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Simple Summary: Oocyte cryopreservation is the most powerful technique for preserving the
genetic potential of individual females. However, the recent outcomes of this technology in terms of
viability, fertilizing ability, embryo development and pregnancy remain poor. The high sensitivity
of the oocytes to freezing has been correlated with the profound dynamics of oocyte structures
and functions. As a result, cryoinjury inevitably occurs at several cellular levels, which is indeed
detrimental to cell viability and subsequent development. Advancement in the improvement of
freezing technology via modifications to freezing technique and development of novel cryodevices
plays a central role in mitigating cryoinjury and efficiently empowering the outcomes of oocyte
cryopreservation. However, empirical study and optimizations of the techniques are generally
required for cryopreservation of oocytes from particular species.

Abstract: Oocyte cryopreservation plays important roles in basic research and the application of
models for genetic preservation and in clinical situations. This technology provides long-term storage
of gametes for genetic banking and subsequent use with other assisted reproductive technologies.
Until recently, oocytes have remained the most difficult cell type to freeze, as the oocytes per se
are large with limited surface area to cytoplasm ratio. They are also highly sensitive to damage
during cryopreservation, and therefore the success rate of oocyte cryopreservation is generally poor
when compared to noncryopreserved oocytes. Although advancement in oocyte cryopreservation
has progressed rapidly for decades, the improvement of cryosurvival and clinical outcomes is still
required. This review focuses on the principles, techniques, outcomes and prospects of oocyte
cryopreservation in domestic animals and humans.
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Assisted reproductive technologies, such as artificial insemination, in vitro fertilization
and cryopreservation play important roles in basic research and the application of models
for genetic preservation and in clinical situations. Of the technologies available, gamete
preservation has increasingly gained attention because it provides long-term storage of
gametes for genetic banking. The cryopreservation of somatic cells and sperm has been
well adapted, and the success rate in terms of viability and functions is generally high.
However, oocytes have limited surface area/cytoplasm ratio, which render them the most
difficult cells to freeze. This review focuses on the principles, techniques, outcomes and
prospects of oocyte cryopreservation in domestic animals, including small (dog and cat),
medium-sized (pig) and large animals (cow and horse). Nonhuman primates and humans
are also included in the review.
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1. General Aspects of Oocyte Cryopreservation

The success of oocyte cryopreservation was first reported in the 1970s [1,2]. It has
become clear that cryopreservation processes inevitably induce cellular and molecular
changes that render poor fertilization rate and embryo development [3–5]. Controlled-rate
slow cryopreservation and vitrification are the two freezing techniques that are clinically ap-
plied to oocyte cryopreservation in animals and humans. Slow freezing principally requires
a relatively low concentration of cryoprotective agent (CPA), applied with sufficiently slow
cooling/freezing rates to ensure a fine control over various factors (i.e., thermal shock)
that contribute to cell damage [6]. By gradually decreasing the rate of supra- to sub-zero
cooling, the CPA allows adequate cellular dehydration leading to minimal intracellular
ice [6,7]. At subzero temperatures, the essential step of slow freezing is so-called “seeding”,
a process which induces extracellular ice formation by converting the unfrozen solution
to a hyperosmotic state, inducing cell dehydration [8]. With a slow-freezing approach,
intracellular water is converted into a glassy phase composed of small intracellular ice
crystals [7]. Therefore, super-rapid warming is required for the thawing process to avoid
extensive crystallization and cell damage [7]. In contrast, vitrification requires an extremely
high concentration of CPA and also an ultrafast freezing rate [9]. During cryopreservation,
cells are exposed to several unfamiliar environments, such as chemical toxicity, osmotic
changes and low temperature, all of which potentially disrupt cell functions and result in
cell death [4,10,11]. Indeed, several factors, including species differences, age and fertility
of oocyte donor, stage of oocyte maturation and cryopreservation protocols, have been
reported to affect the success of oocyte cryopreservation. Notably, a large variation in
oocyte physiology in particular animals cause difficulties in obtaining a consensus on
freezing protocols. In some species, such as porcines, high contents of lipids have been
claimed to cause poor oocyte freezing ability [12,13]. Thus, the development of freezing
techniques and outcomes in terms of fertilization rate, embryo development and pregnancy
rate following embryo transfer have been variable among species and laboratories. This
aspect is very important for species for which oocytes are not readily available, such as
wild species. In this case, anatomically and physiologically related domestic species are
logically used to develop suitable cryopreservation techniques. Likewise, the availability of
human oocytes for experimental purposes is very limited due to ethical reasons. According
to similarities in reproductive physiology between nonhuman primates and humans, such
as menstrual cycle length and hormonal profiles in rhesus macaques, nonhuman primates
have been important in reproductive biology research during the last two decades [14].
Studies on nonhuman primates as human models in the fields of reproductive biology,
reproductive medicine and assisted reproductive technology (ART) have been conducted
for decades [14]. For oocyte cryopreservation, research studies using nonhuman primates
were established in the late 1980s to early 1990s [15,16] where the principle of osmotic
shock being responsible for oocyte quality was agreed [17]. In humans, the first achieve-
ment of pregnancy after oocyte cryopreservation was reported in 1986 [18]. However,
limited success in oocyte cryopreservation discouraged this technique in routine clinical
application for several years [19]. In the 2000s, knowledge of cryobiology by vitrification
introduced the possibility of effectively cryopreserving functional oocytes, leading to revo-
lutions in oocyte cryopreservation programs in clinical practice [20]. This was supported
by a large randomized clinical trial on oocyte donation that revealed that vitrified oocyte
quality was not inferior to fresh oocytes in terms of pregnancy outcomes [21]. Later, oocyte
cryopreservation has become a fascinating alternative option for women who attempt
in vitro fertilization (IVF) or fertility preservation programs [22]. Benefits of oocyte cryop-
reservation include increased flexibility to preserve (1) excess oocytes eventually present
in each subsequent IVF cycle; (2) fertility in women who are at risk of infertility caused
by chemotherapy/radiotherapy/premature ovarian insufficiency (POI) or who prefer to
postpone childbearing and prevent age-related fertility decline (>36 years old) [20,22]. Ad-
ditionally, oocyte cryopreservation technology could facilitate some advantages in routine
IVF programs, such as (1) reducing the number of controlled ovarian stimulation cycles in
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infertile patients; (2) delaying fresh embryo transfer programs aimed at preventing ovarian
hyperstimulation syndrome (OHSS) or to optimize artificial endometrial preparation (AEP)
and (3) offering options for infertile couples with religious objections to embryo cryop-
reservation [5,23]. Consequently, oocyte cryopreservation is now considered a promising
tool that could motivate women or infertile patients to preserve their genetic materials for
medical or nonmedical reasons.

2. Principles of Oocyte Cryopreservation

Oocyte cryopreservation is an important tool for preserving germ cells for subsequent
uses such as fertilization, as cytoplasts for somatic cell nuclear transfer, and also for genome
banking for patients and valuable animal species. However, oocytes are very susceptible to
damage during cooling and cryopreservation. Furthermore, oocytes also have a relatively
low membrane permeability to water and cryoprotectants [24]. Although the optimization
of freezing procedures has resulted in improvements in oocyte quality, oocyte structures
such as the plasma membrane [25] and cytoskeleton [26,27] have been shown to be very
sensitive to cryoinjury, frequently resulting in cellular disruption and cell death. Several
factors have been shown to influence the outcome of oocyte cryopreservation, such as the
stage of oocyte maturation during freezing, types of cryoprotectants used and freezing
techniques. Immature oocytes are arrested at prophase I (germinal vesicle stage) where the
condensed chromatins are protected within the nuclear membrane. Following maturation,
the oocytes complete nuclear and cytoplasmic maturation promptly for fertilization and
further embryonic development. Results obtained from the cryopreservation of immature
and mature oocytes have been contradictory and variable among species and laboratories.
In principle, the cryopreservation of immature oocytes is beneficial over mature oocytes, as
they do not have a cold-sensitive meiotic spindle. However, cryopreservation processes per
se disrupt oocyte structure and the signals responsible for oocyte maturation. Therefore,
maturation and fertilization rates of frozen–thawed oocytes are generally poor when
compared to noncryopreserved oocytes. These poor results of oocyte cryopreservation
have been reported to involve cryoinjury at several levels, such as excessive formation of
lethal intracellular ice [28], chromosome abnormality [29], disturbance of hyperosmotic
stress [30,31], disruption of actins and microtubules [32] and zona pellucida hardening [33].
More recently, studies have also indicated that cryopreservation induces changes in gene
and protein expressions [34–37].

3. Cryoprotective Agents

Cryoprotective agents (CPAs) are chemical substances generally used to protect from
cryoinjury during cryopreservation. Notably, the actions of CPAs are variable according
to the type used and other factors, such as temperatures and cell type [38]. The CPAs
are broadly classified as penetrating and nonpenetrating CPAs according to their ability
regarding cell membrane permeability.

Penetrating CPAs are generally organic compounds that permeate passively through
the plasma cell membrane. These include glycerol, ethylene glycol, propylene glycol
(1,2-propanediol), dimethyl sulfoxide, methanol and butanediol. Once the CPA enters
the intracellular fluid, it replaces water and interferes in the hydrogen bonding between
water molecules, thereby reducing intracellular ice formation. In addition, penetrating
CPAs also help to increase the hydration status of cells during cooling in order to prevent
the excessive accumulation of cellular electrolytes. Penetrating CPAs have, in general, a
molecular weight typically less than 100 Daltons and with high amphiphilic properties [39].
However, excessive accumulation of penetrating CPAs also results in an increased cellular
toxicity. Theoretically, intact mammalian cells should tolerate volume excursion, since
these cells must be exposed to the hypertonic CPA solution [17,40]. This phenomenon leads
to the difference in water activity between intra- and extra-cellular compartments [40]. If
mammalian cells exceed the limitation of volume excursion at subzero temperatures, cell
damage or apoptosis occur as a consequence of osmotic stress or osmotic shock [17,40]. It is
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worth noting that particular cell types will require a specific type and optimal concentration
of CPA in order to protect them from cryoinjury during cooling and cryopreservation.

Nonpenetrating CPAs are another type of CPA commonly added to the freezing
medium. These CPAs are high in molecular weight and often have high hydrophilicity. In
past decades, researchers have applied nonpenetrating CPAs during cryopreservation in
order to protect cells from high osmotic stress and CPA toxicity. The common nonpene-
trating CPAs are polyvinylpyrrolidone, polyethylene glycol, and sugars such as sucrose
and trehalose [41,42]. A combination of penetrating and nonpenetrating CPAs is the most
practical way to reduce cryoinjury during cryopreservation [43–45]. Molecular dynamics
of cell membranes (lipid bilayers) stimulated by CPAs have been regulated in various
mechanisms which are dependent upon the types of CPAs. For example, dimethyl sulfox-
ide has a more efficient capability to diffuse across the phospholipid bilayers compared
with the other CPAs. However, high concentrations of dimethyl sulfoxide might cause
the thinning of lipid bilayers, thereby leading to the complete destruction of lipid bilayers
or the loss of membrane permeability [38]. In contrast to the polyol CPAs (i.e., sugar
alcohol), their ability to form hydrogen bonds with lipid bilayers could minimize the
lipid bilayers-thinning effect [38]. Furthermore, another proposed mechanism is such as
colligative property (alteration: phase of diagram in solution) which has been observed in
glycerol. This mechanism could buffer salt (NaCl) concentration and alter crystalline solid
forming occurred during cryopreservation process [38].

4. Cryopreservation Techniques

Techniques for the cryopreservation of oocytes, as well as of sperm and embryos,
are generally classified as controlled-rate slow freezing and “ice-free” vitrification. Con-
ventional slow freezing requires a programable freezer that can substantially control the
optimal freezing rate. During cooling, the temperature is gradually decreased to below
the freezing point where ice is formed. However, ice formation occurs in the extracellular
and intracellular regions. Excessive ice formation within cells, especially intracellular ice
formation, disrupts cell structure and function, which results in apoptosis or cell death. The
initiation of the outgrowth of extracellular ice formation via seeding ice crystals is generally
performed to mitigate the excessive formation of ice during supercooling. At this stage,
extracellular ice is formed and the osmolarity of the extracellular fluid is also gradually
increased. The oocytes will be in the dehydrated stage during freezing due to the unfrozen
intracellular water flowing out to balance the osmolarity. As the oocytes are the largest
cells and have low membrane permeability to cryoprotectants, most cryopreservation
requires a freezing rate that is slow enough for sufficient CPA permeability. However,
oocyte membrane permeabilities to CPA and cryotolerant have been demonstrated to
differ among species. Although theoretical models can be used to predict the optimal
freezing rate, empirical study is frequently required to test the freezing protocols prior to
use. If the temperature is reduced too rapidly, excessive intracellular ice will be formed. In
contrast, oocytes will undergo severe dehydration if the freezing rate is too slow. Therefore,
the optimal freezing rate is the slow process that achieves a balance between adequate
cellular dehydration and minimal intracellular ice formation. By using this technique,
low concentrations of CPA are generally required, thus minimizing osmotic shock and
CPA toxicity.

In contrast to slow freezing, vitrification allows the rapid transition from a liquid phase
to a glasslike stage or water solidification. Vitrification is another promising technique for
living cell cryopreservation [19]. Principally, the definition of vitrification is a “process of
glass solidification of a liquid or water-based solution without ice crystal formation” [46].
To achieve this result, high concentrations of CPAs (both permeable and nonpermeable
CPAs) are loaded onto living cells before deep freezing in liquid nitrogen [19,47]. However,
this procedure causes extreme osmotic stresses and chemical toxicity [19,47]. Different
devices can be modified for efficient vitrification such as open-pulled straw [48], solid
surface [3], cryoloop [49], electron microgrids [50] and cryotop [51].
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5. Outcome following Oocyte Cryopreservation

Oocyte cryopreservation is a mostly successful procedure in laboratory animals, es-
pecially in the mouse, due to the fact that the oocytes are quite tolerant to cold stress [52].
Additionally, the technology of embryo production from frozen oocytes is well developed
in this species [53]. In the mouse, oocyte cryopreservation is very useful technique for stor-
ing the genetics of specific breeds such as gene-modified animals. Unlike mouse oocytes,
knowledge on mechanism of oocyte maturation in other animals is still lacking. Although
the oocytes of larger species are relatively more sensitive to cold stress compared to those
of the mouse, live offspring have been born from medium to large size domestic animals,
including cat [54,55], pig [56], cows [57–59] and horse [60,61], as well as humans [18].

5.1. Ruminants (Bovine and Ovine)

In ruminants, oocyte cryopreservation was first reported in the 1900s, indicating the pos-
sibility of embryo development and pregnancy following oocyte cryopreservation [57,62].
The previous findings also suggested that the mature oocytes were highly sensitive to
cooling to lower than 10 ◦C, even without cryopreservation [63]. However, both stages
of maturation (immature and mature stages) could be slow-cryopreserved with no sig-
nificant difference in terms of cleavage and blastocyte formation rates (58% vs. 60% and
7% vs. 12%, respectively) [64]. The high chilling sensitivity of matured bovine oocytes
led to the development of vitrification using electron microgrids [50]. In recent years,
vitrification of bovine oocytes has gained interest. Indeed, full-term development follow-
ing transfer of embryos derived from frozen–thawed or vitrified immature oocytes has
been reported [58,59,64,65]. Development of vitrification technology for bovine oocytes
has made much progress, probably because vitrification requires less equipment, is less
time-consuming and is much more cost-effective compared to conventional slow freezing.
Several devices have been applied efficiently in the vitrification of bovine oocytes, such
as cryoloops [66], open-pulled straws [48] metal solid surfaces [3], cryotops [67], nylon
mesh [68] and silk fibroin sheets [69]. The improvement in fertilization and blastocyst rates
of vitrified oocytes has attributed to the extremely high cooling and warming rates and
the use of a minimum-volume approach [48,70,71]. The latter technique, The Cryotop®

system, requires less than 0.1 µL volume and can reach a cooling of up to 23,000 ◦C/min
and a warming at up to 42,000 ◦C/min. This system yields cleavage rates of 59.5% and
blastocyst rates of 22.9%. However, this is still lower than fresh control (77.6% and 44.7%, re-
spectively) [71]. Using minimum-volume vitrification, silk fibroin, nylon mesh and cryotop
yielded similar blastocyst rates (approximately 25%) comparing unfavorably to controls
(40.6%) [69]. Information regarding cryopreservation in sheep and goat is relatively limited
compared to that in cows. While the outcome in terms of embryo development following
conventional slow freezing is poor [72,73], most research has adapted the vitrification tech-
nologies from other species aimed at reducing cryoinjuries [72,74–80]. However, blastocyst
development is still poor, ranging from 0% to 12.5% [75–77,81].

5.2. Horse

Research into the development of oocyte cryopreservation of equine oocytes has been
limited, due principally to the difficulty in obtaining oocytes from equine ovaries. Equine
ovaries can be obtained from local abattoirs in some countries or from live donors using
ovum pickup (OPU) [82,83]. However, the relatively poor responses of equine ovaries
to routine gonadotropin preparation [84] and also the poor oocyte recovery following
OPU are due to the finding that equine cumulus cells adhere strongly to the follicular
wall [85]. More importantly, conventional in vitro fertilization failed to fertilize the ma-
tured oocytes, and intracytoplasmic sperm injection (ICSI) is the only meaningful way of
fertilizing the oocytes [86]. Variable results in meiotic competence and embryo develop-
ment for cryopreserved equine oocytes are affected by several factors, such as the stage of
maturation and the freezing medium and technique used. Information on the efficiency of
slow freezing for equine oocytes is limited. Comparing the two techniques, open-pulled
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straw vitrification of immature oocytes yielded significantly greater maturation rates than
slow freezing [32]. In addition, cryopreservation also induced alterative changes in mito-
chondrial morphology [87], cytoskeleton and chromatin configuration [32,88]. In the early
phase of technological development, maturation rates of vitrified immature oocytes were
poor (less than 20%) [87,89]. Recently, results have been much improved and range from
33.3% to 54% [61,90–93]. Following fertilization via ICSI, the vitrified–warmed oocytes
could develop into cleavage- and blastocyst-stage embryos, but the efficiency is still poor
when compared to nonfrozen oocytes [92,94]. First reports of pregnancy were obtained by
the transfer of vitrified matured oocytes into the oviducts of inseminated mares [60]. More
recently, pregnancy from vitrified oocytes and in vitro embryo culture could be obtained,
with pregnancy rates of 17–50% and resulting in live foals [61,93].

5.3. Pig

In pigs, the development of cryopreservation of oocytes has been limited, due princi-
pally to the high sensitivity of porcine oocytes to cold stress [56,95]. Although the reason
for this is entirely unclear, intracellular lipid content within porcine immature oocytes
has been shown to be 2.4-fold higher than in bovine oocytes [96]. Although the removal
of cytoplasmic lipids is detrimental to embryo development [97], partial delipidation of
porcine oocytes prior to vitrification improved freezing tolerance and embryo develop-
ment [12,98]. Unlike other species, the use of slow freezing has been unsuccessful in terms
of survival and embryo development [99]. Because porcine oocytes are very sensitive to
cryopreservation, most studies on porcine oocyte cryopreservation used vitrification. Since
the first piglets were born after vitrification [56], the efficiency of this technique was much
improved in the late 2000s. Modifications of vitrification devices, the type of cryoprotectant
and the procedure used were tested, aiming at reducing cryoinjuries and cellular changes of
the vitrified–warmed oocytes. Notably, vitrification induces several changes within porcine
oocytes, such as in the cytoskeleton [100], mitochondrial abnormalities [101], epigenetic
changes [102] and decreased expression level of the Type 1 inositol 1,4,5 trisphosphate recep-
tor [103]. More recently, vitrification of porcine oocytes has been associated with alterations
at transcriptomic and proteomic levels [37,104]. Similar to other species, both immature-
and mature-stage oocytes have been successfully cryopreserved, either by conventional
slow freezing or vitrification [105]. In direct comparison, vitrification of immature oocytes
results in better cell cytoskeleton rearrangement [106] and embryo development [107].
Additionally, vitrification has been shown to induce parthenogenic activation at a high rate
(approximately 50%) when oocytes are vitrified at the mature stage [108]. Disruption of
cellular functions, especially mitochondrial activities, after vitrification leads to increased
reactive oxygen species levels and results in cell apoptosis [109–111]. Therefore, the ap-
plication of antioxidants such as astaxanthin [112] and caspase inhibitor [113] decreased
apoptosis and improved the development of vitrified–warmed oocytes.

5.4. Canines and Felines

The cryopreservation of canine oocytes has been ignored due to the fact that canine
oocytes are poorly resumed to reach metaphase II under in vitro culture conditions. Unlike
other species, canine oocytes ovulate at an immature stage. The resumption of meiosis
then takes place within the oviduct [114,115]. In most cases, matured oocytes would need
to be collected from the oviducts, as the immature oocytes require 48–72 h of maturation
time [115]. Clinically, the stage of oocyte maturation is predicted according to ovulation
time or progesterone levels [116,117]. In in vitro conditions, small numbers of oocytes
resumed meiosis and only 15% reached metaphase II stage. Although puppies have
been born using IVF techniques, in vitro embryo production systems in this species have
yet to be developed. Only two publications have reported attempts to vitrify canine
oocytes [118,119] and only 3.9% of vitrified–warmed oocytes reached MII stage, comparing
unfavorably to 8.2% MII of nonvitrified control oocytes [118]. The oocytes of nondomestic
canines (the endangered Mexican gray wolf, Canis lupus baileyi and blue fox, Alopex lagopus)
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were also vitrified in order to use this technology for species conservation [120,121]. At
the time of this report, no data on embryo development or pregnancy resulting from
cryopreserved domestic or nondomestic canine oocytes are available.

In comparison with canines, the development of cryopreservation technology in do-
mestic cats has progressed, probably due to oocyte availability and also the well-established
in vitro embryo production system [122–127]. Until recently, the development of frozen
oocytes in terms of blastocyst development and pregnancy rate has been poor and limited.
Full-term development of kittens from vitrified matured oocytes has been reported [54,55].
Pregnancy could also be obtained from vitrified immature oocytes, but reabsorption unfor-
tunately occurred [45]. Until recently, no full-term development of cryopreserved immature
oocytes has been reported. It is hypothesized that feline immature oocytes are very sen-
sitive to cryopreservation and also have limited tolerance to aniosmotic conditions [128].
The effects of the meiotic stage on the freezing ability of feline oocytes are still controversial.
Indeed, feline oocytes have been successfully cryopreserved using conventional freezing
and vitrification at both meiotic stages. Using conventional slow freezing, MII oocytes are
significantly more tolerant to slow freezing compared with immature oocytes when cryop-
reserved slowly with ethylene glycol (cleavage rate 6.8% vs. 38.7%) [129]. Similarly, the
cleavage rate of vitrified–warmed feline mature oocytes is slightly higher than that of the
immature counterparts (21% vs. 4%) [130]. Development of the cryopreservation of feline
oocytes focused on the use of vitrification yielded 0–10% blastocyst rates [54,55,131–134].
Modifications of the vitrification technique for immature oocytes, such as stepwise ethylene
glycol exposure and inhibition of apoptosis with Rock inhibitor improved blastocyst rates
(30.2% and 12.1%, respectively) [45,135].

5.5. Nonhuman Primates

In 1996, a study on the cynomolgus monkey or crab-eating macaque (Macaca fasci-
cularis) demonstrated that the F-actin microfilament system in oocytes was modified by
glycerol exposure at an ambient temperature [136]. Furthermore, abnormal morphology,
represented by irregular shrinkage of oocytes, was observed in germinal vesicle (GV) and
metaphase I oocytes after equilibration (room temperature to 0 ◦C) under different con-
centrations of glycerol (1.0–2.0 M) [136]. For the rhesus monkey (Macaca mulatta), a study
revealed that dimethyl sulfoxide and ethylene glycol could effectively diffuse through
the oocyte cell membrane. However, the glycerol was less permeated [17]. Additionally,
oocyte (immature and mature) membrane integrity was abrupt when exposed to high
concentrations of CPA (from 0.1 to 5 mol/L) [17]. A later study in 2005 revealed that rhesus
macaque immature oocytes were less susceptible than mature oocytes to injury result-
ing from a hyperosmotic solution of ethylene glycol during the equilibration phase [137].
Immature oocytes cryopreserved by rapid nonequilibrium cooling suffered less damage
compared to slow equilibrium cooling [138]. This was evidenced by the integrity of the
microtubules and the intactness of transzonal processes between cumulus cells and oocytes
in the rapid-freezing group [138]. Although research studies related to oocyte cryopreser-
vation in nonhuman primates have not in progressed over the last 10 years, nonhuman
primate research models were primary keys in understanding the factors involved in
oocyte osmotic susceptibility, which could potentially provide a relevant platform for
oocyte cryopreservation in humans [14].

5.6. Humans

The technology for oocyte cryopreservation in humans is well developed compared
with other domestic species because this technology is highly important for clinical
prospects. Therefore, chronological development and clinical outcomes are additionally
highlighted in this review. The first successful pregnancy outcome using cryopreserved
human oocytes was reported in 1986 [18]. The retrieved oocytes were slow-frozen with
1.5 mol/L dimethyl sulfoxide. However, a limited number of successful pregnancies by
oocyte cryopreservation and conventional IVF have been reported. The growing interest in
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oocyte cryopreservation has been renewed due to the introduction of ICSI technology in the
1990s [5]. This technique could overcome zona pellucida hardening caused by the cryop-
reservation process, dramatically increasing the clinical pregnancy rate in IVF programs [5].
Since then, several efforts have been made to optimize oocyte cryopreservation proto-
cols, both slow freezing and vitrification, with the ultimate goal of improving pregnancy
outcomes and live birth rate [5,18]. After the achievements in embryo cryopreservation
and ICSI technologies, a renaissance in oocyte cryopreservation was launched in the early
1990s [8]. Human oocytes present a low surface area to volume ratio, resulting in a high
susceptibility to intracellular ice formation [139]. Comparative studies in mice and humans
during the early 1990s highlighted difficulties in maintaining membrane permeability and
the integrity of human oocytes during hyperosmotic solution exposure [140]. Thus, promis-
ing freezing protocols were then developed. In 1993, slow freezing using permeable and
nonpermeable CPAs (1,2-propanediol (PROH) and sucrose) was performed on mature (MII)
oocytes [141]. By this protocol, oocyte survival rate reached 64% after thawing, and normal
spindle and chromosome configurations were observed in 60% of viable oocytes [141].
Furthermore, cryopreserved oocytes that had undergone normal fertilization achieved
development of all two sets of 23 chromosomes [142]. Until the late 1990s to early 2000s,
promising cryopreservation protocols progressed aimed at obtaining higher post-thaw
survival. Notable results indicated that survival, implantation and pregnancy rates from
cryopreserved oocytes were similar to those from post-thawed embryos [19,143,144]. These
implications revoked research protocols applied on a routine basis and commercial freezing
media kits [19,143,144]

Another interesting aspect besides oocyte survival rate and quality is genetic alteration
during the cryopreservation process. One study in 2012 indicated that slow freezing was as-
sociated with the downregulation of genes involved in chromosomal structure maintenance
(Kinesin-like protein; KIF2C and KIF3A) and cell cycle regulation (Checkpoint Kinase 2,
CHEK2; and Cyclin Dependent Kinase Inhibitor 1B, CDKN1B) that possibly affected oocyte
developmental competence [145]. Although pregnancy outcomes are accomplished by
oocyte cryopreservation using the slow freezing method, limited numbers of novel research
studies have been reported during the last decade. The primary obstacles were the high
cost of a programmable freezer and the time-consuming nature of the procedure. Thus,
an alternative strategy that could positively influence oocyte survival outcomes and be
comparable to the slow freezing technique without using costly equipment was introduced.
For human MII oocytes, vitrification was first applied to long-term preservation in 1989
using high concentrations of permeable (DMSO) and nonpermeable (sucrose) CPAs with
ultrarapid freezing and thawing rates [146]. Promising results were observed, with more
than 80% intact oocyte morphology [146]. Similar to slow freezing, this cryopreservation
procedure was in the development phase for several years [19,146]. The first successes in
pregnancy outcomes and live births using vitrified oocytes were reported in 1999 [147].
A total of 11 out of of 17 vitrified oocytes (64.7%), using 40% EG and 0.6 mol/L sucrose,
survived. Pronuclear formation was observed in five of them after ICSI. A euploid embryo
was transferred to an infertile patient with the final success of a live birth [147]. The initial
protocols for oocyte vitrification were emphasized for cryosurvival [148]. The key to suc-
cessful oocyte survival after vitrification were optimal cooling and warming rates [148,149].
In the meantime, another report minimized vitrification solution volume (a droplet of
<0.1 µL compared to other protocols using 0.1–0.5 µL) and used a well-designed cryodevice
that led to ultrarapid freezing and thawing (40,000 ◦C/min) rates [71]. This technique
markedly yielded 100% morphologically intact oocytes and 52% blastocyst rates [71]. In
particular, limited knowledge related to the detrimental effects of CPA toxicity and the vit-
rification procedure was investigated at the intracellular level [150]. During the early 2000s,
simple low-resolution morphological assessment was used, which was not fully adequate
to evaluate oocyte quality, fertilization potential or developmental competence [150]. Thus,
intracellular oocyte-organelle studies were introduced using several techniques and types
of equipment, i.e., polarized light microscopy (PLM), transmission electron microscopy
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(TEM) and epifluorescence or confocal laser scanning microscopy (CLSM) [150]. These
technologies potentially provided great detail on the cryoinjuries in each individual vitri-
fied oocyte [150]. For example, TEM micrography could demonstrate vacuolization present
in cryopreserved oocyte ooplasm [150]. A lower degree of vacuolization in vitrified oocytes
was observed compared with those from a slow freezing procedure [151]. For other or-
ganelles, mitochondrial–smooth endoplasmic reticulum (M–SER) aggregation observed by
TEM was present in both vitrified–warmed or slow-frozen oocytes [152,153]. Supporting
data indicated that an equilibration and freezing solution containing low EG concentration
could decrease M–SER aggregation events [153]. The appearance of vacuoles or M–SER
aggregation in human MII oocytes can possibly reduce oocyte fertilization and impair
embryo development competence by disturbing Ca2+ homeostasis [150].

Not only morphological or ultrastructural oocyte damage but also patterns of genetic
change should be of concern during the cryopreservation process. In the genome era,
the impact of oocyte vitrification on genetic and epigenetic changes has been comprehen-
sively studied during the last 10 years. For instance, the first study of gene alteration in
vitrified human oocytes was published in 2010 [154]. Expression profiles of messenger
RNA (mRNA) in single vitrified–thawed oocytes were compared with fresh cohorts [154].
Data revealed that genes encoding proteins essential for oocyte development and spe-
cific functions (bone morphogenetic protein 15 (BMP15), growth differentiation factor 9
(GDF9), folliculogenesis-specific basic helix-loop-helix (FIGLA), POU Class 5 homeobox
1 (POU5f1-OCT4) and TATA box binding protein-associated factor 4B (AF4B)) were not
altered by vitrification using a commercial vitrification kit [154]. The number of genes
studied in 2021 was between fewer than 10 and almost 2000 [155]. Differentially expressed
genes were found in vitrified–thawed oocytes compared to fresh MII oocytes (1646 and
341 genes were downregulated and upregulated, respectively) [155]. In cryopreserved
oocytes, genes related to oxidative phosphorylation, the lysosome pathway, regulation
of lipolysis in adipocytes or the AMPK signaling pathway were upregulated [155]. On
the epigenome issue, a recent study in sibling donor oocytes (fresh and vitrified samples)
revealed that global DNA methylation (DNA (hydroxy)methylation pattern) did not differ
between cohorts [156]. Furthermore, no significant differences were seen in cleavage timing
or predictive morphokinetic time intervals between embryos developed from fresh and
vitrified oocytes evaluated under time-lapse monitoring [156]. Another point of epige-
netic issue, noncoding RNA (miRNA) expression in fresh/vitrified human oocytes was
reported in 2019 [157]. At least 22 miRNAs differed between fresh and vitrified oocytes, e.g.,
miR-134-5p, miR-210-5p, miR-21-3p and miR-465c-5p, which target the PTEN gene (cell
apoptosis regulation through oxidative stress pathway) [157]. However, a small sample
size was used in these novel genome reports, and correlation between gene expression and
other oocyte quality parameters were rarely determined [155]. Hence, other genetic and
epigenetic alterations in human oocyte cryopreservation should be further elucidated.

6. Prospects and Conclusions Regarding Oocyte Cryopreservation

Advancement in oocyte cryopreservation has progressed rapidly for decades with
satisfactory outcomes, but the study of cryobiology aimed at improving outcomes for
the cryopreserved oocyte is still challenging. However, development and success rates
in terms of survival and developmental competence are generally poor when compared
to noncryopreserved oocytes. Additionally, the degree of oocyte susceptibility to cold
stress and cryodamage is highly dependent upon species and the freezing technology used.
Animal models are used to investigate the principle and effectiveness of freezing protocols,
which later can be used efficiently with other reproductive technologies. The purposes
of oocyte cryopreservation are globally similar between animals and humans; however,
the ultimate aim in animals is to preserve oocytes for subsequent use and for “long-term”
genome resource banking in wild species [158]. In humans, oocyte cryopreservation is
clinically adapted as a tool for preserving fertility in cases of its premature loss, such as
in women who need gonadotoxic chemotherapy for cancer treatment [159–162]. Indeed,
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oocytes differ from other cell types such as somatic cells and sperm cells as they are larger,
have a low surface area to volume ratio, and also low membrane permeability to water and
CPA, all of which make oocytes susceptible to damage during cryopreservation [24]. As a
result, several types of cryoinjury, such as disorganization of microtubules and chromatin
configuration, zona pellucida hardening, apoptosis and genetic and epigenetic alterations
will inevitably occur when cryopreservation is carried out. It becomes clear that the cry-
opreservation of oocytes in animals remains at the experimental stage, as the outcomes
in terms of live offspring are very limited. Of course, the ultimate goal in the study of
oocyte cryopreservation would be to determine the factors that influence cryoinjury and
to minimize their effects on the biological functions of the cryopreserved oocytes. Indeed,
empirical studies on animals and variations in the protocols used have led to difficulties
in comparing results among laboratories. However, the development of freezing tech-
niques, in particular vitrification, is the most noticeable revolution in cryopreservation.
This is likely due to the fact that vitrification can avoid the lethal ice formation seen in
conventional slow freezing [19]. In addition, vitrification is less time-consuming and more
cost-effective. In experimental phases, most researchers attempt to modify cryodevices to
increase cooling and warming rates and also to modify different types of CPAs. However,
the variations in oocyte structures and physiology among animal species cause difficulties
in formulating a consensus on freezing techniques for all species. This is not the case
for humans, as a range of devices and reagents is mostly commercially available, and
comparative studies between laboratories can be performed much more easily than for
animals. A search for new technologies is also required to identify the mechanisms of
cryoinjury by using novel molecular tools such as gene sequencing and proteomic analysis.
Several technologies are foreseen to be used in the future, such as microfluidics [163–165].
Future prospective issues of fertility preservation can also be examined via the develop-
ment of cryopreservation/transplantation technologies for oocytes growing in ovarian
tissue [161], and also for genetic modifications using novel genome editing tools. Material
sciences using three-dimensional (3D) structures (e.g., tissue decellularization scaffolds or
fibrin/thrombin structures) can be used to protect oocytes against cryoinjury and promote
their development post cryopreservation. Lastly, cross contamination with pathogens in
liquid nitrogen is also important for safety reasons, especially during the coronavirus 2019
(COVID-19) pandemic. The presence of angiotensin-converting enzyme (ACE 1-7) has
been identified in human ovarian and granulosa cells [166,167]. Thus, there is a major
concern on the risk of SARS-CoV-2 contamination in ART procedures, including oocyte
retrieval and cryopreservation [166]. Although viral RNA was not detectable in the oocytes
and follicular fluid of SARS-CoV-2-positive patients [168,169], larger case studies in all
IVF procedures with careful interpretation should be elucidated [169]. For this hygiene
security reason, it would be preferable to develop different types of cryodevices using
closed systems, such as the High-Security Vitrification™ cryopreservation system [170] in
order to avoid cross contamination from liquid nitrogen.
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