t ≤ D do
12: for g = 1:G do
13: θg = 0.5(pbest,g + Gbest) + δ(pbest,g − Gbest).
14: eg = w(θg).
15: if eg > ebest,g then
16: pbest,g = θg.
17: ebest,g = eg.
18: end if
19: end for
20: ḡ← the position of the maximum in {ebest,g, ∀g}.
21: Gbest = pbest,ḡ.
22: t = t + 1.
23: end while
24: θ = Gbest.
25: Perform user clustereing with the obtained θ based on Algorithm 2.

5. Power Allocation for MIMO-NOMA

User clustering and beam-forming are jointly solved in Section 4. However, FTPC
is still applied for intra-cluster power allocation, which needs further improvements.
In this section, power allocation is optimized based on the optimal user clustering and
beam-forming schemes. Without loss of generality, the users in Un are re-ordered in the
descending order of effective channel gains. The re-ordered sequence can be denoted by
Ũn = {ĩn(1), ĩn(2), . . . , ĩn(mn)}, where ĩn(l) (l ∈ {1, 2, . . . , mn}) denotes the index of the

l-th user in Ũn. Moreover, we have
∣∣∣wH

n hĩn(1)

∣∣∣2 >
∣∣∣wH

n hĩn(2)

∣∣∣2 > . . . >
∣∣∣wH

n hĩn(mn)

∣∣∣2,

where hĩn(l) denotes the channel vector of user ĩn(l). The achievable rate of user ĩn(l) with
normalized bandwidth can be represented as:

Rĩn(l) = log(1 +
pĩn(l)gĩn(l)

1 +
l−1
∑

b=1
pĩn(b)gĩn(l)

)

= log(1 +
l

∑
b=1

pĩn(b)gĩn(l))− log(1 +
l−1

∑
b=1

pĩn(b)gĩn(l))

(22)
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gĩn(l) =

∣∣∣wH
n hĩn(l)

∣∣∣2∣∣∣ωĩn(l)

∣∣∣2 (23)

The power allocation problem can be mathematically expressed as below:

max
P

:
S

∑
n=1

mn

∑
l=1

Rĩn(l) (24a)

s.t.
pĩn(l)gĩn(b)

1 +
l−1
∑

j=1
pĩn(j)gĩn(b)

> Γ, ∀b, l ∈ {1, 2, . . . , mn}, b < l (24b)

S

∑
n=1

mn

∑
l=1

pĩn(l) ≤ Ptot (24c)

As mentioned in Section 2, P = {pk, k = 1, 2, . . . , K} denotes the power allocation
scheme. (24b) denotes the SINR constraint for decoding. In each cluster n, the signals of
user ĩn(l) should be decoded from the others with higher channel gains. The series SINR
constraints can be represented as below:

pĩn(l)gĩn(l−1)

1 +
l−1
∑

j=1
pĩn(j)gĩn(l−1)

> Γ (25)

pĩn(l)gĩn(l−2)

1 +
l−1
∑

j=1
pĩn(j)gĩn(l−2)

> Γ (26)

...
pĩn(l)gĩn(1)

1 +
l−1
∑

j=1
pĩn(j)gĩn(1)

> Γ (27)

Since gĩn(1) > gĩn(2) > . . . > gĩn(mn)
, (25)–(27) will all hold when (25) holds. The con-

sidered problem can be further simplified as:

max
P

:
S

∑
n=1

mn

∑
l=1

Rĩn(l) (28a)

s.t.
pĩn(l)gĩn(l−1)

1 +
l−1
∑

j=1
pĩn(j)gĩn(l−1)

> Γ, ∀l = 2, 3, . . . , mn (28b)

S

∑
n=1

mn

∑
l=1

pĩn(l) ≤ Ptot (28c)

The power budget of each cluster can be auto-adjusted based on the channel charac-
teristics of intra-cluster users. To solve (28), we first introduce an auxiliary variable t to
bound (28a) from below and then optimize (28) by maximizing t. The equivalence problem
is given by

max
t,P

: t (29a)
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s.t.
S

∑
n=1

mn

∑
l=1

log(1 +
l

∑
b=1

pĩn(b)gĩn(l))− log(1 +
l−1

∑
b=1

pĩn(b)gĩn(l)) > t (29b)

pĩn(l)gĩn(l−1) − Γ(1 +
l−1

∑
j=1

pĩn(j)gĩn(l−1)) > 0, ∀l = 2, 3, . . . , mn (29c)

S

∑
n=1

mn

∑
l=1

pĩn(l) ≤ Ptot (29d)

However, problem (29) is non-convex since (29b) is a non-convex constraint. To address
this issue, we produce a convex relaxation of (29b) based on SCA. Accordingly, (29) is
transformed into a convex problem, which can be efficiently solved with a polynomial time.
To relax (29b), we first consider a DC function, given by

ξn,l = log(1 +
l

∑
b=1

pĩn(b)gĩn(l))− log(1 +
l−1

∑
b=1

pĩn(b)gĩn(l)) (30)

The first and second term in (30) are both logarithmic functions, which makes (30) a
DC function. Due to the concavity of logarithmic functions, the second term in (30) can
be tightly bounded from above with its first-order Taylor expansion, i.e., with any given
{ p̄ĩn(1), p̄ĩn(2), . . . , p̄ĩn(l−1)}, we have

log(1 +
l−1

∑
b=1

pĩn(b)gĩn(l)) < log(1 +
l−1

∑
b=1

p̄ĩn(b)gĩn(l))

+
gĩn(l)

1 +
l−1
∑

b=1
p̄ĩn(b)gĩn(l)

l−1

∑
b=1

(pĩn(b) − p̄ĩn(b))
(31)

Substitute (31) into (30), we obtain

ξn,l > log(1 +
l

∑
b=1

pĩn(b)gĩn(l))− log(1 +
l−1

∑
b=1

p̄ĩn(b)gĩn(l))

−
gĩn(l)

1 +
l−1
∑

b=1
p̄ĩn(b)gĩn(l)

l−1

∑
b=1

(pĩn(b) − p̄ĩn(b))
(32)

The left-hand side (LHS) of (29b) can be represented as
S
∑

n=1

mn
∑

l=1
ξn,l . Accordingly,

with any given { p̄k, k = 1, 2, . . . , K}, we can derive a lower bound B for the LHS of (29b),
represented as (33) from the top of next page. Obviously, B is convex in P, and (29b) can
be further relaxed by restricting B to be greater than t. The equivalence convex problem is
given by (34)–(37).

S

∑
n=1

mn

∑
l=1

log(1 +
l

∑
b=1

pĩn(b)gĩn(l))− log(1 +
l−1

∑
b=1

pĩn(b)gĩn(l)) >
S

∑
n=1

mn

∑
l=1

(log(1 +
l

∑
b=1

pĩn(b)gĩn(l))− log(1 +
l−1

∑
b=1

p̄ĩn(b)gĩn(l))−
gĩn(l)

1 +
l−1
∑

b=1
p̄ĩn(b)gĩn(l)

l−1

∑
b=1

(pĩn(b) − p̄ĩn(b)))

︸ ︷︷ ︸
B

(33)

max
t,P

: t (34)

s.t.B > t (35)
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pĩn(l)gĩn(l−1) − Γ(1 +
l−1

∑
j=1

pĩn(j)gĩn(l−1)) > 0, ∀l = 2, 3, . . . , mn (36)

Ptot −
S

∑
n=1

mn

∑
l=1

pĩn(l) ≥ 0 (37)

According to the principles of SCA, the solution of problem (29) should be obtained
through multiple iterations. In each iteration, we produce an equivalence problem of (29)
as (34)–(37), which is further solved by some effective optimization tools. Specifically, in the
i-th iteration, { p̄k, k = 1, 2, . . . , K} should be set as the solution obtained in the previous
iteration. More details are as described in Algorithm 4.

Algorithm 4 Power Allocation Scheme for MIMO-NOMA

1: p̄ĩn(l) =
Ptot
S

g−γ

ĩn(l)
mn
∑

j=1
g−γ

ĩn(j)

, ∀n, l.

2: Initialize η.

3: r0 ←
S
∑

n=1

mn
∑

l=1
log(1 +

p̄ĩn(l)gĩn(l)

1+
l−1
∑

b=1
p̄ĩn(b)gĩn(l)

) .

4: i = 0.
5: repeat
6: i = i + 1.
7: Produce an equivalence problem of (29) as (34)–(37) based on the Taylor expansion at

{ p̄k, ∀k}.
8: Solve the obtained convex problem to get { p̃k, ∀k}.

9: ri ←
S
∑

n=1

mn
∑

l=1
log(1 +

p̃ĩn(l)gĩn(l)

1+
l−1
∑

b=1
p̃ĩn(b)gĩn(l)

).

10: p̄k ← p̃k, ∀k.
11: until

∣∣∣ ri−ri−1
ri−1

∣∣∣ < η

12: pk = p̄k, ∀k.

6. Simulations Results

In this section, the performance of the proposed scheme is evaluated by multiple
simulations. The distance from users to the BS is uniformly distributed in the range of
0 to 500 m. The channel vector of each user is assumed to be the product of large-scale
path loss and Rayleigh fading. We also evaluate the performances of two existing schemes
to illustrate the significance of the proposed scheme [9,21]. Some key parameters are as
summarized in Table 1. The effects of multiple factors will be discussed in more details.

Table 1. Simulation Parameters.

Parameter Value

number of antennas (N) 2
noise power spectral density (N0) −169 dBm
system bandwidth (B) 360 kHz
large-scale path loss model free-space path loss model
T 20
η 10−3

G 30
Ptot 30 dBm
D 100
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Figure 1 plots SE versus M with γ = 0.2 and S = 2. As shown in Figure 1, SE increases
with M since a larger M allows a cluster to serve more users. However, such effect gets
saturated as M increases to a certain degree, subject to the total power budget.

The effect of user diversity is also considered. Figure 2 plots SE versus K with γ = 0.2
and S = 2. From Figure 2, one can observe that user diversity plays a key role in increasing
SE. Moreover, the proposed scheme outperforms the two existing schemes in terms of SE.
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Figure 1. Spectrum efficiency (SE) versus M.
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Figure 2. SE versus K.

Next, the impact of the decay parameter γ is further considered. In Algorithm 1, γ
determines the correlation between users’ channel gains and transmitting power. As γ
increases, weak users have made notable gains at the expense of strong users. However,
the achievable SE mainly depends on strong users due to their high channel gains. Figure 3
plots SE versus γ with S = 2 and M = 2. From Figure 3, SE decreases with the increase of γ
due to the performances degradation of strong users.



Sensors 2022, 22, 1129 15 of 19

Figure 3. SE versus γ.

In Algorithm 2, channel differences and correlations are both involved in the design of
user clustering. A relative weight θ is introduced for the two aspects, which is obtained
based on group hunting strategy. As discussed before, θ is of great significance in steering
the ultimate clustering scheme. With M = 2, γ = 0.2 and S = 2, Figure 4 plots SE versus K
under different θ. When θ = 0.1, the achievable SE is relatively small because of neglect
of channel difference characteristics. As θ increases, we can achieve a better balance
between the two contributing factors and SE will increase accordingly. However, when
θ increases to a certain degree, e.g., θ ≥ 10, the achievable SE will further decrease for
overlooking channel correlations characteristics. Moreover, the performance upper bound
is also considered. Exhaustive user search can be done to find the optimal clustering scheme.
Based on Algorithms 1 and 4, beam-forming and power allocation can be done for each
possible clustering scheme to compare their performance. From Figure 4, the performance
of the proposed scheme can approach to the upper bound due to the optimization strategy
of PSO.
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Figure 4. SE versus K under different θ.

Figure 5 plots SE versus S with M = 2 and γ = 0.2. The number of users that can be
served simultaneously will increase with the increase of S. Moreover, when N ≥ S− 1,
there is no interference among different clusters. As shown in Figure 5, SE has a nearly
linear increase with S due to the orthogonality among different clusters.
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Figure 5. SE versus S.

The effect of Γ is also considered. In the SIC-based decoding process, the received SINR
at users will increase with the increase of Γ, which not only improves system reliability,
but also enables more power budget for edge users. Accordingly, as Γ increases, there is
a corresponding increase in edge users’ data rates. With γ = 0.2, Figure 6 plots SE versus
K under different Γ. From Figure 6, the achievable SE is almost unaffected by Γ, i.e., as Γ
increases, we sacrifice strong users’ data rates in exchange for weak users’ rates to ensure
all multiplexed users can achieve satisfactory performances. However, the existing schemes
fail to obtain a feasible solution when Γ is greater than 0.5. By contrast, the proposed scheme
is more robust which can obtain a feasible solution with a larger Γ. One explanation for this
is that, the proposed scheme solves beam-forming and power allocation separately, which
predigests the scope of the considered problem and helps to achieve a better performance
with strong robustness.
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Figure 6. SE versus K under different Γ.

The effect of beam-forming on the optimal decoding order is also investigated. We
generate 1000 instances with γ = 0.2, K = 60, S = 5 and M = 6. The proposed scheme
is applied for the realization of each instance. In each cluster, the intra-cluster users are
sorted in the descending order of channel gains and normalized channel gains, respectively.
The positions of each user in the two sorted sequences are recorded, and their difference
can be utilized to describe how often beam-forming changes the optimal SIC order. Figure 7
plots the distribution of the position differences. From Figure 7, the decoding order
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generally remains unchanged. However, there are circumstances where the optimal SIC
order is slightly adjusted.
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Figure 7. Position difference distribution.

Complexity Analysis

With any given relative weight, the corresponding clustering scheme can be obtained
by Algorithm 2. For each user k, Algorithm 2 measures k’ s preference for different clusters.

User k will be first assigned to its favorite cluster nk. After assigning user k to cluster
nk, two cases can occur:

• Case 1: The number of the users in cluster nk is no greater than M;
• Case 2: The number of the users in cluster nk is greater than M.

In case 1, user k can be directly assigned to cluster nk. In case 2, cluster nk should
reject a user to meet the size constraint. Algorithm 2 produces (M + 1) possible user set for
cluster nk. Based on Algorithm 1, beam-forming can be done for each possible user set to
compare their performance, and the rejected user is obtained accordingly. If the rejected
user is user k, k will be further assigned to its second-favorite cluster. The above process
will be repeatedly executed until either user k is successfully assigned to a single cluster or
all the clusters are processed.

Accordingly, Algorithm 2 consists of two parts: part 1 measures each user’s preference
for different clusters; part 2 helps each user select a suitable cluster to join. The complexity
of part 1 is O(SK), and the complexity of part 2 is O(SK). The complexity of Algorithm 2 is
O(SK).

The optimal relative weight can be obtained by Algorithm 3 through D iterations.
In each iteration, Algorithm 3 produces G possible relative weights, each corresponding to
a possible clustering scheme. Based on Algorithm 1, beam-forming can be done for each
possible clustering scheme to compare their performance. The complexity of Algorithm 3
is O(SK).

7. Conclusions

In this passage, we consider the multi-dimensional resource allocation problem for
MIMO-NOMA, which consists of power allocation, user clustering and beam-forming,
respectively. A three-step resource allocation framework is proposed to solve the considered
problem: step 1 solves the beam-forming problem for a given user cluster; step 2 obtains
the optimal clustering scheme based on the proposed beam-forming algorithm; step 3
further optimizes power allocation based on the optimal user clustering and beam-forming
schemes. Simulation results show that the proposed scheme can effectively increase the
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received SINR at users. Additionally, the performance of the proposed scheme can approach
the performance upper bound in terms of SE.
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Appendix A

The normalized channel gain of user l is given by

gl =
1

|ω̄l |2
∣∣∣hH

l wn

∣∣∣2 =
1

|ω̄l |2

∣∣∣∣∣ 1√
N

N

∑
c=1

κl,cej(φc−ϕl,c)

∣∣∣∣∣
2

(A1)

=
1

|ω̄l |2

∣∣∣∣∣ 1√
N

N

∑
c=1

κl,c cos(φc − ϕl,c) + j
1√
N

N

∑
c=1

κl,c sin(φc − ϕl,c)

∣∣∣∣∣
2

(A2)

=
1

|ω̄l |2N
(

N

∑
c=1

κl,c cos(φc − ϕl,c))
2 +

1

|ω̄l |2N
(

N

∑
c=1

κl,c sin(φc − ϕl,c))
2 (A3)

=
1

|ω̄l |2N

N

∑
c=1

κ2
l,ccos2(φc − ϕl,c) +

1

|ω̄l |2N

N

∑
c=1

κ2
l,csin2(φc − ϕl,c) (A4)

+
2

|ω̄l |2N

N

∑
c=1

N

∑
d=c+1

κl,cκl,d cos(φc − ϕl,c) cos(φd − ϕl,d) (A5)

+
2

|ω̄l |2N

N

∑
c=1

N

∑
d=c+1

κl,cκl,d sin(φc − ϕl,c) sin(φd − ϕl,d) (A6)

=
1

|ω̄l |2N

N

∑
c=1

κ2
l,c +

2

|ω̄l |2N

N

∑
c=1

N

∑
d=c+1

κl,cκl,d cos(φc − ϕl,c − (φd − ϕl,d)) (A7)

=
1

|ω̄l |2N
‖hl‖2

2 +
2

|ω̄l |2N

N

∑
c=1

N

∑
d=c+1

κl,cκl,d cos(φc − ϕl,c − (φd − ϕl,d)) (A8)

where κl,c and ϕl,c denote the amplitude and phase of the c-th element in hl, respectively.
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