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Macropinocytosis requires Gal-3 in a subset of
patient-derived glioblastoma stem cells
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Recently, we involved the carbohydrate-binding protein Galectin-3 (Gal-3) as a druggable

target for KRAS-mutant-addicted lung and pancreatic cancers. Here, using glioblastoma

patient-derived stem cells (GSCs), we identify and characterize a subset of Gal-3high glio-

blastoma (GBM) tumors mainly within the mesenchymal subtype that are addicted to Gal-3-

mediated macropinocytosis. Using both genetic and pharmacologic inhibition of Gal-3, we

showed a significant decrease of GSC macropinocytosis activity, cell survival and invasion,

in vitro and in vivo. Mechanistically, we demonstrate that Gal-3 binds to RAB10, a member of

the RAS superfamily of small GTPases, and β1 integrin, which are both required for macro-

pinocytosis activity and cell survival. Finally, by defining a Gal-3/macropinocytosis molecular

signature, we could predict sensitivity to this dependency pathway and provide proof-of-

principle for innovative therapeutic strategies to exploit this Achilles’ heel for a significant and

unique subset of GBM patients.
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The World Health Organization (WHO) classifies astro-
cytomas as low grade (grade I to II) or high grade (grade
III and IV)1. Glioblastoma (GBM) is a grade IV astro-

cytoma, a deadly malignant brain tumor and the most common
primary brain tumor in adults. Today, surgery, radiotherapy, and
chemotherapy with temozolomide (TMZ) remain the standard of
care in patients with GBM2. However, the overall survival of
patients with GBM (~14 months) has not radically changed over
the past 15 years.

Major efforts in large-scale genomic and transcriptomic pro-
filing allow the characterization and stratification of GBM
patients into three major subtypes: proneural, classical, and
mesenchymal3–5. However, this big data analysis has yet to
highlight new avenues and druggable molecules to achieve
advances in precision medicine. As shown by three recent pre-
cision medicine studies, molecular profiling is not the only route
to guide therapy in patients. By using circulating tumor DNA
(TARGET study), drug combinations (i-PREDICT study), or
DNA sequencing (WINTHER study), these studies took into
account the individuals in a more global perspective6–8 and
clarified how tumors within the same subgroup could differen-
tially respond to therapies.

GBMs are composed of multiple cell types, including cancer
stem cells, namely GBM stem cells (GSCs)9. These cells display
many properties such as self-renewing and tumor-initiating
properties, differentiation capacities and they are able to survive
the harsh hypoxic and nutrient deprived brain tumor micro-
environment. Understanding how they can thrive in these chal-
lenging conditions would therefore provide an opportunity to
target the most aggressive and drug-resistant cell within
the tumor.

Gal-3 belongs to a family of carbohydrate-binding proteins that
have a high affinity for β-galactoside-containing glyco-conjugates
and have carbohydrate recognition domains that are evolutionary
conserved10. Three groups have been described: prototype, chi-
mera, and tandem repeat groups, and Gal-3 is the sole repre-
sentative of the chimera type of the galectin family. Gal-3 is
highly expressed in cancer cells and has a broad range of func-
tions related to cell survival, proliferation, invasion, or apoptosis
due to its interaction with intra- and extracellular proteins11. In
cancers, Gal-3 is associated with RAS signaling, and thanks to its
carbohydrate recognition domain, Gal-3 can interact with KRAS-
GTP, stabilizing it in its active state12,13. Gal-3 is consequently
translocated to the plasma membrane where it stimulates phos-
phoinositide 3-kinase (PI3-K) activation. Through this mechan-
ism, Gal-3 and KRAS regulate key processes in cancer cells.
Recently, we showed that integrin αvβ3-positive pancreatic and
lung cancer cells are uniquely addicted to mutant KRAS and we
defined Gal-3 as a critical mediator of this activity, functioning
through the regulation of macropinocytosis14. We showed how
the biochemical association between αvβ3/Gal-3/KRAS can be
disrupted by using GCS-100, a specific inhibitor of Gal-3. Indeed,
macropinocytosis inhibition was achieved with GCS-100. In
addition, there was an increase of ROS levels in KRAS-mutant
cells in 3D culture, as well as in tumor xenografts and in PDX
tumors14.

Macropinocytosis represents an endocytic process that pro-
vides cancer cells with the ability to uptake proteins and extra-
cellular fluids into large intracellular vesicles known as
macropinosomes15. Macropinosomes are large membrane vesi-
cles that form upon the extension and folding of large membrane
ruffles back onto the cell surface, thereby mediating the bulk
intake of not only extracellular fluids but also proteins16. In
addition to their large size and the ability to internalize high
molecular weight dextran, macropinosomes are also defined by
their unique sensitivity to amiloride and its derivatives such as 5-

(Nethyl-N-isopropyl) amiloride (EIPA), which represent the most
effective and selective agent currently used to pharmacologically
inhibit macropinocytosis17. In the harsh tumor microenviron-
ment, where no/low nutrients and oxygen are available, macro-
pinocytosis can represent a unique mechanism of amino acid
uptake to allow survival. In cancer, macropinocytosis can be
driven not only by oncogenes, such as RAS and SRC, but can also
be stimulated by growth factors (e.g., EGF), and/or ruffling kinase
(e.g., p21-activated kinase-1) to modulate cancer cell metabolism
and nutrient internalization14,16. Commisso and colleagues have
revealed oncogenic KRAS-mediated macropinocytosis as an entry
route for extracellular albumin in 2D pancreatic cancer cell lines.
In this context, macropinocytosis represents a critical nutrient
delivery pathway that cancer cells use to allow their survival in the
challenging tumor microenvironment.

In the macropinocytic pathway, several RAB (for Ras-related
protein in the brain) proteins have been shown to be involved in
macropinosome formation and subsequent macropinosome
maturation18. RAB5 represents the best-characterized member of
this family for macropinosome formation19. Several studies
have already described how RAB5 is recruited to ruffles when
phosphatidylinositol 3,4,5-triphosphate (PI(3,4,5)P3) is gener-
ated at the plasma membrane20. In RAW264 macrophages,
Egami et al.21 showed that RAB21 and RAB20 (which are close
homologs of RAB5) are recruited to RAB7-positive maturing
macropinosomes.

Here, we report that Gal-3-mediated macropinocytosis allows
survival of a subset of GBM cells. By identifying and character-
izing a subpopulation of patient-derived Gal-3high GSCs sensitive
to Gal-3 and macropinocytosis blockade, we describe a non-
oncogenic (KRAS) cellular context with enhanced macro-
pinocytosis activity. Indeed, no KRAS mutations have been
reported in GBM3,4. Remarkably, we demonstrate that Gal-3 can
bind to RAB10, which is required for macropinocytosis. However,
no studies have reported the role of RAB10 in the macro-
pinocytosis process, whereas its function in late endosome for-
mation is well documented. Finally, we define a Gal-3/
macropinocytosis molecular signature that can be used to predict
sensitivity to this dependency pathway. By identifying this
dependency pathway defined by a molecular signature rather than
an oncogenetic status, we provide proof-of-principle for new
therapeutic strategies to exploit this vulnerability for a significant
subset of GBM patients and potentially for other WT KRAS
cancers showing macropinocytosis addiction.

Results
High Gal-3 mRNA expression correlates with poor survival
and is associated with macropinocytosis in mesenchymal sub-
type GBM. Recently, we found that GSC with a mesenchymal
signature showed a highly glycolytic expression signature, which
is not correlated with a dependence on the high-affinity glucose
transporter type III, GLUT3, for their survival. Indeed, GLUT3 is
the gatekeeper of the glycolytic pathway and a known driver of a
cancer stem cell phenotype. Because our previous study showed
that Gal-3 gives rise to mutant KRAS addiction by directly
binding to the cell surface receptor integrin αvβ3, we hypothe-
sized that Gal-3 could mediate macropinocytosis allowing
mesenchymal GSC to survive in the stressful brain tumor
microenvironment. We first considered whether Gal-3 (LGALS3)
expression has clinical relevance in GBM. To do so, we examined
the correlation between its expression and patient survival in
several GBM databases. Our analysis revealed Gal-3 is the only
galectin whose mRNA expression consistently correlates with
poor survival in several datasets (Fig. 1A and Supplementary
Fig. 1A and Supplementary Table 1). Moreover, we showed that
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Gal-3 expression increases along with astrocytoma grade and is
highly expressed by pseudopalisading cells, and by GSCs with a
mesenchymal signature (Supplementary Fig. 1B, C and Fig. 1B).
In accordance, for our modest cohort of GBM biopsies, we found
that all GBM specimens showed expression of Gal-3 by immu-
nohistochemistry with a trend towards a higher expression for

GBM enriched for mesenchymal genes (Supplementary Fig. 1D).
Then, to evaluate how high Gal-3 expression could lead to poor
survival in GBM, we performed a differential gene expression
analysis based on Gal-3high versus Gal-3low in GBM patients in
several datasets (Supplementary Table 2). The gene ontology
enrichment analysis revealed expression of genes involved in an
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extracellular matrix organization (CD44, LAMB1, TNC, TIMP1,
LOX, COL1A2, SERPINE1), angiogenesis (VEGFA, TGFβI,
COL4A2), endocytosis (CAV1, ANXA1, ANXA2, SH3GL2), and
collagen catabolism/metabolism (COL3A1, COL5A2, LUM),
which are in line with previous studies (Supplementary Fig. 1D).
Moreover, for a large majority of these genes, their expression is
correlated with poor survival in GBM (Supplementary
Fig. 2A–C).

By analyzing bulk tumors with image-guided multiregional
sampling, transcriptomic profiling has been associated with
specific tumor regions/microenvironments22. Therefore, a
mesenchymal transcriptomic signature has been associated with
a necrotic area and pseudopalisading cells (surrounding these
necrotic areas), which are defined by their nutrient-deprived and
hypoxic microenvironment. In such a harsh microenvironment,
cancer cells need to overcome challenges imposed by this
deprivation. We reasoned that GSCs with a mesenchymal
signature might overcome the necrotic microenvironment by
inducing Gal-3 mediated macropinocytosis14. In accordance with
this hypothesis, we observed a positive correlation between Gal-3
expressing GSCs with a mesenchymal signature and a higher rate
of macropinocytosis visualized by TMR-dextran uptake (Supple-
mentary Fig. 2D and Fig. 1C–E. Consistent with these findings,
treatment with EIPA, an inhibitor of macropinocytosis that does
not affect other endocytic pathways, induced a greater decrease of
macropinocytosis-mediated cell viability in mesenchymal GSCs
as measured by the quantification of metabolically active cells
(Fig. 1E). Of note, chlorpromazine, an inhibitor of clathrin-
mediated endocytosis, did not affect GSC survival (Supplemen-
tary Fig. 2E). Finally, GSC invasive capacity was completely
blocked upon EIPA treatment only in mesenchymal GSCs,
indicating that macropinocytosis was required only for mesench-
ymal GSC invasion (Supplementary Fig. 2F). By using a
transcriptomic signature generated from a list of the top 25
Gal-3/survival-associated genes predicted to identify the addicted
vs. non-addicted phenotype (Supplementary Table 2), we were
able to split our GSCs according to Gal3-/macropinocytosis
addicted vs. non-addicted (Supplementary Fig. 2G).

Gal-3 is required for macropinocytosis-mediated mesenchymal
GSCs survival and invasion in 3D. In GBM, Gal-3 has been
described for its critical role in cancer survival and invasion.
However, Gal-3 implication in macropinocytosis-mediated survival
or invasion has not been addressed before in the context of GBM, in
which oncogenic KRAS is not present. To investigate whether Gal-3
expression is required for macropinocytosis, we knocked down Gal-
3 in mesenchymal GSCs, which express high levels of Gal-3 (Fig. 2A
and Supplementary Fig. 2E). Remarkably, our results showed that
shRNA-mediated Gal-3 knockdown strongly inhibits macro-
pinocytosis in mesenchymal GSCs Ge269, Ge518, and Ge835 as
shown by lower dextran uptake (Fig. 2B). Functionally, we showed
that either macropinocytosis or Gal-3 inhibition induced a decrease
in cell viability in mesenchymal GSCs (Fig. 2C). As EIPA treatment
does not affect the viability of Gal-3 knockdown cells, our data
indicate that Gal-3 could largely account for the regulation of

macropinocytosis (Fig. 2D). Remarkably, we showed that only the
subset of tumors expressing high Gal-3 are dependent on Gal-3 for
survival. Indeed, Gal-3 knockdown in GSCs Ge904 or Ge885 (Gal-
3low), did not, or barely affect, their survival (Supplementary
Fig. 3A, B). Moreover, we observed an inhibition of cell invasion in
Gal-3 knockdown mesenchymal GSC compared to their control
(Fig. 2E). Importantly, knockdown of Gal-3 significantly delayed
the orthotopic growth of GBM tumors with a mesenchymal sig-
nature in nude mice, indicating that Gal-3 promotes GSC survival
and tumorigenic capacity in the brain (Fig. 2F, G). Moreover, we
observed a trend towards a decrease of tumor cell invasion and
dissemination into the adjacent healthy parenchyma as well as a
decrease of tumor vascularization in shGal-3 tumors (Supplemen-
tary Fig. 3C, D). Collectively, we show that Gal-3 is required for
macropinocytosis-mediated mesenchymal GSC survival, invasion,
and tumorigenic capacity.

Gal-3 expression is modulated by hypoxia and activates Akt
signaling. Several studies have shown that Gal-3 expression is
part of an adaptive response that protects GBM cells from death
under hypoxia, explaining why mesenchymal GSCs, found in the
hypoxic and necrotic areas, express a higher level of Gal-3
compared to other GSC subtypes23,24. To test whether GSCs
could modulate Gal-3 expression under hypoxic conditions
regardless of their subtype, we exposed some of our GSC to 1%
oxygen then monitored Gal-3 expression as well as cell viability.
As expected, Gal-3 expression was induced upon exposure to
hypoxia (Fig. 3A). Nevertheless, we observed a decrease of via-
bility under hypoxia only for the mesenchymal GSCs, suggesting
that mesenchymal GSCs might be more sensitive to hypoxic
conditions (Fig. 3B). However, we did not observe a consistent
response of cell viability to EIPA under hypoxic conditions,
suggesting a general cellular response to stress (Fig. 3C). Con-
sistent with previous studies, we also observed a decrease of AKT
activation upon Gal-3 knockdown in mesenchymal GSCs whereas
we could not observe any modulation of AKT activation upon
Gal-3 knockdown in Ge885 (Fig. 3D and Supplementary Fig. 3E).
Altogether, our data showed that Gal-3 expression is modulated
by hypoxia and its downregulation induced a decrease in AKT
activation.

Inhibition of Gal-3 reveals its downstream molecular targets.
The molecular mechanisms regulated by Gal-3 which contribute
to its effects in GBM, especially in the context of macro-
pinocytosis, have not yet been described. To do so, we undertook
two different strategies: a transcriptomic and a proteomic
approach. First, in order to identify Gal-3 downstream effectors,
we performed RNASeq analysis of the mesenchymal GSC, Ge518,
transduced by shRNA-mediated Gal-3 knockdown versus shRNA
control. Then, we performed a differential gene expression ana-
lysis after count normalization. As expected, several families of
genes involved in ECM–cell signaling, angiogenesis, cell adhesion,
and heparin-binding were found (Fig. 4A, B). As shown by pre-
vious studies, this analysis suggested that Gal-3 has functional

Fig. 1 Gal-3 levels correlate with poor survival and macropinocytosis rate in GBM. a Hierarchical clustering of galectin-3 expression correlated to a risk
score predicting patient survival for the TCGA GBM dataset (n= 538 patients). Low= low-risk group; high: high-risk group. b Kaplan–Meier analysis of
Rembrandt dataset for Gal-3 expression (n= 179 Gal-3low, n= 136 Gal-3high; p < 0.0001). c Gal-3 mRNA expression was determined by qPCR in GSCs.
HKGs= housekeeping genes. d Immunoblots showing the expression of Gal-3 in GSCs. The histogram represents Gal-3 normalized to loading control (β-
actin) determined by densitometry analysis. e Macropinocytosis uptake assay using TMR-dextran as a marker of macropinosomes (in red) in GSCs under
EIPA or not. Scale bar, 10 µm. Histograms represent the fold change of macropinocytosis activity in all GSCs normalized to nuclei number (n= 2–5). f Effect
of EIPA on cell viability measured by CellTiter-Glo in GSCs (n= 4–5). Data are represented as mean ± SEM (*p < 0.05, **p < 0.01 and ***p < 0.001), two-
way ANOVA, Sidak’s adjusted p value. ns nonsignificant, Ctrl Vehicle (DMSO), Mes mesenchymal, ProN proneural, Neu neural, Clas classical.
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roles in remodeling the tumor microenvironment, cell signaling,
collagen catabolism/biogenesis, and angiogenesis. To validate our
RNASeq data, we evaluated gene expression by quantitative PCR
in Ge518 and Ge269 shGal-3 cells compared to their control and

observed a significant modulation of their expression (Fig. 4C, D).
Upregulation of several of these genes, for instance, PTPRZ1,
WNT5A, S100A4, or ANXA1/2, has been linked to cancer inva-
sion and aggressiveness in some solid tumors, including
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GBM25–30. Moreover, their expression is correlated with poor
survival in several GBM datasets and, as for Gal-3, enriched in
necrotic areas (Supplementary Fig. 3F–H; and Supplementary
Table 3). Consequently, by modulating these genes, Gal-3
knockdown could lead to the inhibition of GBM aggressiveness.

RAB10 interacts with Gal-3 to regulate macropinocytosis. As
a second strategy, we choose a proteomic approach. Since
Gal-3 can interact and complex with multiple molecules, we pos-
tulated that immunoprecipitation of Gal-3 combined with liquid

chromatography–mass spectrometry (LC–MS) would allow identi-
fication of its partner(s) in our cellular context. In total, we detected
563 proteins: 88 proteins were identified only in the control group
and 89 proteins were found in the shGal-3 group (Fig. 5A). This
approach enabled the identification of eleven Gal-3-binding proteins
that are significantly modulated in Ge518 shGal-3 GSC compared to
their control (Fig. 5A, B). In shGal-3 GSC, we found Gal-3 sig-
nificantly associated with FABP5, KRT14, EIF2S1, HSPD1, HSPE1,
and ATP5PO. Of great interest, in shCtrl GSC, HIST1H2BC,
SOWAHC, RAB10, CSN2, and RPS8 were found significantly

Fig. 2 Gal-3 is required for macropinocytosis. a Immunoblots show expression of indicated proteins for Ge518, Ge269, and Ge835 infected by shRNA
Control (Ctrl) or shGal-3. Histograms show the fold change of protein expression determined by densitometry analysis. b Macropinocytosis uptake assay
using TMR-dextran in shCtrl vs. shGal-3 #2 GSCs. Scale bar, 10 µm. Histograms represent the fold change of macropinocytosis activity in Ge518, Ge269,
and Ge835 normalized to nuclei number (n= 4–6). Ctrl=Vehicle (DMSO). c Cell viability of Ge518, Ge269, and Ge835 in shRNA Control (Ctrl) vs. shGal-
3, measured by CellTiter-Glo in GSCs (n= 3–4). d Cell viability of Ge518 shRNA Control (Ctrl) vs. shGal-3 under EIPA treatment, measured by CellTiter-
Glo in Ge518 (n= 2–3). Data are represented as mean ± SEM (*p < 0.05, **p < 0.01, and ***p < 0.001), two-way ANOVA, Dunnett’s multiple comparisons
test. e Cell invasion in 3D of Ge518 shRNA Control (Ctrl) vs. shGal-3 under EIPA treatment (n= 2–3). Scale bar, 100 µm. Histograms represent the fold
change of the invasion score in Ge518. Data are represented as mean ± SEM (*p < 0.05, **p < 0.01, and ***p < 0.001), two-way ANOVA, Dunnett’s multiple
comparisons test. f Effect of Gal-3 knockdown on tumor growth in vivo: Ge269 shCtrl vs. shGal-3, (n= 7 mice per group), p= 0.016 (Log-rank Mantel–Cox
test). g Histological analysis of Ge269 shCtrl vs. shGal-3. Tumors were stained for Gal-3, and counterstained with hematoxylin. (n= at least 3 mice per
group). Scale bar, 50 µm. Data are represented as mean ± SEM (*p < 0.05, **p < 0.01, and ***p < 0.001), two-way ANOVA, Sidak’s adjusted p value. ns=
nonsignificant, Ctrl=Vehicle (DMSO).
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associated with Gal-3 (Fig. 5B). Moreover, in shGal-3 GSC, the
enrichment analysis revealed the expression of proteins involved in
stress response, heat shock protein family, and mitochondrion. In
contrast, in shCtrl, we found enrichment for proteins involved in cell
adhesion, actin-binding, myosin complex, and translational initia-
tion (Supplementary Fig. 4A).

Because it belongs to the RAS superfamily of small GTPases,
which regulate many cellular systems, including membrane
trafficking and endocytosis, RAB10 appears as the most
interesting hit31. Considering that no KRAS mutation is found
in GBM, we hypothesized that RAB10 is required for macro-
pinocytosis in GSC with a mesenchymal signature. To confirm
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our hypothesis, we first performed immunoprecipitation of
RAB10 followed by immunoblotting for Gal-3. Accordingly,
Gal-3 was found co-immunoprecipitated with RAB10 (Fig. 5C).
Of note, we did not find a significant decrease of RAB10
expression in shGal-3 GSCs compared to their control even if we
observed a trend toward a lower expression in the knockdown
cells (Fig. 5D).

According to Wan et al.32, RAB10 was found co-fractionated
with Gal-1. In line with these results, Gal-3 can bind to several
members of the RAB10 superfamily such as RAB7A (co-
localization by IF) and RAB11B (affinity capture-MS) (Supple-
mentary Table 4)33,34. Regarding RAB family homology, as well
as galectin family homology, we postulated that Gal-3 can directly
bind to RAB10. To test our hypothesis, we performed a cell-free
binding assay and we revealed that Gal-3 can bind to RAB10 in a
saturable manner (Fig. 5E). Moreover, we observed a colocaliza-
tion between RAB10 and Gal-3 in the mesenchymal GSC Ge518
as already shown by immunoprecipitation (Supplementary
Fig. 4B). In this context, cell fractionation also showed
enrichment for RAB10 and Gal-3 at the plasma membrane
compared to the nuclear and cytosolic compartments in Ge518
GSC (Supplementary Fig. 4C). However, we observed no effect of
Gal-3 on RAB10 loading with the BODIPY-GTP, indicating that
Gal-3 may only serve as an anchor for RAB10 at the plasma
membrane (Supplementary Fig. 4D). Collectively, our results
showed that Gal-3 could physically interact with RAB10 at the
plasma membrane.

Because several RAB proteins have been described to be
required or involved in macropinosome formation/maturation,
we postulated that RAB10 mediates this function in mesenchymal
GSCs. Furthermore, we first knocked it down in Ge518 and
Ge269 mesenchymal GSCs. However, no GSCs survived after
shRAB10 transduction. RAB GTPases family represents a master
regulator of the secretory and endocytic pathways and guarantees
membrane integrity20. More importantly, the targeted disruption
of RAB10 leads to early embryonic lethality35. Therefore, it is
reasonable to think that RAB10 knockdown might be toxic to
GSCs due to its strong impact on key cellular processes. Because
cancer cells rely on different molecules that mediate survival
when they are adherent, we decided to generate 2D Ge518 and
Ge269 cell lines derived from our GSCs (named GDC for GBM
differentiated cells). In accordance with our hypothesis, cell
viability was reduced after RAB10 knockdown in Ge518 and
Ge269 GDC models, (Fig. 5F, G). Moreover, we found a decrease
of TMR-Dextran uptake in GDC Ge518 transduced by shRNA-
mediated RAB10 knockdown (Fig. 5H). In addition, as for Gal-3
expression, RAB10 expression was correlated with Gal-3 and was
shown to be enriched in pseudopalisading GBM cells (Supple-
mentary Fig. 5A, B). Unlike Gal-3, we found a high expression of
RAB10 in all our GBM biopsies, and, furthermore, its expression
did not consistently correlate with patient survival (Supplemen-
tary Fig. 5C–E). More interestingly, as for Gal-3 expression, the
gene ontology enrichment analysis based on RAB10high vs.

RAB10low in GBM patients in the Rembrandt dataset revealed
expression of genes involved in several processes, such as
regulation of vesicle-mediated transport, receptor-mediated
endocytosis, neurotransmitter transport or chloride transport
(Supplementary Fig. 5F). Focusing on the receptor-mediated
endocytosis family of genes found in both gene ontology
enrichment analysis for Gal-3 and RAB10, we also identified
ANXA2, SERPINE1, VEGFA, SH3GL2, SNAP91, and CAV1,
overlapping the reverse-phase protein array analysis from TCGA
(Supplementary Table 5). However, we could not find significant
differences for ANXA1/ANXA2, ITGB3/ITGB1 between shGal-3
GSCs and their control (Supplementary Fig. 6A). Of note, even if
we could not achieve significance due to the absence of ITGB1 or
ICAM in one sample pair, we could observe a trend towards a
decrease of expression. Finally, as for Gal-3 knockdown, we
observed a decrease of AKT activation upon RAB10 knockdown
in Ge518, suggesting that RAB10 may have a broader impact on
GSC downstream signaling (Supplementary Fig. 6C). Altogether,
our data identified RAB10 as a partner of Gal-3 required for
macropinocytosis in GSCs. To investigate whether ectopic
expression of Gal-3 and RAB10 is sufficient to drive macro-
pinocytosis in a non-mesenchymal GSC, we transfected the
pEGFP-Gal-3 and transduced the PLX-307-RAB10 plasmids in
Ge904 (Supplementary Fig. 4E). As shown by an increase of
TMR-Dextran uptake, ectopic expression of Gal-3 and RAB10
lead to an enhanced macropinocytosis activity in Ge904
expressing high Gal-3 and RAB10 (Supplementary Fig. 4F).

We have previously shown that Gal-3 gives rise to KRAS
addiction by directly binding to the cell surface receptor integrin
αvβ3 in non-small cell lung cancer and pancreatic carcinoma
cells14. To provide mechanistic insight into Gal-3 and RAB10
regulation of macropinocytosis, we performed an additional
immunoprecipitation of Gal-3 combined with LC-MS in Ge269
shGal-3 and shCtrl. When we compared both LC–MS analyses
from Ge518 and Ge269, RAB10, and β1 integrin were both found
associated with Gal-3 (Supplementary Fig. 6A, B). Then, based on
our results and the literature, we hypothesized that β1 integrin
forms a cluster with Gal-3 and RAB10 to mediate macropino-
cytosis. Of note, even if ITGB1 expression was not consistently
found correlated with GBM patient survival, its expression was
significantly found associated with the mesenchymal subtypes in
several GBM datasets36. As shown by β1 integrin and Gal-3 co-
immunoprecipitation, our results showed an interaction between
both proteins (Supplementary Fig. 7A). The pharmacologic
inhibition of β1 integrin with a blocking antibody, P4C10,
induced a decrease of cell viability in the mesenchymal GSC
Ge269 and Ge518 but not in the non-mesenchymal GSC Ge885,
Ge904, and 970.2 (Supplementary Fig. 7B). In line with previous
studies showing that Gal-3 interacts with β1 integrin37, we also
observed a colocalization between Gal-3 and β1 integrin in the
mesenchymal GSC Ge518 which is not the case for Ge885 where
Gal-3 was found in the cytosol (Supplementary Fig. 7C). Finally,
the genetic or pharmacologic knockdown of β1 integrin leads to a

Fig. 5 Gal-3/RAB10 interaction is a surrogate for macropinocytosis-mediated GSC survival. a The scheme summarizes the IP-MS hits in Ge518 shCtrl vs.
shGal-3. b Histograms represent the fold change of normalized total spectra for significantly identified proteins by IP-MS analysis, in Ge518 shCtrl vs.
shGal-3. c Immunoblot analysis of RAB10 immunoprecipitation from Ge518 shCtrl vs. shGal-3. Histograms represent the fold change of Gal-3 and RAB10
expression determined by densitometry analysis (n= 3–4). WCL whole-cell lysate. d Immunoblots show expression of indicated proteins for Ge518 shCtrl
or shGal-3. Histograms show the fold change of protein expression determined by densitometry analysis (n= 3). e A cell-free binding assay shows direct
binding between RAB10 and Gal-3 (n= 4). f Immunoblots show expression of indicated proteins for Ge518 and Ge269 shCtrl vs. shRAB10. Histograms
show the fold change of protein expression determined by densitometry analysis. g Effect of RAB10 knockdown on cell viability measured by CellTiter-Glo
in Ge518 and Ge269. h Macropinocytosis uptake assay using TMR-dextran in Ge518 shCtrl vs. shRAB10. The histogram represents the fold change of
macropinocytosis activity in Ge518 normalized to nuclei number (n= 3). Data are represented as mean ± SEM (*p < 0.05, **p < 0.01, and ***p < 0.001),
two-way ANOVA, Dunnett’s multiple comparisons test. ns nonsignificant.
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significant inhibition of macropinocytosis visualized by TMR
dextran uptake (Supplementary Fig. 7D). Mechanistically, our
results showed that the Gal-3/RAB10/β1 integrin cluster is
required to regulate macropinocytosis in mesenchymal GSCs.

A transcriptomic signature can be used to predict sensitivity to
Gal-3/macropinocytosis blockade. To evaluate how the Gal-3/
macropinocytosis addiction status could be predicted, we used the
differential gene expression analysis based on Gal-3high vs. Gal-
3low generated from the TCGA dataset (Supplementary Table 2).
Subsequently, we generated a list of Gal-3/survival-associated
genes predicted to identify and to confirm the strength of our
signature to predict sensitivity to Gal-3/macropinocytosis inhi-
bitors. We first interrogated the TCGA dataset to evaluate the
subset of macropinocytosis-addicted GBM (Supplementary
Fig. 8A). Our data showed that our signature identified about 20%
of GBM specimens and it mostly encompassed mesenchymal
GBM. However, a few classical and one-proneural GBM were
present, indicating that it is not only mesenchymal GBM patients
that can be targeted (Supplementary Fig. 8A). As a training
cohort, we then requested GSCs from the Mayo Clinic Brain
Tumor Patient-Derived Xenograft National Resource based on
their expression of genes associated with the Gal-3 addicted vs.
non-addicted signature (Fig. 6A). Similar to Ge835, Ge518, and
Ge269, we observed a higher rate of TMR-dextran uptake for the
mesenchymal GSCs GBM59, GBM116, and GBM150, which
show high Gal-3 and RAB10 expression (Fig. 6B and Supple-
mentary Fig. 8B, C). Of note, the mesenchymal GSCs
GBM39 showed a lower rate of TMR–dextran uptake compared
to the other mesenchymal Gal-3-addicted models, and GBM10,
with low RAB10 expression, showed no macropinocytosis activ-
ity. In contrast, the other classical and proneural GSCs did not
(GBM6) or barely showed uptake of TMR-dextran (GBM12 and
GBM64), validating the strength of our signature (Fig. 6B).
Moreover, we found sensitivity to macropinocytosis inhibitor,
EIPA, for all the mesenchymal GSCs GBM59, GBM116,
GBM150, and GBM39 (Fig. 6C). In contrast, GBM12, GBM10,
and GBM6 were not significantly affected by EIPA treatment.
Nevertheless, we did observe a decrease of GBM64 cell viability
under EIPA treatment, whereas GBM64 belongs to the classical
subtype, probably due the inhibition of sodium-hydrogen
exchanger (NHE) activity (Fig. 6C). Of note, as for GBM biop-
sies, RAB10 was found expressed in all GSCs subtypes (Supple-
mentary Fig. 8D). Remarkably, our transcriptomic signature does
not correlate with any consistent mutation profile in our different
GSC models (where no common driver mutations were found for
GBM59, GBM116, and GBM150) (Supplementary Table 6).
Collectively, with our patient cohort in Geneva and our training
cohort from the Mayo clinic, we were able to predict sensitivity to
macropinocytosis inhibition based only on their transcriptomic
signature. Our study emphasizes how precision medicine should
take into account not only a transcriptomic signature but rather
combined molecular and cellular signatures to guide therapy in
GBM patients. More importantly, our results revealed an
enhanced macropinocytosis activity regulated by Gal-3 and
RAB10 in a non-oncogenic mutant KRAS context for a subset of
GBM.

Galectin-3 inhibitor disrupts Gal-3/RAB10 binding and inhi-
bits macropinocytosis-mediated GSC survival. Modified citrus
pectin (MCP) antagonizes Gal-3 by binding to the carbohydrate
recognition domain of Gal-3, and consequently, impairs Gal-3
functions related to its carbohydrate binding38–40. Then, we
sought to investigate whether our findings can be translated to the
clinic. As a proof-of-concept, we tested whether Gal-3 inhibition

with MCP could induce a decrease in macropinocytosis and in
macropinocytosis-mediated survival in our GSCs. Consistent with
our results, we found a significant inhibition of TMR–dextran
uptake in the mesenchymal GSCs, Ge518, Ge269, and Ge835
following MCP treatment (Fig. 7A). Accordingly, GSC survival
was significantly affected under MCP treatment in the
mesenchymal GSCs but also in some of the non-mesenchymal
GSCs (Ge970.2 and Ge885), confirming that MCP effects are not
restricted to Gal-3 inhibition (Fig. 7B)41. Accordingly, in the
Mayo Clinic Training cohort, we also found a significant decrease
in GBM6, GBM12, and GBM64 cell viability under MCP treat-
ment (Fig. 7C). Moreover, treatment with MCP of Ge904, ecto-
pically expressing high Gal-3, and RAB10-mediated significant
increase of macropinocytosis induced a significant decrease of
their viability (Supplementary Fig. 9A).

Moreover, we observed a significant decrease of Gal-3 specific
co-immunoprecipitation with RAB10 by performing immuno-
precipitation of RAB10 followed by immunoblotting for Gal-3 on
Ge518 treated with MCP (Supplementary Fig. 9B). Consistently,
we showed that RAB10/Gal-3 interaction can be blocked with
MCP by using a cell-free binding assay (Supplementary Fig. 9C).
In line with these results, MCP induced a decrease in β1 integrin
and Gal-3 colocalization as visualized by immunofluorescence
(Supplementary Fig. 9D). In vivo, Ge269 and Ge518 mice bearing
tumors orally treated with 1% MCP show a significantly smaller
tumor burden (Fig. 7D, E). In contrast, we did not observe any
difference in GBM10 mice bearing tumors between the untreated
and the MCP treated group (Fig. 7F). Collectively, our results
provide a proof-of-concept and a strong rationale for testing Gal-
3 inhibition for a subset of patients in GBM therapy.

Discussion
Macropinocytosis has been described as an endocytic process that
allows cancer cells to uptake nutrients (proteins and extracellular
fluids). Commisso et al.16 have shown that KRAS mutant pan-
creatic tumors benefit from enhanced macropinocytosis.
Recently, we showed that KRAS-dependent lung tumors rely on
macropinocytosis driven by the αvβ3/KRAS/Gal-3 complex14.
Here, we provide evidence that enhanced macropinocytosis-
mediated survival can be driven in a WT KRAS context. Here, we
report Gal-3/RAB10/β1 integrin interaction as a key modulator of
macropinocytosis in a subset of GBM patients. The biochemical
association between Gal-3, RAB10, and β1 integrin as well as
macropinocytosis inhibition was achieved with MCP, a natural
inhibitor of Gal-3. Moreover, our findings highlight macro-
pinocytosis as an important contributor to mesenchymal GSCs
survival. Indeed, our data showed that Gal-3high GSCs are
uniquely addicted to macropinocytosis and defined a tran-
scriptomic signature that can be used to predict Gal-3/macro-
pinocytosis addiction. Collectively, our findings raise the question
of whether macropinocytosis blockade can be envisaged in a
subset of WT KRAS cancer cells.

Gal-3 expression has clinical relevance in GBM as its expres-
sion is correlated with poor survival. Gal-3 is found highly
expressed within pseudopalisading cells that surround the peri-
necrotic area. Accordingly, GBM cells with a mesenchymal sig-
nature are enriched for Gal-3. Indeed, thanks to gene expression
profiles (using image-guided multiregional glioblastoma sam-
pling), Jin and et al.22 have shown that tumor cells from the
perinecrotic region show high expression of mesenchymal genes,
confirming data provided by the IvyGAP. To survive and avoid
cell death, mesenchymal GBM cells residing in this harsh
microenvironment need to use alternative cellular processes to
fuel themselves. In our previous study, we showed that
mesenchymal GSCs are sensitive to glucose deprivation but are
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not affected by Glut3 (an upregulated glucose transporter in GBM
cells) knockdown, suggesting the existence of alternative
pathways36. On studying Gal-3 expression in GBM cells exposed
to a variety of stress stimuli, Ikemori and colleagues found that
NF-κB inhibition by specific proteasomal inhibitors decreased the
expression of Gal-3 leading to apoptotic processes23. Indeed, Gal-
3 expression itself protects GBM cells from apoptosis, and its

knockdown induces cell death and delays tumor growth in vivo in
U87MG (2D established GBM line). In addition, Gal-3 expression
can be modulated by hypoxia and nutrient-deprived conditions as
well as by RUNX2 and HIF-1α24,42. Our results, in GSCs, remain
in line with these previous studies as we found an upregulation of
Gal-3 expression under hypoxic conditions. Interestingly, we
showed that only a subset of tumors expressing high Gal-3 is
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dependent on Gal-3 for survival. However, the pharmacologic
knockdown of Gal-3 with MCP induces a decrease in cell survival
even for non-mesenchymal GSCs. Moreover, considering that all
our GSCs express Gal-3, our findings point out the relevance of
Gal-3 targeting for a subset of GBM and the importance of
precision medicine.

Using a loss-of-function approach, we have determined that
Gal-3 is required for macropinocytosis-mediated survival of
mesenchymal GSCs. In an attempt to decrypt Gal-3 signaling, we
used and compared gene expression profiles between Gal-3high

versus Gal-3low samples in GBM patients from different GBM

datasets. We showed that Gal-3high co-expressed genes are enri-
ched for a mesenchymal signature. The gene ontology enrichment
analysis revealed genes involved in several cellular processes that
were consistent with the described functions of Gal-324. Of note,
several genes involved in the regulation of endocytosis were
identified such as ANXA2, SERPINE1, SH3GL2, SNAP91, and
CAV128,43. However, our pull-down assay of Gal-3 combined
with LC-MS did not confirm these candidates, but rather allowed
the identification of RAB10 and β1 integrin as potential mod-
ulators of macropinocytosis in our mesenchymal GSC models. By
interacting with Gal-3, KRAS-GTP enhances the translocation of
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Gal-3 to the plasma membrane, thereby promoting PI3-K/Akt
downstream signaling to stimulate macropinocytosis44. As for
KRAS, active RAB members carry GTP and are associated with
the plasma membrane45. One of the most interesting outcomes of
our study is the identification of RAB10 not only as a direct
binding partner of Gal-3 but also as a modulator of macro-
pinocytosis in mesenchymal GSCs. Several studies have already
investigated how different RABs (RAB5, RAB7, RAB20, and
RAB21) are recruited to ruffles and are involved in
macropinocytosis18. Our data reveals that the interaction between
Gal-3 and RAB10 represents a critical contextual signal that is
required for macropinocytosis. As such, we believe that macro-
pinocytosis can occur in a subset of GBM cells that highly express
Gal-3 and RAB10. Consistent with this idea, we did not observe
enhanced macropinocytosis in a mesenchymal model of GSC
(GBM10) with a high expression of Gal-3 but a very low
expression of RAB10. Mechanistically, our results also identify β1
integrin as a critical partner of Gal-3/RAB10 as shown by mac-
ropinocytosis inhibition upon the genetic or pharmacologic
knockdown of β1 integrin. The identification of this cluster in the
mesenchymal GSCs sheds new light on macropinocytosis reg-
ulation in cancer cells.

With 70 members, RABs represent the largest family of the
GTPase family (with 44 sub-families) that have been identified in
humans. RABs widely differ among organisms and across phy-
logeny, reflecting the complexity of membrane transport events to
which they contribute. However, only five RABs are consistently
found in all eukaryotes, RAB1, RAB5, RAB6, RAB7, and RAB11,
demonstrating their critical function.

In the context of our study, we have identified RAB10 as a
critical molecule that is required for macropinocytosis-mediated
survival. As for Gal-3, RAB10 knockdown induced a decrease in
cell survival and macropinocytosis rate. However, unlike Gal-3
knockdown, our GSCs did not survive RAB10 knockdown and we
had to generate 2D cell lines to be able to derive our cells, sug-
gesting the critical function of RAB10 in GSC survival and,
potentially, in GBM stemness. Several studies have shown that
RAB10 was highly expressed in several cancers (such as liver and
hepatocarcinoma, HCC)46. In HCC, a loss-of-function approach
revealed several RAB10 downstream signaling pathways (such as
InsR, Met/HGFR, c-Kit/SCFR, EphA3, EphB4, VEGFR2/KDR,
Akt/PKB/Rac) that could be responsible for the regulation of cell
survival. RAB10 can also regulate intracellular vesicle trafficking
and has been shown to contribute to insulin-mediated translo-
cation of glucose transporter type 4 (GLUT4) in adipocytes47.
Moreover, RAB10 participates in the basement membrane pro-
tein trafficking to the lateral plasma membranes, promoting fibril
formation48. Consistent with this idea, the authors showed that
RAB10 over-expression increases both the amount of Collagen IV
in the pericellular space and the fibrillar nature of the basement
membrane. Of great interest, we found that our gene ontology
enrichment analysis based on Gal-3high vs. Gal-3low in GBM
patients highlighted genes involved in collagen catabolism/
metabolism. Here, it is interesting to point out that, besides their
role in macropinocytosis activity in GBM cells, Gal-3 and RAB10
might cooperate to regulate collagen metabolism in GBM.

The analysis of the Gal-3 interactome (via BioGRID) revealed
more than 200 proteins that have been shown to bind to Gal-3.
Among them, several proteins have been found in the reverse
phase protein array from TCGA such as CAV1, HSP70, FN,
PCNA, ITGB1, and ANXA1. For some other proteins, we did not
find them in our IP-MS analysis but rather other members of
their family like myosins (MYH9, MYH10), serpins (serpinA3,
serpinB3, and serpin E2), and cell adhesion molecules (CAMs)
such as MCAM and ICAM. Myosins are implicated in different
forms of mobility including phagocytosis, vesicle trafficking or

cell motility49. Gal-3 interaction with the unconventional MYH10
could be also involved in GBM cell motility, as MYH10 has been
localized at the tips of filopodia and undergoes forward and
retrograde movement within filopodia50. Moreover, MYH10 can
bind to several RABs, including RAB10, and to transmembrane
proteins such as CD44. Gal-3 is also known to bind to several
CAMs such as laminin, Lamp, and Mac-2 binding proteins24.
CAMs represent membrane receptors that mediate cell–cell and
cell–matrix interactions. Many families including cadherins,
selectins, integrins, or CD44 belong to CAMs and their expres-
sion is critical for transducing intracellular signals responsible for
many cellular processes (such as migration, invasion, and
angiogenesis). MCAM, also known as MUC18 or CD146, is
upregulated in tumors of neuroectodermal origin and is involved
in melanoma cell metastasis51,52. In melanoma, metastasis is
promoted by Gal-3 interaction with MCAM, leading to cytokine
secretion from vascular endothelial cells53. As for myosins, ser-
pins, and integrins, we also showed that Gal-3 could interact with
ICAM and desmoglein in GBM cells. Altogether, our study
highlighted the complexity of the Gal-3 network in GBM.

In this era of precision medicine, it is clearly critical to being able
to identify GBM patient populations that could be sensitive to
targeted therapy6–8. By using a gene subset distinguishing between
Gal-3high vs. Gal-3low co-expressed genes, we were able to split our
small panel of GSCs between macropinocytosis-addicted vs. non-
addicted. Moreover, by validating our transcriptomic signature on a
different cohort, from the Mayo Clinic, we believe this signature
could be expanded for clinical testing with clinically active Gal-3
inhibitors. Interestingly, some FDA approved Gal-3 inhibitors such
as TD139 (from Galecto Biotech) in idiopathic pulmonary fibrosis
or GM-CT-01 and GR-MD-02 (both from Galectin Therapeutics)
in metastatic melanoma were found safe and well-tolerated by
patients (clinical trials registered in clinicaltrials.gov: NCT03832946,
NCT02117362, and NCT01723813, respectively). Therefore, based
on our analysis of the TCGA dataset, we estimate that 20 % of GBM
patients may show significant responses to agents targeting Gal-3/
macropinocytosis. Remarkably, Gal-3 blockade by MCP appeared
to be beneficial even for non-mesenchymal GSCs that are macro-
pinocytosis non-addicted. Collectively, our study paves the way for
considering macropinocytosis targeting in GBM as a promising
strategy for clinical testing.

Materials and methods
GBM cell lines and patient-derived models. All cells were cultured in a standard
tissue culture incubator maintained at 37 °C with 95% humidity and 5% CO2.
Isolation of glioblastoma-initiating cells was performed as reported54. Ge269, 518,
835, 885, 898, 904, and 970.2 were cultured in Dulbecco’s modified Eagle’s medium
(DMEM)/F12 with Glutamax supplemented with B27 supplement and b-FGF, EGF
both at 10 ng/ml with antibiotics (GSC medium). GBM6, 10, 12, 39, 64, 116, 150,
and 59 were requested from the Mayo Clinic Brain Tumor Patient-Derived
Xenograft National Resource from Dr. Jann Sarkaria and cultured in GSC medium.
We derived GDCs36. GDCs were maintained in DMEM-high glucose/glutamax,
10% fetal bovine serum, 1% penicillin/streptomycin. GSCs and GDCs were con-
firmed to be mycoplasma negative before experiments. GSCs gene expression has
been assessed by quantitative real-time polymerase chain reaction36. All primers
are listed in Supplementary Table 7.

Orthotopic brain tumor xenograft model. All work was performed in accordance
with the animal research committee of Geneva under the approved protocol (GE/
38/20). 6-10-week-old female nu/nu immunocompromised mice weighing
approximately 20–25 g were purchased from Charles River Labs, housed five per
cage, and standard husbandry for specific pathogen-free provided by animal facility
staff. Mice were allowed to acclimate for at least two weeks before any manip-
ulation. Ge269 bearing genetic manipulations (shCtrl vs. shGal-3) were orthoto-
pically transplanted following washing and resuspension in phosphate-buffered
saline (PBS). Briefly, injection of tumor cells was made with a Hamilton syringe
mounted on the frame, descending through the preformed hole to a depth of 3.6
mm into the putamen, a site far from the ventricles, and with little critical activity
in the mouse. Injection of cells was at one microliter/minute. The syringe was
withdrawn slowly over 5 min, the hole plugged with bone wax, and the scalp closed
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with two sutures and skin glue. Bodyweight was measured for each mouse pre-
implantation, and then twice weekly for the duration of the experiments. Any
mouse losing more than 15% of the pre-procedure body weight was euthanized
immediately according to our protocol. Animals were monitored daily to evaluate
tumor progression, and those exhibiting signs of morbidity and/or development of
neurological symptoms were euthanized immediately (i.e., death was not used as an
endpoint). Due to an absence of tumor in the brain after death, one animal was
excluded from the shGal-3 group.

Subcutaneous injection. Ge269, Ge518, and GBM10 GSCs (5 × 106 tumor cells in
200 µl of PBS) were injected subcutaneously into the right flank of 6–10-week-old
female nu/nu immunocompromised mice. Mice were treated with oral MCP (1%
solution in the drinking water and replaced every 2 days). Tumor sizes were
monitored three times per week with caliper until they were harvested (at 1000
mm3). Animals with a tumor size between 100 and 150 mm3 were then randomly
allocated to each group, n= 3 for the vehicle (water) and n= 4 for the MCP group.

Chemical inhibitors. MCP (PectaSol, Econugenics) was used at the concentration
of 0.5% for cell viability and macropinocytosis assay for 3 days and 1 h, respec-
tively. EIPA (5-(N-Ethyl-N-isopropyl)amiloride) and chlorpromazine were pur-
chased from Sigma-Aldrich and used at the concentration of 0.5 µg ml−1 for cell
viability and macropinocytosis assay for three days and 1 h, respectively.

Genetic knockdown and expression constructs. Cells were infected with shRNAs
for vector control (shCtrl, Open Biosystems), Gal-3 (Open Biosystems), RAB10
(Open Biosystems), PLX307 RAB10 (Addgene). Lentiviruses were produced36, by
co-transfection of 293T cells with lentiviral backbone constructs and packaging
vectors (ps-PAX2 and VSVG) using Lipofectamine 3000 (Thermo Fisher). The
supernatant was collected 48 and 72 h post-transfection. Two weeks after pur-
omycin selection, knockdown levels were confirmed by immunoblot analysis, and/
or quantitative PCR and GSC were maintained in culture for one to two months at
maximum as we observed a significant change in their growth otherwise. Gal-3 was
ectopically expressed in GBM cells by transfecting the pEGFP-Gal-3 plasmid
(Addgene).

Macropinosome visualization and quantification. Macropinosome visualization
experiments were performed14 for 2D culture and with some modifications for the
3D culture conditions. Briefly, cells were collected in 15 ml tubes in GSC medium.
Macropinosomes were marked using a high-molecular TMR–dextran (Life Tech-
nologies) at a final concentration of 1 mgml−1 for 1 h at 37 °C with or without
EIPA/MCP pretreatment for 1 h at 0.5 µg ml−1 or 0.5%, respectively. At the end of
the incubation period, cells were rinsed three times in cold PBS and immediately
fixed in 2% cold formaldehyde. Cells were DAPI-treated for 10–15 min to stain
nuclei and GSCs were coverslips mounted onto slides using Fluorsave (Calbio-
chem). Images were captured using an LSM800 Airyscan confocal microscope with
1.4 NA 63× oil-immersion lens using minimum pinhole (30 µm), or with Zeiss
AxioCam microscope with 60×, 40×, and 20× objectives, leading to the calibration
of 0.33 µm/pixel and 0.67 µm/pixel. Data were analyzed using the “Analyze Par-
ticles” feature in ImageJ (National Institutes of Health).

Cell viability assay. GSCs were seeded at 20,000 cells per well in white 96-well
plates in GSC medium. Cell viability was determined using CellTiter-Glo assay kit
(Promega). Each condition consisted of, at least, three replicate wells and then
luminescence read using a Cytation3 reader (BioTek). For cell viability assay under
hypoxic conditions, GSCs were exposed either to atmospheric O2 conditions in a
conventional hood and incubator (21%), or to 1% O2 by using the Ruskinn 300
InVivO2 hypoxia workstation (Baker) for 72 h. GSC medium was pre-equilibrated
to 1% O2 by flushing with the corresponding gas mix.

GSC 3D invasion in matrigel. GSC was seeded into 8-well chamber slides loaded
with 150 µl of matrigel, on ice, after 1 h of EIPA or MCP pre-treatment. Totally,
150 µl of GSC medium was added on top of matrigel and GSC cell were incubated
at 37 °C for 24 h to allow invasion assessment. Images were captured using EVOS
microscope (life technologies) and analyzed using the “Analyze Particles” feature in
ImageJ.

Immunoblotting. Proteins were extracted in RIPA buffer and quantified using the
Pierce BCA kit (Thermo Fisher). Totally, 20–30 µg of protein was boiled in NuPage
buffer (Thermo Fisher) and loaded onto a denaturing SDS-polyacrylamide gel
(10%), transferred to PVDF membranes and blotted with anti-mouse or -rabbit
HRP-conjugated secondary antibodies (Bio-Rad). The following antibodies were
used for immunoblotting: Gal-3 (Cell Signaling), RAB10 (Cell Signaling), β1
integrin (P4C10, Millipore), pAKT (Cell Signaling), AKT (Cell Signaling), pERK
(Cell Signaling), ERK (Cell Signaling), and β-actin HRP (Sigma-Aldrich) as loading
control. For protein expression analysis, expression was normalized to β-actin then
compare to their respective control. For analysis of AKT and ERK activation, p-Akt
and p-ERK were normalized to total AKT and total ERK, respectively, then
compared to their control.

Cell fractionation. Subcellular fractionation (SF) was performed following the
protocol provided by Abcam (http://www.abcam.com/ps/pdf/protocols/
subcellular_fractionation.pdf). Cells were lysed in sucrose–HEPES SF-based buffer
for 30 min and cell lysates were then centrifuged. The pellet was resuspended in the
nuclear buffer and the supernatant was ultra-centrifuged at 100,000g at 4 °C then
collected as the cytosolic and membrane fraction. Finally, the supernatant was
ultra-centrifuged at 100,000g at 4 °C, and the cytosolic fraction being in the
supernatant. The pellet was resuspended with the SF buffer.

Histological analysis, immunohistochemistry, and immunofluorescence. For
immunohistochemical staining of formalin-fixed paraffin-embedded tissues, anti-
gen retrieval was performed in citrate buffer at pH 6.0 and microwave for 15 min.
Sections were blocked, then incubated overnight at 4 °C with primary antibody
Gal-3 (Cell signaling), pAKT (Cell Signaling), AKT (Cell Signaling), Ki67 (Che-
micon), and CD31 (Abcam) followed by biotin-conjugated anti-rabbit IgG and an
avidin–biotin peroxidase detection system with 3,3′-diaminobenzidine substrate
(Vector), then counterstained with hematoxylin (Sigma). Immunofluorescence of
formalin-fixed paraffin-embedded GSCs was performed as reported55. The fol-
lowing primary antibodies against human antigens were used: rabbit anti-Gal-3
(Cell signaling) and mouse anti-RAB10 (Santa Cruz). The following fluorochrome-
labeled secondary antibodies were used: Alexa Fluor (555 or 488)-labeled goat or
donkey anti-mouse, or anti-rabbit antibodies. A Nikon Eclipse C1 Confocal
microscope, as well as a Nikon Eclipse TE2000-E, were used for imaging.

RAB10/Gal-3 cell-free binding assay. The RAB10/Gal-3 cell-free binding assay
was performed as reported14. Briefly, 96-well plates were coated with purified
human Gal-3 (Biolegend, 0.5 µg in 100 µl), incubated at 4 °C overnight, and then
blocked with 50 mg/mL bovine serum albumin (BSA) for 90 min at 30 °C. After
washing, recombinant human RAB10 (Prospec PRO-1361, from 0.25 to 0.5 µg/
well) and MCP were combined and added for a total volume of 100 µl, then
incubated for 4 h at 30 °C. Wells were washed, fixed with 2% PFA in PBS for 15
min at room temperature, washed, and then incubated with rabbit monoclonal
RAB10 antibody (Abcam, 0.5 mg/mL diluted 1:100) for 1 h at RT. Wells were
washed again and incubated with the secondary antibody (Life Technologies
A11034, AF488 goat anti-rabbit IgG or A21206, AF488 donkey anti-rabbit IgG,
both diluted 1:200) for 1 h at RT. Wells were washed three times and fluorescence
read using a Cytation3 reader (BioTek) (ex.: 485 nm, em.: 538 nm) to quantify the
binding of RAB10 to Gal-3.

RAB10 kinetic assay. The RAB10 kinetic assay was performed using fluorescent
BODIPY-GTP (Molecular Probes)56,57. Briefly, RAB10 proteins were diluted at 5
µM in assay buffer (1× TBS, 5 mM MgCl2, 0.1% BSA) and mixed in 384-well plates
with indicated concentrations of GST-Gal-3 or GST as a control. Following 10 min
incubation, the reaction was started by the addition of BODIPY-GTP to the final
concentration of 0.5 µM, and recorded using a time-lapse fluorescence measure-
ment in a Tecan Mplex plate reader (ex.:480 nm, em.:510 nm).

Immunoprecipitation and immunoblots. Lysates from Ge518 and Ge269 shGal-3
and shCtrl were generated using an IP-MS kit (Life technologies). Immunopreci-
pitation of Gal-3 and RAB10 experiments were carried out according to the
manufacturer’s instructions. For immunoblot analysis, 30 µg of protein was boiled
in NuPAGE buffer and resolved on a pre-cast gel (Life technologies). Beads were
resuspended in 100 μl of 6 M urea in 50 mM ammonium bicarbonate (AB). Totally,
2 μl of Dithioerythritol (DTE) 50 mM in distilled water were added and the
reduction was carried out at 37 °C for 1 h. Alkylation was performed by adding 2 μl
of iodoacetamide (400 mM in distilled water) for 1 h at room temperature in the
dark. Urea concentration was reduced to 1M by addition of 500 μl of AB and
overnight digestion was performed at 37 °C with 5 μL of freshly prepared trypsin
(Promega) at 0.1 μg/μl in AB. Supernatants were collected and completely dried
under speed-vacuum. Samples were then desalted with a C18 microspin column
(Harvard Apparatus, Holliston, MA, USA) according to manufacturer’s instruc-
tions, completely dried under speed-vacuum, and stored at −20 °C. LC–ESI–MS/
MS was performed on a Q-Exactive Plus Hybrid Quadrupole-Orbitrap Mass
Spectrometer (Thermo Fisher Scientific) equipped with an Easy nLC 1000 liquid
chromatography system (Thermo Fisher Scientific).

Analysis of IP–MS Data. Peak lists (MGF file format) were generated from raw
data using the MS Convert conversion tool from ProteoWizard. The peaklist files
were searched against the Human Reference Proteome database (Uniprot, 2018-06,
21044 entries) combined with an in-house database of common contaminants
using Mascot (Matrix Science, London, UK; version 2.5.1). Trypsin was selected as
the enzyme, with one potential missed cleavage. Precursor ion tolerance was set to
10 ppm and fragment ion tolerance to 0.02 Da. Carbamidomethyl of cysteine was
specified as fixed modification. Deamidated of asparagine and glutamine, as well as
oxidation of methionine, were specified as variable modifications. The Mascot
search was validated using Scaffold 4.8.4 (Proteome Software). Peptide identifica-
tions were accepted if they could be established at greater than 6.0% probability to
achieve an FDR less than 0.1% by the Peptide Prophet algorithm with Scaffold
delta-mass correction58. Protein identifications were accepted if they could be
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established at greater than 80.0% probability to achieve an FDR less than 1.0% and
contained at least two identified peptides. Protein probabilities were assigned by the
Protein Prophet algorithm59. Proteins that contained similar peptides and could
not be differentiated based on MS/MS analysis alone were grouped to satisfy the
principles of parsimony. Proteins were annotated with GO terms from NCBI. A
simple quantitative analysis based on the Normalized Total Spectra method was
performed between the control and Gal-3 knockdown groups. A multiple t test
with a significant level at p < 0.05 was applied for the triplicates where protein
count was detected.

Reverse transcription quantitative PCR (RT-qPCR). Isolation of total RNA was
performed by using RNeasy kit from Qiagen according to the manufacturer’s
instructions. RNA concentration was determined using a spectrometer. Totally,
500 ng of total RNA was used to synthesize cDNA using a TAKARA kit according
to manufacturer’s protocol. Primer sequences is described in Supplementary
Table 7. Real-time PCR was performed using SYBR Green reagent at the genomic
platform core facilities (University of Geneva). Efficacy tests have been performed,
and all primers have been validated prior utilization. The relative level of each
sample was normalized to, at least, two housekeeping genes (EEF1A1, ALAS1, TBP,
and/or Tuba2). RT-PCR reactions were carried out in, at least, technical and
biological triplicates, and the average cycle threshold (CT) values were determined.
For evaluating Gal-3 expression after low oxygen exposure, GSCs were exposed to
atmospheric O2 conditions in a conventional hood and incubator (21%), or to 1%
O2 by using the Ruskinn 300 InVivO2 hypoxia workstation (Baker) for 48 h. GSC
medium was pre-equilibrated to 1% O2 by flushing with the corresponding gas mix.

Analysis of RNASeq data. The SR100—libraries TruSeqHT stranded—Illumina
HiSeq 4000 was used and the sequencing quality control was done with FastQC
v.0.11.5. The quality distribution along the reads plot validated for all samples. The
reads were mapped with STAR aligner v.2.5.3a to the UCSC human hg38 reference.
The average mapping rate was 92.97%. The differential expression analysis was
performed with the statistical analysis R/Bioconductor package edgeR v. 3.18.160.
Briefly, the counts were normalized according to the library size and filtered. The
genes having a count above one count per million reads (cpm) in at least four
samples were kept for the analysis. The raw gene number of the set is 26’485. The
poorly or not expressed genes were filtered out. The filtered data set consists of
12,737genes. The differentially expressed genes tests were done with exact test
using a negative binomial distribution. The differentially expressed genes p-values
are corrected for multiple testing error with a 5% FDR (false discovery rate). The
correction used is Benjamini–Hochberg (BH). Then, the Figure was generated
through Morpheus (https://software.broadinstitute.org/morpheus).

In silico data analysis. As reported36, SurvExpress was also used to retrieve p
value for Kaplan–Meier analysis of all galectins from TCGA dataset61. Survival
analysis was performed for the Freije dataset. For TCGA, Rembrandt, IvyGAP, and
Gravendeel datasets, data were obtained using GlioVis data portal for visualization
(http://gliovis.bioinfo.cnio.es/) with a Log2 fold change of 1.5 and p value 0.05 for
differentiate gene expression analysis. GlioVis uses Turkey’s Honest Significant
Difference to evaluate the p value of the pairwise comparisons. For the reverse-
phase protein array data for the TCGA dataset (Agilent-4502A platform), a cutoff
of 0.11 was used. For evaluating our transcriptomic signature, genes expressed in
the TCGA GBM RNASeq dataset were ranked using Nearest neighbors analysis
(Pearson correlation) from Morpheus (https://software.broadinstitute.org/
morpheus/) to check the similarity with LGALS3. Unsupervised hierarchical
clustering (one minus Pearson correlation metric, average linkage method) was
used to group genes (rows) and patients (columns) in the dataset (https://software.
broadinstitute.org/morpheus/). The gene enrichment analysis was done using
DAVID Bioinformatics resources62,63. Reactome was used to generate the protein
enrichment analysis of the IP–MS data64.

Statistics and reproducibility. Sample size and statistics for each experiment are
provided in the Results section and Fig. Legends. Data shown are representative of
results obtained for multiple experiments as noted in Fig. Legends. All statistical
analyses were performed using one-way ANOVA, and two-way ANOVA (except
when Student’s t test is noticed), with p < 0.05 considered significant. We also
performed an analysis of variance applying a bivariate analysis. For in vivo
experiments, all statistical analyses were carried out using Prism software
(GraphPad). Chi-squared tests or t tests were used to calculate statistical
significance.

Data and software availability. The Supplemental Data includes nine supple-
mental figures and seven supplemental tables. Further information and requests for
resources and reagents should be directed to and will be fulfilled by the Lead
Contact and corresponding author, upon reasonable request.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The RNASeq data that support the findings of this study are available in Gene Expression
Omnibus with the accession codes GSE173784.
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