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Abstract: A TiO2 nanorod template was successfully decorated with a copper oxide layer with various
crystallographic phases using sputtering and postannealing procedures. The crystallographic phase
of the layer attached to the TiO2 was adjusted from a single Cu2O phase or dual Cu2O–CuO phase to
a single CuO phase by changing the postannealing temperature from 200 ◦C to 400 ◦C. The decoration
of the TiO2 (TC) with a copper oxide layer improved the light absorption and photoinduced charge
separation abilities. These factors resulted in the composite nanorods demonstrating enhanced
photoactivity compared to that of the pristine TiO2. The ternary phase composition of TC350 allowed
it to achieve superior photoactive performance compared to the other composite nanorods. The
possible Z-scheme carrier movement mechanism and the larger granular size of the attached layer
of TC350 under irradiation accounted for the superior photocatalytic activity in the degradation of
RhB dyes.

Keywords: microstructure; composites; photoactivity

1. Introduction

TiO2 nanorods are widely used as template for fabrication of photoexcited devices [1].
However, the main drawback of the intrinsic properties of TiO2 is its large energy gap,
which means that it only absorbs light in the ultraviolet region. Recent progress on coupling
the heterogeneous structure of TiO2 with visible light sensitizers has been demonstrated
as a promising approach to substantially improve the light harvesting ability of the TiO2
template. Several binary visible-light sensitizers, such as Bi2O3, Cu2O, CuO, Fe2O3, CdS,
and Bi2S3, have been adopted for coupling with TiO2 templates to achieve improved pho-
toactive performance [2–8]. Among these visible-light sensitizers, binary oxides provide a
better, more suitable process and chemical compatibility for integration with TiO2 templates
in comparison with most sulfides. Notably, in comparison with n-n heterostructures, the
construction of p-n heterostructures is a more promising approach for the enhancement of
the photoactivity of TiO2-based composites. The p-n junction generates an internal electric
field that can effectively suppress the recombination of photogenerated carriers in the
composite system [5,9]. In addition, in terms of charge transport mode, the Z scheme often
appears in organic degradation, CO2 reduction and photoelectric catalytic water splitting
in heterostructured systems [10].

Among the various p-type visible-light sensitizers, copper oxides are distinguished
by having diverse crystallographic phases and tunable band energy. Copper oxides are
non-toxic and low cost materials rich in earth elements. Due to their low energy gap values,
they have high optical absorption properties, resulting in excellent photoelectrochemical
(PEC) performance and high energy conversion efficiency [11,12]. Recent work on the
attachment of copper oxides onto TiO2 to enhance photoactive performance has attributed
this improvement to the formation of a p-n junction. For example, electrodeposition of
p-type Cu2O onto TiO2 nanoarrays improved the light absorption capacity and enhanced
the photocatalytic activity [13]. Furthermore, p-type CuO nanoparticles attached onto TiO2
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nanosheets effectively enhanced the photocatalytic activity for the oxidation of methanol
to methyl formate [14]. CuO–Cu2O co-coupled TiO2 nanomaterials synthesized through
chemical reduction and hydrolysis presented better charge separation rates and photocat-
alytic activity than those of pristine TiO2 [15]. The above examples show that attachment
of single CuO or Cu2O or dual phase CuO–Cu2O onto parent TiO2 induces the formation
of a p-n heterojunction between the copper oxide and the TiO2, resulting in the composites
possessing an internal electric field and suppressing the recombination of photogenerated
carriers. These phenomena can effectively increase the photocatalytic ability of the pristine
TiO2. However, most investigations of the photoactivity of copper oxide–TiO2 composite
systems are based on a fixed decorated oxide phase (one of the following: CuO, Cu2O, or
CuO–Cu2O); this is attributed to the fact that precise manipulation of the crystallographic
phase of copper oxide is still highly challenging using most chemical or physical synthesis
routes. Systematic investigations of the effects of phase evolution on the photoactivity of
copper oxide–TiO2 nanocomposite rods are still limited in number, and such information is
an important reference for the design and tuning of the photoactive performance of copper
oxide–TiO2 nanocomposites.

Thin copper oxide films can be synthesized via diverse chemical and physical routes [16–18].
Physical deposition of thin copper oxide films with adjustable crystallographic phases is a
promising approach to design copper oxide–TiO2 nanocomposites with desirable photoac-
tive performance for photoexcited device applications. It has been shown that the formation
temperature of the crystalline copper oxide has profound effects on the crystallographic
phases of the as-synthesized copper oxides [18,19]. However, such temperature-dependent
copper oxide phase evolutions are not always similar between different studies because
of the different copper oxide precursors initially formed and the different process param-
eters or routes used [20,21]. For example, a copper film was transformed into the Cu2O
phase after annealing at 250 ◦C under an atmospheric environment for 1 h. Moreover, a
mixed phase of Cu2O–CuO appeared when the annealing temperature was set between
250–350 ◦C. Finally, the CuO phase could be obtained with an annealing temperature
above 350 ◦C [22]. In this study, a thin metallic copper film was sputter-coated onto a
TiO2 nanorod template. The crystallographic phase of the copper oxide layer formed by
postannealing the pre-deposited copper film was tuned to manipulate the photoactive
performance of the copper oxide-decorated TiO2 nanorod composites. The approach used
by this work to produce copper oxide-decorated TiO2 composite nanorods differs from pre-
vious reference works [13–15]. Most copper oxide-decorated TiO2 is synthesized through
chemical routes. It is difficult to manipulate the copper oxide crystalline phase using these
routes. Only one copper oxide phase is attached onto the TiO2 template. In contrast, by
combining a sputtering process and postannealing procedures in this work, we could
easily design different copper oxide crystal phases on the TiO2 templates. The correlation
between the composition phase, microstructure, and photoactivity of the copper oxide
layer attached onto the TiO2 nanorod template was systematically investigated. The results
presented herein are important references for the design of copper oxide–TiO2 composite
systems with desirable photoactivity for photoexcited device applications.

2. Experiments

The preparation of TiO2 composite nanorods decorated with a copper oxide layer
can be divided into two steps. The first step was to prepare TiO2 nanorod arrays on F-
doped SnO2 glass substrates. The detailed preparation procedures have been described
elsewhere [23]. The second step included modification of the surfaces of TiO2 nanorods
with a copper oxide layer by sputtering. A metallic copper disc with a size of 2 inches was
used as the target. The metallic copper film was sputter-coated onto the surfaces of TiO2
nanorods at room temperature under a pure argon atmosphere. The working pressure was
20 mtorr, and the sputtering power was fixed at 30 W. The sputtering duration was 12 min.
The as-synthesized metallic copper layers on the TiO2 nanorods were further subjected
to an atmospheric annealing treatment for 1 h. The annealing temperature was varied
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between 200, 300, 350, and 400 ◦C to induce the formation of copper oxide from the metallic
copper layer. The sample codes for the composite nanorods formed after 200, 300, 350, and
400 ◦C annealing were TC200, TC300, TC350, and TC400, respectively.

The crystallographic structures of the various samples were characterized with graz-
ing incidence angle X-ray diffraction (GID; BRUKER D8 SSS, Karlsruhe, Germany) using
monochromatic Cu-Kα radiation. A field emission scanning electron microscope (SEM;
JSM-7900F, JEOL, Tokyo, Japan) equipped with an energy-dispersive X-ray spectrometer
(EDS) was used for further investigations into the morphology and elemental distribution
of the samples. A high-resolution transmission electron microscope equipped with EDS
(HRTEM; Philips Tecnai F20 G2) was used to investigate the detailed structure and compo-
sition of the composite nanorods. An X-ray photoelectron spectroscopy (XPS ULVAC-PHI,
PHI 5000 VersaProbe, Chigasaki, Japan) with Al Kα X-rays was used to detect the element
binding states of the samples. The optical absorption spectral information for the samples
was obtained with a UV-vis spectrophotometer (Jasco V750, Tokyo, Japan). Photoelectro-
chemical (PEC) performance and electrochemical impedance (EIS) were measured using
a potentiostat (SP150, BioLogic, Seyssinet-Pariset, France). In the photoelectrochemical
system, the effective area of the working electrode was 1.0 cm2. The reference and counter
electrodes were Ag/AgCl (in saturated KCl) and platinum wire, respectively. A 0.5 M
aqueous Na2SO4 solution was used as the electrolyte in the measurement system. During
the photoexcitation experiments, a 100 W xenon lamp was used as the light source. Rho-
damine B (RhB) solution (10−5 M) was used as the target pollutant for photodegradation
experiments, and residual RhB concentrations after different degradation durations were
estimated using a UV-vis spectrophotometer.

3. Results and Discussion

Figure 1a shows SEM micrographs of TiO2 nanorod templates. The TiO2 nanorods
have rectangular cross-section morphologies and smooth sidewalls. Figure 1b shows an
SEM micrograph of a TiO2 nanorod template coated with thin Cu films and postannealed
at 200 ◦C. In comparison with the diameter of pristine TiO2 nanorods, it can be seen that
the diameter of the TiO2 nanorods increased after copper coating and annealing at 200 ◦C.
Furthermore, the morphology of the decorated layer wrapped in the outer layer of the
TiO2 was film-like, and the sidewalls of the TC200 became rough. When the annealing
temperature increased to 300 ◦C, the morphology of TC300 differed from that of TC200.
The continuous film-like decorated layer of the composite nanorods formed with the lower
annealing temperature of 200 ◦C transformed into a layer consisting of numerous tiny
particles for the composite nanorods annealed at 300 ◦C (Figure 1c). As the annealing
temperature was further increased to 350 ◦C, a clearer granular surface morphology was
observed in the decorated layer for TC350 (Figure 1d). The surface morphology of the
decorated layer transformed from having small particle features initially into larger granular
features with the increase in temperature from 300 to 350 ◦C. Notably, when the annealing
temperature reached 400 ◦C, the surface granular crystals of TC400 were further coarsened
and aggregated, as revealed in Figure 1e. In a high temperature environment, the rapid
formation of crystal nuclei leads to nucleus aggregation between the crystal nuclei and the
coalescence of the crystal nuclei might occur. Furthermore, from a thermodynamic point of
view, the aggregation of surface particles and the growth of crystallites decrease the surface
energy to a stable condition. These factors account for the coarser surface granular features
in TC400 [24,25]. The corresponding SEM-EDS mapping images of the TC composite
nanorods are presented in Figure 1f–i. The Cu and O compositional distribution, which
presented the appearance of a column shape, is visibly displayed in all SEM-EDS mapping
images, preliminarily revealing the copper oxide layer homogeneously decorated onto the
TiO2 nanorods after the copper film coating and postannealing procedures. In contrast, the
Ti signal is distributed over a large area in the elemental mapping image and is not in a
distinguishable column shape; this might be associated with the underlying effect of the
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TiO2 nanorod template on the TC composite nanorods. The EDS analysis demonstrated
that the Cu/Ti atomic ratio of the representative sample (TC350) was 0.22.
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Figure 2 shows the XRD patterns of various TC composite nanorods. In Figure 2, in
addition to the Bragg reflection from the FTO substrate, several strong Bragg reflection
peaks can be seen stably distributed at approximately 27.45◦, 36.08◦, 41.22◦, 54.32◦, and
56.64◦, and they can be attributed to the (110), (101), (111), (211), and (220) crystal planes of
the rutile TiO2 phase, respectively (JCPDS 0211276). Figure 2a shows the XRD pattern of
the TC200. Three Bragg reflections centered at approximately 29.55◦, 36.41◦, and 42.29◦ can
be observed. These Bragg reflection peaks can be attributed to the (110), (111), and (200)
planes of cuprite Cu2O (JCPDS 05-0667), respectively. This confirms that the thin metallic
copper film coated on the surfaces of the TiO2 nanorods was thermally oxidized to form
cuprite Cu2O after annealing at 200 ◦C. This result is consistent with previous work on the
full transformation of Cu thin films into cuprite Cu2O after a 200 ◦C atmospheric annealing
procedure [21]. The high crystallinity of the Cu2O phase that appeared after the 200 ◦C
atmospheric annealing procedure was a result of the easy binding of the copper atoms to
oxygen atoms above 150 ◦C, which was mediated in accordance with Equation (1) [26]:

2Cu + 0.5O2 → Cu2O (1)
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Figure 2b,c show the XRD patterns of the TC300 and TC350. Compared with Figure 2a,
six additional Bragg reflections can be observed in Figure 2b,c. These Bragg reflections are
centered at approximately 32.50◦, 35.41◦, 35.54◦, 38.70◦, 38.90◦, and 48.71◦. These definite
peaks match the characteristic peaks of tenorite CuO (JCPDS 48-1548) and correspond to
(110), (002), (11-1), (111), (200), and (20-2), respectively. The characteristic peaks of Cu2O
and CuO coexist in Figure 2b,c, which proves that Cu2O was partially converted into CuO
when the sample was annealed above 300 ◦C. This result is very similar to that obtained
by Sh. R. Adilov et al. In their work, a CuO oxide phase began to form when metallic
copper films were annealed at 280 ◦C; furthermore, when the temperature was raised to
350 ◦C, a more obvious mixed phase of Cu2O and CuO was obtained in their thin-film
samples [27]. Comparatively, as the temperature was increased from 300 ◦C to 350 ◦C, the
characteristic peaks of CuO became more intense, revealing improved CuO crystalline
content and crystalline quality. Notably, the CuO layer initially formed on the thin-film
samples would decline the further oxidation rate was increased due to the thickening of
the oxide layer and the increased distance that ions have to diffuse. In order to keep the
oxidation rate stable and control the copper oxide phase, the annealing temperature was
further increased to 400 ◦C in this study. In Figure 2d, it can be clearly seen that a single,
pure CuO phase replaced the coexisting Cu2O and CuO phases in the films when the
annealing temperature was raised to above 400 ◦C. This is associated with the fact that
the initially formed Cu2O phase is converted into a CuO phase at higher temperatures
according to Equation (2) [28]:

Cu2O + 0.5O2 → 2CuO (2)

The evolution of the copper oxide phase above 400 ◦C described herein has also been
observed in previous work on the annealing temperature-dependent phase transformation
of chemically deposited copper oxide films [29].

Figure 3a shows a low-magnification TEM image of a single TC200 nanorod. The entire
TiO2 nanorod was uniformly covered by a continuous Cu2O film. Rough and irregular
surface features can be observed on the sidewalls of the nanorod. The decorated copper
oxide layer thickness was estimated to be approximately 32 nm. The feature that appeared
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corresponded to the previous SEM observations. High-resolution (HR) TEM images of
different regions of the TC200 nanorod are shown in Figure 3b,c. However, due to the
repeated stacking of TiO2 and Cu2O, the lattice fringe arrangements in the inner region of
the images cannot be easily distinguished. In contrast, clear lattice fringe arrangements can
be observed in the outer regions of the HRTEM images, indicating the crystalline features
of the decorated Cu2O layer. The spacing between these lattice fringes was measured to
be approximately 0.24 nm and 0.3 nm in different orientations, and these lattice spacings
corresponded to the interplanar spacings of the (111) and (110) planes of cuprite Cu2O,
respectively [30]. Figure 3d shows selected area electron diffraction (SAED) patterns of
several TC200 composite nanorods. It shows several diffraction spots arranged in concentric
circles with different radii. These concentric circles correspond to rutile TiO2 ((110), (101),
and (200)) and cuprite Cu2O ((111), (211), (110), and (200)). This confirms the formation
of a crystalline Cu2O layer on the TiO2 nanorod. Figure 3e shows the cross-sectional EDS
line-scan profiling spectra, in which the signal of Ti is distributed across the inner region of
the nanorod, the signal of O is uniformly distributed over the entire nanorod region, and
the signal of Cu is concentrated in the outer region of the nanorod. This indicates that the
main core of the nanorod was TiO2 and the surface was covered with a layer of copper
oxide. A TiO2 composite nanorod well-decorated with a Cu2O layer is visibly displayed.
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Figure 4a shows a low magnification TEM image of a single TC350 nanorod. Compared
with the TEM image of TC200 (Figure 3a), the copper film originally coated onto the
surface of the TiO2 nanorod was transformed into a discontinuously decorated layer after
the postannealing procedure. The discontinuous decorated layer consisted of numerous
granular crystallites with a particle size of approximately 37 nm. Figure 4b,c present
HRTEM images of different peripheral regions from Figure 4a. The decorated particles
were further analyzed using HRTEM. The lattice fringes arranged with spacings of 0.25 nm,
0.27 nm, and 0.24 nm could be measured in the different orientations. They corresponded to
the (002) and (110) crystal planes of the CuO phase and the (111) crystal plane of the Cu2O
phase, respectively. The HRTEM images showed that the crystalline features of the Cu2O
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and CuO phases coexisted in the decorated discontinuous layer. This further confirmed
the results for the previous XRD patterns. When the annealing temperature was raised
above 300 ◦C, the original pure copper film was transformed into two different oxides,
which coexisted on the surface of the TiO2 nanorods. Figure 4d shows the SAED patterns
of multiple TC350 composite nanorods. The contributions of the crystallographic planes of
cuprite Cu2O, tenorite CuO, and rutile TiO2 are visibly exhibited, proving that the ternary
phases of Cu2O, CuO, and TiO2 coexisted in the TC350 nanorods. Figure 4e presents
the cross-sectional EDS line-scan profiling spectra of the TC350 nanorods. The Cu signal
was very strong in the outer region, and the Ti signal was mainly distributed in the inner
region of the composite nanorod. The O signal was evenly distributed over the composite
nanorod. A TiO2 composite nanorod well-shelled with copper oxide is demonstrated
here, and the EDS analysis revealed that the Cu/Ti had an atomic ratio of 0.24. When the
annealing temperature was further increased to 400 ◦C, as the low-magnification TEM
image (Figure 5a) of the TC400 nanorod shows, the size of the particles wrapped over the
sidewall surface of the TiO2 nanorod changed significantly compared to TC350 (Figure 4a).
The size of the particles wrapped over the surface of the TiO2 nanorod was further increased
to 55–70 nm. These seriously agglomerated particles on the TiO2 with relative large sizes
can be attributed to the marked increase in the annealing temperature, which led to a
substantially increased rate of nucleation and accelerated crystal size growth under the
given annealing condition. During particle coalescence, the initially formed copper oxide
particles could migrate to the TiO2 nanorod template surface and coalesce if motion yielded
a reduction in overall system energy. Evidence for such a thermal annealing-induced
Ostwald ripening process has been provided in other heterogeneous catalyst systems [31].
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When the annealing temperature was further increased to 400 ◦C, as the low-magnification
TEM image (Figure 5a) of TC400 nanorod shows, the size of the particles wrapped over the
sidewall surface of the TiO2 nanorod changed significantly compared to TC350 (Figure 4a).
The size of the particles wrapped over the surface of TiO2 nanorod was further increased
to 55–70 nm. These seriously agglomerated particles with a relative large size on the
TiO2 can be attributed to the marked increase in the annealing temperature, which led
to a substantially increased rate of nucleation and accelerated crystal size growth under
the given annealing condition. During particle coalescence, the initially formed copper
oxide particles can migrate to the TiO2 nanorod template surface and coalesce if motion
yields an overall system-energy reduction. Evidence for such a thermal annealing-induced
Ostwald ripening process has been found in other heterogeneous catalyst systems [31].
Figure 5b,c show HRTEM images of the periphery of TC400 nanorod. Lattice spacings of
0.23 nm, 0.25 nm, and 0.27 nm in different orientations can be measured in Figure 5b,c,
which corresponded to the interplanar distances of CuO (111), (002), and (110), respectively.
These results confirm that the large-sized particles attached to the surface of TiO2 nanorod
after annealing at 400 ◦C were CuO crystallites. Figure 5d shows the SAED patterns
obtained from multiple TC400 composite nanorods. Obvious diffraction spots are arranged
in concentric circles with different radii. Several crystallographic planes of CuO (111), (002),
(11-2), (110), and (021) can be indexed in the SAED pattern. No other copper oxide phases
were identified, indicating a TiO2-CuO composite structure for the TC400 nanorods. The
TEM structural analyses showed the same results as revealed in XRD patterns. In addition,
the cross-sectional elemental profiling spectra shown in Figure 5e also demonstrated a
good compositional distribution for the copper oxide-decorated TiO2 nanorod composite
structure. The TEM analysis results demonstrate that the annealing temperature effectively
dominated the copper oxide phase and crystallite size on the TiO2 nanorod template.

Figure 6a displays the high-resolution Cu 2p XPS spectra for TC200. The distinct
peaks centered at approximately 932.4 eV and 952.4 eV can be attributed to Cu 2p3/2 and
Cu 2p1/2, respectively. The Cu binding energies matched the Cu+1 binding state in the
Cu2O phase, and this was consistent with the results from a report on the XPS analysis
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of a sol-gel-derived thin Cu2O film [32]. Figure 6b shows the high-resolution Cu 2p XPS
spectra for TC 350. The appearance of the XPS spectra is similar to that observed in a
study on CuO@Cu2O heterostructures derived using the solvothermal method [33]. In
contrast to the Cu 2p spectra for TC200, oscillating satellite peaks could be detected for
TC350 at the binding energies of approximately 942.2 eV and 961.8 eV, which further
indicated the existence of a CuO phase in TC350. This has also been demonstrated in the
Cu 2p spectra analysis of pristine Cu2O and CuO thin films, in which pure Cu2O and
CuO could easily be observed without and with the appearance of satellite peaks from
the XPS spectra, respectively [32]. The spectra detected herein were further separated into
several contributions. The intense fitted peaks located at 933.5 eV and 953.4 eV (blue line)
were attributed to Cu 2p3/2 and Cu 2p1/2 of the CuO phase, respectively. There was a
difference of approximately 20 eV between the Cu 2p3/2 and Cu 2p1/2 peaks of CuO, which
matches well with the reported results for hydrothermally derived CuO nanoflowers [34].
In contrast, two relatively weak peaks (green line) appeared at 932.6 eV and 952.2 eV,
corresponding to Cu 2p3/2 and Cu 2p1/2 of the Cu2O phase, respectively [35]. These
results verify the coexistence of Cu2O and CuO phases in the decorated copper oxide layer
in TC350. Figure 6c presents the high-resolution XPS spectra for Cu 2p in TC400. The
distinct appearance of the satellite peaks (located at 942.2 and 961.8 eV) was observed
(Figure 6c). The characteristic peaks centered at the binding energies of 933.3 eV and
953.3 eV corresponded to Cu 2p3/2 and Cu 2p1/2 of the CuO phase, respectively. These XPS
results demonstrate that an adjustable copper oxide phase was obtained in the decorated
copper film layer by varying the annealing temperature.
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Figure 7a shows the referenced Ti 2p core-level doublet spectra for the TiO2 nanorod
template. The high-resolution XPS spectra were deconvoluted into four subpeaks. The more
intense subpeaks at 458.3 eV and 463.9 eV corresponded to Ti 2p3/2 and Ti 2p1/2 for the
Ti4+ valence state in TiO2, respectively. Furthermore, the subpeaks with weaker intensities
and smaller binding energies of 457.2 eV and 462.9 eV corresponded to Ti 2p3/2 and Ti
2p1/2 in the Ti+3 valence state [36,37]. The presence of the mixed Ti4+/Ti3+ valance state
indicates the possible presence of oxygen vacancies on the surfaces of the TiO2 nanorod
template. Figure 7b shows a comparison of the Ti 2p core-level doublet spectra for TiO2,
TC200, TC350, and TC400. It can be seen that the Ti 2p XPS spectra of the TC composite
nanorods demonstrated positive shifts in binding energy positions in comparison with the
binding energy position of pristine TiO2. The modification of TiO2 nanorods with copper
oxides described herein might have changed the electronic state of Ti in Ti-O because of the
formation of heterojunctions between the n-type TiO2 and p-type copper oxides. This has
been demonstrated with CuO@TiO2 powders and core–shell N-TiO2@CuOx heterojunction
composites formed using ball milling [38,39]. Notably, the Cu/Ti atomic ratio of TC350
was evaluated to be 3.6. The investigation depth of XPS is usually below 10 nm. This Cu/Ti
atomic ratio substantially differs from the Cu/Ti atomic ratios calculated from the EDS
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spectra of electron microscopes because of the different measurement depths of the various
analysis methods.
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Figure 8a shows the optical absorption characteristics of pristine TiO2 nanorods and
TC composite nanorods. A sharp absorption drop appeared at approximately 410 nm
for TiO2 nanorod template, and this absorption edge was consistent with the inherent
band-gap absorption of rutile TiO2 [1]. Notably, the TC composite nanorods demonstrated
a significant red-shift extension of the absorption edge in comparison with that of the
pristine TiO2. This can be attributed to the decoration of the TiO2 nanorods with Cu2O and
CuO visible-light sensitizers. These visible-light sensitizers helped to absorb the longer
wavelength spectra, making up for the inability of TiO2 to absorb visible light, and enhanced
the absorption in the visible light region. The higher annealing temperature resulted in a
larger size for the red-shift of the absorption edge of the TC composite samples; this was
associated with the fact that the CuO formed at the higher annealing temperature had a
narrower band-gap energy than that of Cu2O [40,41]. Figure 8b shows the Kubelka–Munk
function (F(R)) vs. energy plots for various nanorod samples [42]. Notably, the TiO2 and
copper oxides used herein were expected to exhibit a direct transition in the band-gap
measurements. Therefore, the band-gap energy of the TiO2 nanorods and TC composite
nanorods could be deduced from the (F(R)hv)2 vs. hv plots by extrapolating the straight
portion of the curves to the energy axis. The TiO2 nanorod template was estimated to
have an energy gap of approximately 3.03 eV. The energy gap values of TC 200, TC300,
TC350, and TC400 were estimated to be approximately 2.59 eV, 2.43 eV, 2.34 eV, and 2.27 eV,
respectively. The phase evolution of the decorated layer from Cu2O to CuO with increased
annealing temperature visibly demonstrated a decreased energy gap in the TC composite
nanorods. The band-gap energy variation in the copper oxides due to the phase evolution
was consistent with a report on electrodeposited Cu2O/CuO powder oxides [43]. The
UV-vis analysis demonstrated that the energy gap size of the TC composite nanorods could
be effectively tuned by varying the postannealing temperature. In addition, the energy
gaps of single CuO and Cu2O films were also estimated from the Tauc plot (Figure 8c). The
energy gap values for CuO and Cu2O were estimated to be 1.76 eV and 2.04 eV, respectively,
by extrapolating the curve tangent to the energy axis in Figure 8c. These values are similar
to those from previous work on Cu2O formed with copper foil annealing and sputtering
CuO [44,45].
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Figure 9a shows the transient photoresponses of various samples. Irradiation was
applied with the full-band spectrum, and a bias potential of 1.2 V was used to measure
the photocurrent. Photocurrent generation occurred entirely as a result of the on and off
responses to the irradiation. Seven cycles of on/off irradiation were repeated, as shown in
Figure 9a, and all samples could obtain a stable photogenerated current when the irradiation
was turned on, indicating that the samples were stable under cycling chopping irradiation.
A higher photocurrent indicates better efficiency for the separation of photogenerated
charges and better photocatalytic activity for the photoelectrode [46]. Comparatively, all
the TC composite nanorods exhibited improved photoresponses compared to that of the
pristine TiO2. This was attributed to the fact that decoration with Cu2O and CuO visible-
light sensitizers enhanced the light-harvesting ability of the TiO2 nanorod template, and the
formation of heterojunctions in the composite system resulted in improved photogenerated
carrier separation efficiency. Furthermore, compared to TC200, which had a single-phase
Cu2O decoration, TC400 (with single-phase CuO decoration) had a higher photocurrent,
which can be attributed to the narrower energy gap in CuO compared to Cu2O. This led to
TC400 absorbing across a longer wavelength range than TC200, as revealed in the previous
absorption analysis, thereby increasing light absorption and promoting the photoexcited
carrier density. This has also been demonstrated in previous work on the photoactive
performance of a Cu2O/CuO system [32,47]. Notably, TC300 and TC350 displayed the best
photoresponse abilities among the various nanorod samples, revealing that the composite
nanorod system decorated with dual Cu2O and CuO phases was a more efficient material
combination for enhancing the photoactivity of the copper oxide–TiO2 composite nanorods.
Figure 9b presents the Nyquist plots of various samples measured at the frequency range
from 100 kHz to 0.1 Hz and a potential amplitude of 10 mV. The radius of the semicircles
in Nyquist plots is associated with the interfacial charge transfer resistance [48]. Notably,
TC350 had the smallest semicircular radius, and the pure TiO2 nanorod template exhibited
the largest semicircular radius, indicating that TC350 had the smallest charge transfer
resistance and TiO2 the largest. The sizes of the semicircle radii from the Nyquist plots
for various samples were ordered in the following trend: TiO2 > TC200 > TC400 > TC300
> TC350. This result was also found with the transient photoresponse measurements.
The multi-interface heterostructures consisting of TiO2, CuO, and Cu2O in TC350 and
TC300 effectively helped to enhance the separation and transfer abilities of electron–hole
pairs, as revealed in the previous I-t curves (Figure 9a). Similar coexistence of ternary
phases leading to substantial improvements in PEC properties has also been demonstrated
in BiVO4/CdS/CoOx core-shell composites [49]. These improvements can provide an
opportunity to induce electron redistribution and synergistic effects at the interfaces for
heterogeneous catalysis consisting of two or more components connected by well-defined
interfaces [50,51]. The existence of multiple heterointerfaces in ternary phase composites
improves their PEC properties. The charge transfer resistance can be estimated by fitting
the arc radius of the Nyquist curves according to the proposed equivalent circuits in
Figure 9c. Rs, CPE, and Rct represent the series resistance, constant phase element, and
charge transfer resistance, respectively. Similar equivalent circuits have also been used in a
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ternary Fe2O3–MoS2–Cu2O nanofilm system to determine the Rct [52]. The representative
fitting parameters for TC350 were Rct = 582 Ohm and Rs = 43.89 Ohm. After fitting
the Nyquist plots using the proposed equivalent circuits, the Rct values for the other
samples, TiO2, TC200, TC300, and TC400, were 3653, 1832, 702, and 1284 Ohm, respectively.
Notably, although the TC300 and TC350 were both ternary-phase composite nanorods,
lower interfacial charge transfer resistance in TC350 was observed in comparison to that of
TC300. This might have been associated with the fact that, as the annealing temperature
increases, the crystallite size of the decorated copper oxides increased, and this could have
reduced the grain boundaries in the decoration layer. Therefore, TC350 had a better charge
transport ability than TC300, and this was evidenced in the Rct.
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In order to further analyze and construct the energy-band structure of the composite
nanorods, measurements of the flat-band potential of the TiO2 nanorod template, Cu2O film,
and CuO film were carried out and presented in Figure 10a–c. The M-S curves exhibited a
positive slope for the TiO2 and negative slopes for the Cu2O and CuO, revealing the n-type
nature of the TiO2 and the p-type nature of the Cu2O and CuO. According to the M-S
equation [53], when 1/C2 is extrapolated to a value equal to 0, the X-axis intercept is equal
to the flat-band potential of the material [54]. The flat-band potential of pure TiO2 was
estimated to be about−0.11 eV (vs. NHE). The flat-band potential in n-type semiconductors
is closer to the conduction band (CB) and the CB position of an n-type semiconductor is
generally more negative (0.1 eV) than the flat-band potential [55]. After calculation, it
was deduced that the CB of TiO2 was −0.21 eV. In contrast, the flat-band potential of the
p-type semiconductor is closer to its valence band (VB) [56,57]. The flat-band potentials
of Cu2O and CuO were estimated to be approximately 0.46 eV and 0.71 eV, respectively,
as shown in Figure 10b,c. The VB positions of Cu2O and CuO were further calculated to
be 0.56 and 0.81 eV (vs. NHE), respectively. The VB positions assessed herein are close to
previously reported results for Cu2O and CuO [58,59]. Figure 10d shows the M-S curves
for various TC composite nanorods. Inverted V-shaped M-S curves were observed for the
all composite nanorods, demonstrating that the composites had both n-type and p-type
electronic properties and confirming the formation of p-n junctions in the TC composite
nanorods [60]. Construction of p-n junctions in composite systems has been posited to
be a sensible strategy to enhance photocatalytic activity. The formation of a p-n junction
with space charge regions at the heterointerface could induce the electric field-driven
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diffusion of electrons and holes and further inhibit the recombination of photogenerated
charges [54,61].
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The photocatalytic ability of the samples was further estimated by using the formula
whereby the percentage degradation = C/Co, where Co is the initial concentration of
RhB solution and C is the time-dependent concentration of RhB solution upon irradiation.
Figure 11a presents C/Co vs. irradiation duration plots for RhB solution with different
samples. Adsorption–desorption equilibrium was reached by placing the photocatalysts in
the RhB solution for 45 min in the dark before starting the photodegradation experiments.
Under dark equilibration conditions for 45 min, the C/Co values for TiO2, TC200, TC300,
TC350, and TC400 were approximately 3.1%, 4.2%, 6.8%, 7.9%, and 5%, respectively. This
indicated that the TiO2 nanorod template decorated with copper oxide had an improved
surface dye absorption capacity. After offsetting with a dark adsorption contribution, the
degradation rates of TC200, TC300, TC350, and TC400 were approximately 59%, 83%, 90%,
and 70%, respectively, with 60 min irradiation. The TC composite nanorods exhibited
improved photodegradation abilities towards RhB solution in comparison to the pristine
TiO2 nanorod template. Furthermore, among the various TC composites, TC350 had the
highest photodegradation ability towards RhB solution under the given test conditions.
In addition, the photodegradation kinetics of the RhB solution with all samples were
also investigated and presented in Figure 11b. The pseudo-first-order kinetic equation is
expressed as: kt = ln Co/C, where k represents the pseudo-first-order rate constant (min−1)
for the initial degradation [61]. All the TC composite samples displayed larger k values
than that of the pristine TiO2. Furthermore, TC350 had the highest k value of 0.04578 min−1.
The photodegradation abilities of the photocatalysts towards organic pollutants were
significantly related to the separation efficiency for electrons and holes. The magnitude
trends for the k values for the various samples investigated herein were consistent with
the previously measured PEC and EIS experimental results. In addition, the photocatalytic
reaction was closely related to the active species produced in the process. The role of
these species in the degradation reaction was investigated by measuring the variation
in the degradation performance of the RhB solution with TC350 through the addition of
various radical scavengers after 60 min irradiation. The radical capture experiments were
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performed using tert-butanol (TBA) as a hydroxyl radical (·OH) scavenger, ammonium
oxalate (AO) as a hole quencher, and benzoquinone (BQ) as a superoxide radical (·O2

−)
scavenger. As shown in Figure 11c, when 1 mM AO was added, the RhB degradation
efficiency slightly decreased to 69%, indicating that holes played a minor role in the
degradation process. In contrast, adding TBA or BQ scavengers resulted in a more intense
decrease in the photodegradation level of the RhB solution. This shows that ·O2

− and
·OH were the main radicals involved in the photodegradation process of the RhB solution
with TC350. Comparatively, the removal of the ·O2

− active species resulted in the most
significant decrease in the degradation efficiency.
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The band structures of pristine TiO2, Cu2O, and CuO were constructed according
to the M-S measurements and the UV-vis analysis results, as shown in Figure 12. As
shown in the previous scavenger experiments, the main active species involved in the
TC350 photodegradation process with RhB solution were superoxide and hydroxyl radicals.
Moreover, superoxide radicals demonstrated a greater contribution than hydroxyl radicals,
as seen from the constructed band alignment in the ternary TC350 composite nanorods. If
the electron–hole transfer route in the TC350 composite nanorods had followed the type II
transfer mode, superoxide and hydroxyl radicals would not have been formed according
to the relative band positions of the CB, VB, and redox potentials [62]. Therefore, none of
the electrons/holes at the CB/VB positions would reach the required redox potential, so
superoxide and hydroxyl active species would not have been produced with this mech-
anism. This contradicts the previous scavenger experiments. The Z-scheme mechanism
shown in Figure 12 is more appropriate to explain the movement of photogenerated elec-
trons/holes and the generation of active species for photodegradation. Under irradiation,
photoinduced carriers form in the composite system (reaction 3). Through the movement of
photogenerated carriers in the Z-scheme mechanism, the holes finally accumulated in the
VB of TiO2 (2.82 eV vs. NHE), which was significantly higher than the oxidation potential
of water or (–OH) molecules, which is 2.4 eV. Therefore, the holes were able to react with
water (or –OH) molecules and generate hydroxyl radicals (reaction 4) [63]. In contrast,
electrons accumulated in the CB of Cu2O (−1.48 eV vs. NHE). The electrons were located
significantly lower than the reduction potential of oxygen (−0.33 eV), and electrons could
react with oxygen to form superoxide radicals (reaction 5) [64]. These main reactive species
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could further react with RhB dye molecules and decompose into carbon dioxide and water
(reaction 6) [65]:

TiO2/CuO/Cu2O + hv(UV−visible) → TiO2
(
e−CB h+VB

)
/CuO

(
e−CB h+VB

)
/Cu2O

(
e−CB h+VB

)
(3)

TiO2
(
h+VB

)
+ H2O→ ·OH + H+ + TiO2 (4)

Cu2O
(
e−CB

)
+ O2 → · O−2 + Cu2O (5)

· OH + · O−2 + RhB→ product (ex : H2O + CO2) (6)
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Notably, from among the band alignments proposed for the TiO2, Cu2O, and CuO, multiple pho-
toinduced charger transfer routes could occur in the ternary TiO2–Cu2O–CuO composite system. The
p-n junctions formed between the n-type TiO2 and p-type copper oxides induced an internal electric
field at the heterointerfaces, promoting charge separation under irradiation. The stepped-band edge
arrangement in the composite system caused multiple Z-scheme transfer routes for the photoinduced
charges. This finally resulted in the accumulation of holes at the VB of TiO2 and of electrons at the
CB of Cu2O. A similar Z-scheme carrier movement was also exhibited in a ternary ZnO–Cu2O–CuO
photocatalyst system [66]. In the report by Wei et al., the composite material TiO2–Cu2O showed
carrier movement with a Z scheme under irradiation [67]. These examples echo the carrier movement
mechanism proposed in this work. In addition, the Z-scheme charge transfer in the composite
nanorods had an important contribution in preventing the photocorrosion of Cu2O. Photocorrosion
has been demonstrated in previous work on single-phase Cu2O photocatalysts [68]. The Cu2O phase
coupling with TiO2 (TC200) or TiO2–CuO (TC300 and TC350) in the composite system effectively
guided the photoexcited electrons and holes accumulated in the Cu2O and inhibited photocorrosion.
Therefore, a stable photocurrent curve could be observed in the previous photoresponse plots. This
is supported by work on introducing a protective layer of TiO2 in Cu2O–CuO heterojunction films
to prevent the photocorrosion effect [69]. The multiple charge transfer routes shown in Figure 12
explain the superior photoactive performance of TiO2–Cu2O–CuO composite systems (TC350 and
TC300) among the various TC composite nanorods. Finally, it should be mentioned that TC350
exhibited better photoactivity than that of TC300. This can be attributed to optical absorption and
the microstructural differences between the TC300 and TC350. The TC350 exhibited a better light
absorption ability than TC300, as revealed by the previous UV-vis absorption analysis, which en-
hanced the generation efficiency of photoexcited charges in TC350. Moreover, TC350 also had a larger
surface particle size in the decorated copper oxide layer in comparison to that of TC300. A larger
grain size reduces grain boundaries in the decorated copper oxide layer, resulting in enhanced charge
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transport [47]. The ternary phase and suitable microstructural and optical properties of TC350 mean
that it has excellent photoactivity compared to the other TC composite samples.

4. Conclusions
The morphology of copper oxide decorated on a TiO2 nanorod template changed from a

continuous layer morphology to granular aggregates when the postannealing temperature was varied
from 200 to 400 ◦C. The composite nanorods formed at 350 ◦C (TC350) exhibited superior photoactive
performance compared to the other composite nanorods. The larger particle size resulting from the
copper oxide modification in TC350 reduced the grain boundaries in the decorated layer, thereby
increasing the charge transport ability. Moreover, the surface-modified Cu2O–CuO mixed crystallites
on the TiO2 template could absorb sunlight more efficiently. These factors enhanced the photoactive
performance of the TC350 composite nanorods studied herein. The scavenger tests demonstrated
that the Z scheme was the possible carrier movement mechanism in TC350 under irradiation, and
that result explains the high photocatalytic degradation ability of TC350 towards organic pollutants.
The experimental results obtained herein demonstrate that regulation of the composition phase
and microstructure of the modified copper oxide layer through control of the thermal annealing
budget for the thin copper layer on TiO2 nanorod templates is a promising approach to design copper
oxide–TiO2 composite nanorods with satisfactory photoactive performance.
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16. Diachenko, O.; Kováč, J., Jr.; Dobrozhan, O.; Novák, P.; Kováč, J.; Skriniarova, J.; Opanasyuk, A. Structural and Optical Properties
of CuO Thin Films Synthesized Using Spray Pyrolysis Method. Coatings 2021, 11, 1392. [CrossRef]

17. Dai, M.-J.; Lin, S.-S.; Shi, Q.; Liu, F.; Wang, W.-X.; Chen, S.-C.; Kuo, T.-Y.; Sun, H. Transparent Conductive p-Type Cuprous Oxide
Films in Vis-NIR Region Prepared by Ion-Beam Assisted DC Reactive Sputtering. Coatings 2020, 10, 473. [CrossRef]

18. Nair, M.; Guerrero, L.; Arenas, O.L.; Nair, P. Chemically deposited copper oxide thin films: Structural, optical and electrical
characteristics. Appl. Surf. Sci. 1999, 150, 143–151. [CrossRef]

19. Mahendra, G.; Malathi, R.; Kedhareswara, S.P.; LakshmiNarayana, A.; Dhananjaya, M.; Guruprakash, N.; Hussain, O.M.; Mauger,
A.; Julien, C.M. RF Sputter-Deposited Nanostructured CuO Films for Micro-Supercapacitors. Appl. Nano 2021, 2, 46–66. [CrossRef]

20. Valladares, L.D.L.S.; Salinas, D.H.; Dominguez, A.B.; Najarro, D.A.; Khondaker, S.I.; Mitrelias, T.; Barnes, C.H.W.; Aguiar, J.A.;
Majima, Y. Crystallization and electrical resistivity of Cu2O and CuO obtained by thermal oxidation of Cu thin films on SiO2/Si
substrates. Thin Solid Film. 2012, 520, 6368–6374. [CrossRef]
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