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Abstract: The myosin molecular motor interacts with actin filaments in an ATP-dependent manner
to yield muscle contraction. Myosin heavy chain residue R369 is located within loop 4 at the actin-
tropomyosin interface of myosin’s upper 50 kDa subdomain. To probe the importance of R369, we
introduced a histidine mutation of that residue into Drosophila myosin and implemented an integrative
approach to determine effects at the biochemical, cellular, and whole organism levels. Substituting
the similarly charged but bulkier histidine residue reduces maximal actin binding in vitro without
affecting myosin ATPase activity. R369H mutants exhibit impaired flight ability that is dominant
in heterozygotes and progressive with age in homozygotes. Indirect flight muscle ultrastructure
is normal in mutant homozygotes, suggesting that assembly defects or structural deterioration of
myofibrils are not causative of reduced flight. Jump ability is also reduced in homozygotes. In
contrast to these skeletal muscle defects, R369H mutants show normal heart ultrastructure and
function, suggesting that this residue is differentially sensitive to perturbation in different myosin
isoforms or muscle types. Overall, our findings indicate that R369 is an actin binding residue that is
critical for myosin function in skeletal muscles, and suggest that more severe perturbations at this
residue may cause human myopathies through a similar mechanism.

Keywords: myosin; myopathy; cardiomyopathy; Drosophila melanogaster; muscle

1. Introduction

Myosin II molecules incorporate into thick filaments in the sarcomeres of striated
muscles and interact with disinhibited actin-containing thin filaments to produce force
in an ATP-dependent fashion. Mutations that affect this interaction can cause striated
muscle disease. For instance, the actin-binding site within the myosin motor domain of
β-cardiac myosin (encoded by MYH7) is a hot-spot for mutations associated with dilated
and hypertrophic cardiomyopathies (reviewed by Moore et al. [1]). MYH7 mutations
can also cause skeletal myopathies, since MYH7 is expressed in slow type 1 skeletal
muscle fibers as well (reviewed by Oldfors [2]). Assessing interactions at the actomyosin
interface may, therefore, yield insights into genetically-based skeletal myopathies and
cardiomyopathies.

Myosin residue R369 (β-cardiac myosin amino acid numbering) resides on the tip of
loop-4 of the upper 50 kDa subdomain and faces the outside of the molecule at an interface
with actin and tropomyosin. The location of R369 is shown in a model of β-myosin S1
bound to F-actin and tropomyosin that was solved by cryo-electron microscopy (cryo-EM)
and atomic-level molecular docking by Doran et al. [3] (Figure 1). Mutation of the R369
residue to histidine (R369H) occurs rarely, but represents the most common naturally-
occurring mutation at that residue in multiple myosin isoforms of human skeletal muscles
(Supplementary Table S1). Further, the β-myosin heavy chain arginine to glutamine
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mutation (R369Q) caused dilated cardiomyopathy in a pediatric patient [4], suggesting a
critical conserved role of the residue in striated muscles.

Figure 1. The R369 residue of myosin loop 4 resides at an interface of F-actin, myosin and tropomyosin
(PDB: 6X5Z). The position of R369 (green) is shown within the structure of masseter β-myosin
S1 (yellow) bound to α1-actin (cyan) and cardiac αα-tropomyosin (violet) solved by cryo-EM in
conjunction with molecular docking of the following high-resolution structures [3]: the crystal
structure of squid muscle myosin S1 in rigor (PDB: 3I5G), and cryo-EM structures of human cardiac
F-actin (PDB: 6KN8), human cytoplasmic actomyosin (PDB: 5JLH), and rabbit skeletal muscle F-actin
with mouse α-tropomyosin (PDB: 5JLF). The loop 4 densities for residues 354–380 were replaced with
those of the crystal structure of β-cardiac myosin in the post-rigor state (PDB: 6FSA).

Doran et al. proposed a model in which myosin R369 binds to tropomyosin to stabilize
the transition from the C-state position (weak actomyosin binding) to the strong actomyosin
binding M-state [3]. This model and other cryo-EM data suggest that β-myosin R369 is
also directly involved in actin binding. Cryo-EM structures of actomyosin containing
porcine cardiac β-myosin [5], bovine β-myosin [3], and Dictyostelium myosin-IE [6] show
electrostatic interactions between loop 4 and actin. Further, molecular dynamics simulations
incorporating the actomyosin cryo-EM complex in conjunction with X-ray structures for
F-actin and chicken skeletal muscle myosin II predicted that myosin S1 binds actin at the
R371 residue, which is homologous to β-cardiac myosin R369 [7]. Finally, in Dictyostelium
myosin II, mutation of the entire loop containing this residue to glycine residues led to
weakened actin binding [8].
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We report here on the first (to our knowledge) transgenic model designed to examine
the function of residue R369 in muscle tissue. Our model allowed us to test whether
the R369H variant found in human skeletal muscle affects striated muscle structure and
function in the fruit fly, Drosophila melanogaster. The R369H mutation (R368H in Drosophila)
retains the positive charge of the wild-type residue, but introduces a bulky imidazole ring
that may sterically hinder an electrostatic interaction with subdomain 3 of actin. Thus, we
hypothesized that the R369H mutation would reduce actin binding and myosin function,
leading to structural and functional defects in striated muscles. Our results demonstrate
that the R369H mutation decreases myosin maximal binding to F-actin in vitro and reduces
locomotion in adult Drosophila, indicating that R369 is critical to both actin interaction and
muscle function. Defining the structural elements important for actomyosin interaction
will yield further insight into the molecular mechanisms of myosin-induced myopathies
and may allow for the development of targeted drug therapeutic treatments.

2. Results
2.1. The R369 Myosin Residue Modulates Actin Binding

We generated transgenic flies harboring the R369H mutation by P element transfor-
mation to determine the role of the R369 residue in regulating actomyosin interactions.
Multiple fly lines were produced to ensure reproducibility of in vivo functional analy-
ses. We crossed the transgenes into the indirect flight muscle (IFM) and jump muscle
myosin-null Mhc10 line [9] and selected fly lines with wild-type myosin to actin ratios,
as determined by polyacrylamide gel electrophoresis analysis of the upper thoraces of
young mutant flies (mean ± S.E.M: 95.3 ± 2.4, 105.4 ± 3.4, and 104.6 ± 2.1 for R369H lines
L1, L2, and L3, respectively, relative to wild-type yw flies). RT-PCR (reverse transcription
polymerase chain reaction) of RNA isolated from IFM lysates of these lines confirmed the
expression of the mutation and the absence of endogenous myosin heavy chain expression.

Steady state ATPase parameters of myosins prepared from dissected IFMs were
assessed to determine if the R369H mutation affects the enzymatic activity of myosin
(Figure 2). Ca-ATPase as well as basal Mg-ATPase activities did not significantly differ
between R369H and transgenic wild-type (PwMhc2) myosin (Figure 2A,B). Furthermore,
the Vmax (maximum ATPase rate) of actin-stimulation, as well as the affinity constant (Km)
of actin required to reach 50% Vmax did not differ for R369H relative to control myosin
(Figure 2C–E).

To determine whether the R369 residue modulates actin binding, we measured the
binding affinity of R369H S1 for F-actin using actin cosedimentation. To obtain adequate
levels of protein without the need for dissections, we generated a transgenic fly line express-
ing His-tagged myosin in IFMs and purified the His-tagged protein from fly homogenates
using Ni column chromatography [10]. We then purified the subfragment-1 (S1) motor do-
main using limited proteolysis and size exclusion chromatography. F-actin was incubated
with a fixed concentration of control or R369H S1 under rigor conditions (in the absence of
nucleotide). Following high speed centrifugation, S1 remained soluble in S1-only (actin-
free) controls, while F-actin was insoluble in F-actin-only (S1-free) controls (Figure 2G).
SDS-polyacrylamide electrophoresis gels of centrifuged samples were scanned and densi-
ties of S1 bound fractions were fitted to a hyperbolic function to determine the maximal
binding (Bmax) and dissociation constant (Kd) for F-actin (Figure 2F). R369H S1 exhibited
a significantly lower Bmax value compared to control S1 (0.597 ± 0.085 vs. 1.024 ± 0.211,
p = 0.03), indicating reduced maximal binding to F-actin in vitro. Values for Kd did not
significantly differ for mutants compared to controls (1100 ± 510 nM vs. 1260 ± 963 nM,
p = 0.81).
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Figure 2. R369H myosin reduces maximal actin binding without affecting ATPase activity.
(A–E) Full-length myosin isolated from indirect flight muscle (IFM) of R369H mutants (N = 3)
and PwMhc2 wild-type controls (N = 4) was assessed for the following ATPase parameters:
(A) Mg2+ basal ATPase activity, (B) Ca2+ ATPase activity, (C) Vmax of actin-stimulated Mg2+ AT-
Pase, and (D) actin affinity relative to ATPase (Km). (E) To determine actin-stimulated activity, Mg2+

basal ATPase activities were subtracted from measured ATPase values without actin and over increas-
ing concentrations of F-actin. Data were fit with the Michaelis–Menten equation to determine Vmax

and Km. Basal and actin-activated ATPase parameters are unchanged in R369H myosin compared to
control myosin. (F) Actin co-sedimentation experiments revealed that the R369H mutation reduces
the maximal binding (Bmax) of F-actin (N = 3). Bound myosin S1 fractions in actomyosin samples
were determined via densitometry and plotted versus F-actin concentration. Bound fractions were
calculated as the density of S1 in the insoluble pellet fraction relative to total protein content minus
the fraction of pelleted S1 in a control containing S1-alone. The actin-binding dissociation constant
for S1 (Kd) was defined as the concentration of F-actin required to reach half Bmax. For all assays,
data are reported as mean ± SD (see text for specific values). Statistical significance was determined
using Student’s t-tests (ns = not significant; * p ≤ 0.05). (G) A representative SDS-polyacrylamide gel
containing insoluble pellet (P) fractions of R369H S1 and F-actin-containing samples over increasing
concentrations of F-actin (Lanes 5–15: 0.4, 0.6, 0.8, 1, 1.2, 1.4, 1.6, 1.8, 2, 3, and 4 µM). Supernatant (S)
and pellet (P) fractions from S1-alone or F-actin-alone controls are shown (Lanes 1–4).

2.2. The R369H Myosin Mutation Reduces Locomotion without Affecting Skeletal Muscle
Ultrastructure in Drosophila

To assess whether the R369H mutation affects fly locomotion, we measured flight
and jump abilities of mutant and PwMhc2 (P element wild-type controls) lines. Homozy-
gous mutant lines (L1–L3) displayed reduced flight ability compared to controls at ages
2 days [arbitrary units (A.U.) ± S.E.M.]: 2.72 ± 0.21, 1.14 ± 0.14, and 0.52 ± 0.09 vs.
3.70 ± 0.15 A.U.], 1 week (2.30 ± 0.22, 0.82 ± 0.09, and 0.32 ± 0.07 vs. 3.52 ± 0.12 A.U.),
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and 3 weeks (0.90 ± 0.14, 0.42 ± 0.08, and 0.22 ± 0.06 vs. 3.32 ± 0.13 A.U.) (Figure 3A).
Two-way ANOVAs determined that age (p < 0.0001) and genotype (p < 0.0001) as two inde-
pendent factors, as well as their interaction, contribute to statistically significant differences
between each group. Thus, the R369H mutation causes defects in flight ability that are
progressive with age. Heterozygous lines (L1–L3) display significant reductions in flight
ability compared to controls at 3 weeks of age (4.35 ± 0.20, 3.48 ± 0.21, and 4.04 ± 0.17
vs. 4.91 ± 0.15 A.U.; p = 0.0243, p < 0.0001, and p = 0.0004) (Figure 3B), suggesting that the
detrimental effects of the mutation on locomotion are dominant. Mean jump distances were
also reduced in all three homozygous mutant lines (L1, L2, and L3) compared to controls at
2 days of age (6.09 ± 0.14, 4.58 ± 0.14, and 4.56 ± 0.09 cm vs. 7.08 ± 0.16 cm, p < 0.0001)
(Figure 3C).

Figure 3. The R369H myosin mutation reduces locomotion in Drosophila. R369H mutant lines (L1,
L2, and L3) were crossed into a Mhc10 background that is null for endogenous myosin in IFMs and
jump muscles. (A,B) Flight indices were calculated as 6*U/T +4*H/T +2*D/T +0*N/T, where each
fly was scored for flight upward (U), horizontally (H), downward (D) or the inability to fly (N), and T
represents the total number of flies tested. N ≥ 100 flies for each line/age. (A) Homozygous mutants
exhibit declines in flight ability that are progressive with age. The statistical significance of differences
between groups arising from effects of age and genotype was determined using a two-way ANOVA
(Age: p < 0.0001, Genotype: p < 0.0001, Interaction: p < 0.0001). Multiple comparisons between
mutants and PwMhc2 controls are shown (**** p < 0.0001). (B) Heterozygous mutants exhibit reduced
flight ability at 3 weeks of age. A one-way ANOVA determined statistical significance between
genotypes (* p ≤ 0.05, *** p < 0.001, **** p < 0.0001). (C) Jumping distances are reduced in 2-day-old
homozygous mutants. The average values of the top 3 of 10 jump distances are reported (N = 40
per line). A one-way ANOVA determined statistical significance of differences between genotypes
(**** p < 0.0001). Values represent mean ±S.E.M. Full genotypes are defined as: R369H homozygotes
(Mhc10/Mhc10; P[R369H]/P[R369H]), PwMhc2 homozygotes (P[PwMhc2]/P[PwMhc2]; Mhc10/Mhc10),
R369H heterozygotes (Mhc10/+; P[R369H]/-), and PwMhc2 heterozygotes (P[PwMhc2]/-; Mhc10/+),
where “-” indicates the absence of a transgene on the homologous chromosome.
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We performed transmission electron microscopy on thin-sectioned IFMs from 3-week-
old R369H homozygous mutants and controls to determine the ultrastructural effects of
the mutation. Myofibrils of mutants and controls display a normal, rounded morphology
in transverse sections (Figure 4A,B), and a double hexagonal pattern of thick and thin
filaments (Figure 4C,D) that is characteristic of Drosophila IFMs [11–13]. In longitudinal
sections, myofibrils are well-organized in a parallel fashion (Figure 4E,F) and contain
normal sarcomeres with intact myofilaments (Figure 4G,H). Average inter-thick filament
distances (Figure 4I) and sarcomere lengths (Figure 4J) did not differ between mutants
and controls. Overall, IFM ultrastructure was not disrupted in R369H mutants, suggesting
that flight impairment in these lines was not caused by defects in myofibrillar assembly
or maintenance.

Figure 4. R369H myosin does not affect the stability of IFM myofibrils. Transmission electron
micrographs of thin-sectioned IFMs in longitudinal orientation were obtained from 3-week-old ho-
mozygous PwMhc2 control or R369H mutant flies in a Mhc10 background that is null for endogenous
myosin in IFMs and jump muscles. (A,B) Low-magnification micrographs of transverse sections show
that the morphology of IFM myofibrils is normal in R369H mutant flies compared to controls. Scale
bar, 0.5 µm. (C,D) High-magnification micrographs of transverse sections show a normal hexagonal
pattern of thick and thin filaments in mutants and controls. Scale bar, 0.1 µm. (E,F) Low magnification
images of myofibrils in longitudinal orientation show normal myofibrillar organization in R369H
mutant IFMs. Scale bar, 2 µm. (G,H) High magnification images of longitudinal sections show normal
sarcomeres bordered by Z-disks (arrowheads) in mutants. Scale bar, 0.5 µm. (I) Mean inter–thick
filament spacing values were determined from images of transverse sections using a custom Python
script. ≥700 thick filament centers per biological replicate (N = 3). (J) Mean sarcomere lengths were
calculated from images of longitudinal sections using Image-J software. Fifty sarcomeres, N = 3 for
each line. Data are reported as mean ± SD. Statistical significance was determined using Student’s
t-tests, where ns = non-significant difference compared to controls. MF: myofibril, M: mitochondrion.
Full genotypes are defined as follows: R369H homozygotes (Mhc10/Mhc10; P[R369H]/P[R369H]);
PwMhc2 homozygotes (P[PwMhc2]/P[PwMhc2]; Mhc10/Mhc10).
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2.3. The R369H Myosin Mutation Does Not Affect Contractility, Dynamics or Ultrastructure of
the Heart in Drosophila

To determine whether the R369H mutation affects cardiac contractility or dynamics,
we crossed mutant R369H and control PwMhc2 lines into the Mhc1 myosin null genetic
background [14]. Since homozygous PwMhc2 controls in the Mhc1 background have an
eclosion rate that is reduced by −50% and a median lifespan of 9 days [11], only young
4-day-old homozygous flies were examined. Heterozygous R369H/+ and homozygous
R369H/R369H mutant flies showed no differences in diastolic (DD) and systolic (SD)
diameters, as well as fractional shortening (FS), compared to controls at 4 days of age
(Figure 5A–C). R369H-L2 homozygotes showed a higher heart rate compared to controls
(Figure 5F) (2.89 ± 0.23 vs 2.17 ± 0.14 beats/s, p = 0.0018) caused by a reduction in diastolic
intervals (Figure 5D) (0.25 ± 0.04 vs. 0.38 ± 0.04 s, p = 0.0117). However, line R369H-L1
showed no differences in cardiac dynamics compared to controls (Figure 5D–F). R369H/+
heterozygotes showed no differences in diastolic diameters (67.48 ± 1.51, p = 0.89 and
65.27 ± 1.46, p = 0.33 vs. 67.21 ± 1.26 µm), systolic diameters (43.73 ± 1.26, p = 0.47
and 41.88 ± 0.99, p = 0.07 vs. 44.93 ± 1.27 µm), or fractional shortening (0.35 ± 0.01,
p = 0.29 and 0.36 ± 0.01, p = 0.13 vs. 0.33 ± 0.01) compared to controls at 3 weeks of age,
suggesting that expression of the R369H mutation does not cause dominant reductions in
cardiac contractility.

Figure 5. The R369H mutation does not affect cardiac physiological parameters in Drosophila. Ho-
mozygous or heterozygous mutant R369H lines (L1 or L2) and PwMhc2 controls were crossed
into a myosin-null Mhc1/ Mhc1 or Mhc1/ + background, respectively. (A,B) Cardiac diameters and
(C) fractional shortening values do not differ in 4-day-old homozygous and heterozygous lines
compared to controls. R369H-L2 homozygous flies display (D) reduced diastolic intervals and
(F) elevated heart rates, while R369H-L1 homozygous flies display no differences in cardiac dynam-
ics (D–F) compared to controls. N ≥ 30 flies for each genotype. Values represent mean ± S.E.M.
One-way ANOVAs determined statistical significance compared to controls (* p ≤ 0.05, ** p < 0.01,
and ns = non-significant). Full genotypes are defined as follows: R369H homozygotes (Mhc1/Mhc1;
P[R369H]/P[R369H]); PwMhc2 homozygotes (P[PwMhc2]/P[PwMhc2]; Mhc1/Mhc1); R369H heterozy-
gotes (Mhc1/+; P[R369H]/-); and PwMhc2/+ heterozygotes (P[PwMhc2]/-; Mhc1/+), where “-” indicates
the absence of a transgene on the homologous chromosome.
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Finally, we determined whether the R369H mutation affects heart ultrastructure using
transmission electron microscopy. For both the mutant and control homozygotes, myofibrils
are oriented in a circumferential array around the heart tube and contain discontinuous
Z-disks (Figure 6A,B, arrows), as previously reported in this tissue [11,15–19]. Mean
cardiac thickness values on the dorsal-side and ventral-side do not differ in 4-day-old
homozygous mutants compared to controls (Figure 6C,D). Overall, myofibrillar assembly
and maintenance in cardiomyocytes appear unaffected by the mutation.

Figure 6. The R369H mutation does not affect assembly and stability of cardiac myofibrils in
Drosophila. Homozygous mutant R369H lines (L1 or L2) and PwMhc2 controls were crossed into a
myosin-null Mhc1/Mhc1 background. (A,B) Transmission electron micrographs of transverse sections
of the heart between the 3rd and 4th sets of ostia show no differences in the organization or stability
of myofibrils in 4-day-old R369H homozygous lines compared to controls. The arrows indicate
that Z-disks are discontinuous, as standardly observed in Drosophila cardiac myofibrils [11]. MF:
myofibril. M: mitochondrion. VL: ventral-longitudinal skeletal muscle fibers. Scale bar, 0.5 µm.
(C,D) Cardiac thickness values of dorsal-side (C) and ventral-side (D) areas of the heart do not differ
in R369H lines compared to controls (N = 3 for each line). Values represent mean ± SD. Statistical
significance was assessed using Student’s t tests, where ns = non-significant. Full genotypes are
defined as follows: R369H homozygotes (Mhc1/Mhc1; P[R369H]/P[R369H]); PwMhc2 homozygotes
(P[PwMhc2]/P[PwMhc2]; Mhc1/Mhc1).

3. Discussion

Here we introduced a conservative R369H mutation into muscle myosin in the
Drosophila model system to probe the role of this amino acid residue in regulating myosin
function at the biochemical, ultrastructural and physiological levels. This residue is located
within loop 4 of myosin, within its upper 50 kDa subdomain [8,20]. Previous cryo-EM work
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revealed that loop 4 is one of multiple surface loops at the actomyosin interface [7,21,22].
The R369H mutation introduces a bulky imidazole ring which may sterically hinder inter-
action with actin.

We found that R369H myosin isolated from IFMs displayed reduced maximal binding
to F-actin in vitro (Figure 2F,G), confirming that the R369 residue modulates actin binding.
During the crossbridge cycle, weak binding of myosin to actin triggers conformational
changes that promote the release of the products of ATP hydrolysis [inorganic phosphate
(Pi), followed by ADP] [23]. When Pi is released, further intermolecular interactions at
the actin interface stabilize a state in which myosin is strongly bound to actin [23–25].
These events are coupled with two lever arm movements (power stroke steps) that induce
force generation.

We observed no change in ATPase parameters of Drosophila R369H myosin relative
to control myosin (Figure 2A–E). The Km of actin affinity relative to ATPase is unchanged,
consistent with our co-sedimentation data that the actin binding affinity (Kd) does not differ
relative to controls. Thus, it appears that the transition from weak to strong actin binding is
not disrupted by the mutation. Since the Bmax of actin co-sedimentation is reduced in the
mutant, it is possible that the mutation disrupts interactions important for stabilizing the
strong actin binding state(s). In support of this hypothesis, a cryo-EM model of actomyosin
incorporating myosin crystal structures showed that loop 4 directly interacts with actin in
the strongly-bound rigor state, but not when myosin is weakly bound to actin [24]. Future
approaches can employ transient kinetics analyses to determine the exact chemomechanical
steps affected by the R369H mutation.

Biochemical studies in other systems add support to the hypothesis that loop 4 plays a
critical role in binding actin. Proteolytic cleavage of loop 4 reduced actin affinity >100-fold
in bovine β-cardiac myosin [26]. Further, fluorescence and kinetic measurements revealed
that the mutation of loop 4 residues to glycine reduced actin binding in Dictyostelium
myosin II [8]. Additionally, the mutation of a loop 4 G362 residue to alanine reduced actin
affinity in chicken gizzard smooth muscle heavy meromyosin [20].

An interaction between loop 4 and actin is supported by both cryo-EM and com-
putational work, where evidence suggests that residue R369 is critical to this interface.
Cryo-EM structures of skeletal muscle myosin II [24] and myosin V [27] bound to F-actin
show direct electrostatic interactions between loop 4 and actin, though loop 4 of myosin V
localizes closer towards the cardiomyopathy loop where it forms an intramolecular hydro-
gen bond. A molecular dynamics simulation [7] of a cryo-EM structure of actomyosin [21]
incorporating the myosin II [28] and myosin V [29] crystal structures, revealed that the
residue homologous to β-cardiac myosin R369 (R371) forms an electrostatic interaction
with D311 of actin in the rigor conformation [7]. This model also showed that this myosin
residue forms hydrogen bonds with the residues K328 and Q314 of actin. Additionally, a
cryo-EM structure of actin-tropomyosin-myosin [30], incorporating the crystal structure of
Dictyostelium myosin-IE [6], indicated the direct binding of this residue to the SD3 subunit of
actin in the rigor conformation [30]. Cryo-EM structures of porcine cardiac actomyosin [5]
and bovine β-myosin [3] displayed an electrostatic interaction between myosin R369 and
tropomyosin, as well as electrostatic interactions between loop 4 and actin. The cardiac
actomyosin structure also revealed an electrostatic interaction between nearby residue E371
of loop 4 and F-actin to reinforce the binding of the myosin 50 kDa upper subdomain to
actin [5]. Finally, the model of Doran et al. [3] suggests that R369 additionally serves a
critical role in displacing tropomyosin from the myosin-binding site on actin (Figure 1),
which would also be important for stabilizing actomyosin interaction.

Since the R369H mutation in loop 4 reduces maximal actin binding of Drosophila
myosin, we hypothesized that its expression in Drosophila would yield defects in organism
locomotion. Indeed, R369H/+ flies displayed dominant reductions in flight ability at
3 weeks of age (Figure 3B). It will be interesting to determine if clinical aberrations arise
from the R369H/+ genotype in human skeletal muscle myosins, as its presence is currently
of an unknown significance [31]. Additionally, Drosophila genetic manipulation permitted
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the analysis of R369H/R369H homozygotes, where progressive defects in flight ability were
observed from ages 2 days to 3 weeks (Figure 3A). Ultrastructural properties of IFMs are
normal in 3-week-old R369H/R369H flies (Figure 4), suggesting that the severe reductions
in flight ability at this age are not caused by structural deterioration of myofibrils. Jump
distances were also reduced in R369H/R369H flies (Figure 3C). Overall, these data suggest
that the R369 actin binding residue is critical for contractile function. In support of our
hypothesis, a human DCM patient harboring the R369Q/+ MYH7 genotype for β-cardiac
myosin exhibited a deficit in fractional shortening (FS) [4].

We also assessed whether R369H flies exhibit cardiac defects, since the R369Q/+
genotype is associated with dilated cardiomyopathy in humans [4]. Cardiac physiological
parameters (Figure 5) and ultrastructural properties (Figure 6) were mostly unaffected by
the R369H mutation, which may not be surprising since the mutation does not introduce
a charge change as in the human condition. Interestingly, in Drosophila, the effects of the
mutation are more severe in skeletal muscles compared to cardiac muscle, which may
arise from differences in the amino acid backbone of the myosin isoforms that result from
alternative splicing of transcripts from the single Mhc gene [32], and/or from differences
in muscle physiological properties. In this regard, a number of mutations that severely
affect the IFM induce relatively minor changes in the heart [15,33–36], as the IFM is a
specialized, highly-ordered muscle that is exquisitely sensitive to mutation, and thus serves
as an excellent system to identify even minor sarcomeric protein disruptions in vivo.

In summary, we exploited the Drosophila model system to elucidate the importance of
a conserved myosin residue at the actin-binding interface. We found that a conservative
R369H mutation impairs maximal actin binding and reduces skeletal muscle function
(our results are summarized in Table 1). A better understanding of the intermolecular
interactions between myosin and actin may yield insight into the mechanistic basis for
myopathies caused by impaired actomyosin binding.

Table 1. Summary of the effects of the R369H myosin mutation in Drosophila.

Characteristic Effect

Myosin ATPase activity Unaffected
Actin binding Reduced

Indirect flight muscle function Reduced
Jump muscle function Reduced

Cardiac function Unaffected
Cardiac and skeletal muscle structure Unaffected

4. Methods
4.1. Generation of Mutant (Non His-Tagged) Fly Lines

A pCaSpeR vector containing a 19.2 kb Mhc 5′ fragment was digested with PstI and
EagI [11]. A 3.1 kb fragment from this digest was gel isolated and ligated to a PstI-EagI
site in a Bluescript KS vector. The resulting subclone was digested with NsiI and BglII. A
1.3 kb fragment was gel isolated and ligated to a NsiI and BglII site in a Litmus 28i vector.
Oligonucleotide-directed mutagenesis (QuikChange kit, Agilent, Santa Clara, CA, USA)
was performed to change the exon 8 codon corresponding to the Mhc R369H mutation
using human β-cardiac myosin numbering (underlined) with the following forward (+)
and reverse (−) primers:

(+): 5′-CAAGCAACGTGGTCACGAGGAGCAGGCTG-3′

(−): 5′-CAGCCTGCTCCTCGTGACCACGTTGCTTG-3′

The mutant subclone was sequenced for verification by Eton Bioscience (San Diego,
CA, USA). Mutant subclones were inserted into larger intermediate subclones to generate
a 5′ Mhc R369H subclone. Plasmids carrying the Mhc R369H 5′ fragment and wild-type
Mhc 3′ were digested with EagI. The wild-type 3′ Mhc fragment was gel isolated and
ligated into the EagI-digested R369H 5′ Mhc subclone to produce a final clone containing
full-length R369H Mhc in a pCaSpeR P element vector. The final clone was purified using
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the Qiagen QIAfilter Plasmid Maxi Kit and sequenced by Eton Bioscience (San Diego, CA,
USA) for verification.

A total of 20 transgenic mutant lines were generated by P element transformation
by BestGene, Inc. (Chino Hills, CA, USA) [37]. Lines mapping to the third chromosome
were crossed into the Mhc10 genetic background that is myosin heavy chain-null in IFMs
and jump muscles [9]. Myosin heavy chain protein expression levels were determined by
polyacrylamide gel electrophoresis by comparing the ratios of myosin to actin between
mutant and yw (wild-type) controls [11]. Lines expressing wild-type levels of myosin heavy
chain were selected for further experiments.

RT-PCR confirmed that Mhc transcripts from transgenic lines express the mutant
transgene and were correctly spliced. For this purpose, RNA was isolated from the IFMs
of 2-day-old flies using the RNeasy kit by Qiagen, Inc. (Hilden, Germany). cDNAs were
generated using the ProtoScript cDNA synthesis kit by New England Biolabs (Ipswich, MA,
USA) and amplified by PCR using the following primer pairs as previously reported [11]:

Exons 2–8:
(+) 5′-TGGATCCCCGACGAGAAGGA-3′

(−) 5′-GTTCGTCACCCAGGGCCGTA-3′

Exons 8–12:
(+) 5′-TCTGGATACCCAGCAGAAGCGT-3′

(−) 5′-GAGCTTCTTGAAGCCCTTACGG-3′

Exon 15:
(+) 5′-CTCAAGCTCACCCAGGAGGCT-3′

(−) 5′-GGGTGACAGACGCTGCTTGGT-3′

For simplicity, lines R369H-1, R369H-16, and R369H-6 are referred to as R369H-L1,
R369H-L2. and R369H-L3.

4.2. Steady-State ATPase Activity

Basal and actin-activated ATPase activity of myosin was determined with [γ-32P]-
ATP [38]. Each assay sample was run in duplicate. Ca-ATPase activity was measured for
2 µg of full-length myosin in Ca-ATPase buffer (10 mM imidazole, pH 6.0, 100 mM KCl,
10 mM CaCl2) and 1 mM [γ-32P]-ATP at room temperature for 15 min. Mg-ATPase activity
was measured for 2 µg of full-length myosin in Mg-ATPase buffer (10 mM imidazole, pH 6.0,
20 mM KCl, 0.1 mM CaCl2, 1 mM MgCl2) and 1 mM [γ-32P]-ATP at room temperature for
25 min in the presence of varying concentrations of chicken F-actin (0–2 µM). The reaction
was stopped by addition of HClO4. After centrifugation, aliquots of the supernatant
were extracted with a mixture of ammonium molybdate, HClO4 and isobutanol:benzene
(1:1), as previously described [38]. Following phase separation, an aliquot of the organic
phase was assessed by Cerenkov counting to determine 32Pi released during the reaction.
After subtraction of basal ATPase activity (0 mM actin) for each sample, actin-activated
ATPase activities were plotted vs. actin concentration, and the Michaelis–Menten equation
was used to determine Vmax for actin-stimulated ATPase activity and Km for actin affinity
relative to ATPase activity (N ≥ 3).

4.3. Generation of a Mutant His-Tagged Myosin Line and Protein Purification

We generated a His-tagged line for bulk myosin S1 isolation from IFMs in quantities
sufficient for co-sedimentation assays, as reported previously [11]. A plasmid encoding
an N-terminal His-tag, the Actin88F promoter, a tobacco etch virus protease recognition
site, and full length myosin was digested with XbaI and SbfI [10]. A 6.3 kb fragment was
gel isolated and ligated into a XbaI-SbfI site in the pLitmus vector to generate a pXbaSbf
subclone. The pXbaSbf clone was digested with EcoRV and NcoI, and a 2.6 kb fragment
was gel isolated and ligated into a EcoRV and NcoI site in the pLitmus vector to generate a
pEcoRVNcoI subclone. Site-directed mutagenesis (QuikChange kit, Agilent, Santa Clara,
CA, USA) was performed to change the exon 8 codon corresponding to the Mhc R369H



Int. J. Mol. Sci. 2022, 23, 2533 12 of 15

mutation using human β-cardiac myosin numbering (underlined) with the following
forward (+) and reverse (−) primers.

(+): 5′-CAAGCAACGTGGTCACGAGGAGCAGGCTG-3′

(−): 5′-CAGCCTGCTCCTCGTGACCACGTTGCTTG-3′

The mutated exon was verified by sequencing (Eton Bioscience, San Diego, CA, USA)
and inserted into a larger pXbaSbf R369H cloning intermediate. The entire construct
insert was removed and ligated into a pAttB vector containing the miniwhite (w+) eye
color marker and the PhiC31 AttB recognition sites [10]. The final clone was purified and
utilized for targeted insertion into the third chromosome by BestGene Inc. (Chino Hills,
CA, USA) using the PhiC31 system [37]. One transgenic line was produced and crossed into
a Mhc10 background that is myosin-null in IFMs [9]. Myosin protein is expressed in upper
thoraces at levels ~80% relative to yw (wild-type) flies, as determined by polyacrylamide
gel electrophoresis and densitometry [39].

RT-PCR of RNA isolated from upper thoraces was performed, as reported above, for
non His-tagged fly lines using the following forward (+) and reverse (−) primers.

(+) 5′-TGGATCCCCGACGAGAAGGA-3′

(−) 5′-GTTCGTCACCCAGGGCCGTA-3′

The (−) end directed primer was used to generate cDNAs. RT-PCR products were
sequenced by Eton Bioscience (San Diego, CA, USA) for verification. Bulk isolation of His-
tagged mutant IFI and subsequent purification of the mutant motor domain was performed
as previously reported [11].

4.4. Co-Sedimentation Assays

The binding affinity of S1 for F-actin was measured using the co-sedimentation ap-
proach, as previously described [11]. Briefly, S1 (1.5 µM) purified from His-tagged lines
was added to phalloidin-stabilized F-actin (0, 0.4, 0.6. 0.8, 1, 1.2, 1.4, 1.6, 1.8, 2, 3, and 4 µM)
in 25 µL co-sedimentation buffer (100 mM NaCl, 200 mM sodium phosphate buffer pH
7, 5 mM MgCl2, 4 mM DTT). Samples were incubated for 15 min at 4 ◦C and centrifuged
(Beckman TLA-100.3 rotor, 70,000 RPM, 60 min, 4 ◦C). The insoluble portion containing
actomyosin was resuspended in 25 µL co-sedimentation buffer and analyzed using SDS-
polyacrylamide gel electrophoresis and densitometry. The bound fraction for each actin
concentration was calculated as the density of S1 in the insoluble fraction relative to total
protein content minus the fraction of pelleted material in S1-only controls. The bound
fraction values over increasing F-actin concentrations were plotted and fit to a hyperbolic
function to calculate the actin binding affinity (Kd) and Bmax (N = 3).

4.5. Transmission Electron Microscopy of IFMs and Hearts

The thorax containing IFMs and the dorsal vessel containing the heart were dissected
from female mutant and control lines, relaxed in a solution with 10 mM EGTA and fixed for
transmission electron microscopy as previously reported [11]. Samples were fixed for ~16 h
in primary fixative (3% formaldehyde, 3% glutaraldehyde in 0.1 M sodium cacodylate,
pH 7.4) at 4 ◦C, washed 6 X in wash buffer (0.1 M sodium cacodylate, pH 7.4), fixed for
2 h in secondary fixative (1% OsO4, 0.1 M sodium cacodylate buffer pH 7.4, and 10 mM
MgCl2) at 4 ◦C, and then washed 3 X in HPLC-H2O at 22–23 ◦C. Samples were dehydrated
in increasing concentrations of acetone (25%, 50%, 75%, 95%, and 3X 100% anhydrous) for
30 min each and then infiltrated with increasing ratios of epoxy:acetone (1:3, 1:1, 3:1) for 2 h
each. Samples were incubated in 100% epoxy for 16 h at 22–23 ◦C and then polymerized
at 60 ◦C for 24 h under vacuum. Thin sections were generated using an ultramicrotome,
stained for 20 min with 2% uranyl acetate, and imaged using a FEI Tecnai 12 transmission
electron microscope. Sarcomere lengths were measured from longitudinally-oriented
micrographs of IFMs using NIH ImageJ (N = 3, total of 50 sarcomeres per biological
replicate, N), as previously reported [11]. The average distances between thick filaments
were measured from transversely-oriented micrographs of IFMs using a custom-written
Python script [11]. The distances between neighboring thick filaments were measured for
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a total of ≥700 thick filament centers per biological replicate (N = 3). To measure cardiac
thickness, rectangular areas 10 microns in length that spanned the entire lengths, from the
inner to outer cell membranes of the heart, were highlighted using Adobe Photoshop, as
previously reported [11,18]. Highlighted images were imported into ImageJ to determine
the area of that region. The area of each 10-micron length around the heart was divided by
10 to determine the average cardiac thickness (N = 3).

4.6. Flight and Jump Tests

Mutant and control females were maintained at 25 ◦C, acclimated to 22–23 ◦C for 1 h,
and tested for flight ability at 22–23 ◦C as previously reported [11,12,33,40]. Each fly was
released individually into a Plexiglas box illuminated at the top, and scored for its flight
trajectory toward a light source, where upward flight (U) = 6, horizontal flight (H) = 4,
downward flight (D) = 2, or no flight (N) = 0 [41]. Flight indices (FI) were calculated as
(FI) = 6*U/T + 4*H/T + 2*D/T + 0*N/T, where ‘T’ represents the total number of flies
for each trajectory listed above. A total of ≥100 flies were tested per line at each age. For
jump tests, the wings were clipped, and each fly was placed on an inverted fly food vial
with concentric rings drawn 0.5 cm apart to measure jump distance. Each fly was tactilely
stimulated to jump, and the jump distance was recorded for 10 trials per fly. The average
value for the top 3 of 10 jump distances were reported, and a total of N = 40 flies were
tested per line/age.

4.7. Cardiac Physiology

Females were dissected in an oxygenated artificial hemolymph solution [108 mM
NaCl, 5 mM KCl, 2 mM CaCl2, 8 mM MgCl2, 1 mM NaH2PO4, 4 mM NaHCO3, 5 mM
HEPES (pH 7.1), 10 mM sucrose, and 5 mM trehalose] to expose the beating heart [42].
High-speed movies of heart contractions were recorded using a Hamamatsu Orca Flash 2.8
CMOS or AOS Promon U750 camera for 30 s on a light microscope with a 10× objective.
The Semi-automated Optical Heart Analysis (SOHA) software was employed to calculate
heart diameters during systole and diastole, fractional shortening, heart rate, as well as
systolic and diastolic intervals. A total of N = 40 flies were tested per line/age.
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