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Abstract: The discovery of new antibiotics is mandatory with regard to the increasing number of
resistant pathogens. One approach is the search for new antibiotic producers in nature. Among
actinomycetes, Bacillus species, and fungi, myxobacteria have been a rich source for bioactive
secondary metabolites for decades. To date, about 600 substances could be described, many of them
with antibacterial, antifungal, or cytostatic activity. But, recent cultivation-independent studies on
marine, terrestrial, or uncommon habitats unequivocally demonstrate that the number of uncultured
myxobacteria is much higher than would be expected from the number of cultivated strains. Although
several highly promising myxobacterial taxa have been identified recently, this so-called Great Plate
Count Anomaly must be overcome to get broader access to new secondary metabolite producers.
In the last years it turned out that especially new species, genera, and families of myxobacteria
are promising sources for new bioactive metabolites. Therefore, the cultivation of the hitherto
uncultivable ones is our biggest challenge.
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1. Introduction

We know little about the real diversity of myxobacteria in the environment. How many
myxobacteria are cultivable under standard laboratory conditions? How many resist these cultivation
efforts and lie undiscovered in the ground? After an introduction to myxobacteria, the status of
antibiotics, myxobacterial secondary metabolites, the Great Plate Count Anomaly phenomenon,
and microbial biogeography, the diversity of cultivable and uncultivated myxobacteria in different
habitats is presented. Therefore, numerous sequences from the NCBI database were analysed. The
intent of this review is to draw attention to the high amount of undiscovered myxobacteria and
encourage further discovery and isolation of these hidden treasures with regard to their potential as
new antibiotic producers.

2. Biology and Phylogeny of Myxobacteria

Myxobacteria are soil dwelling deltaproteobacteria and are distributed all over the world.
Temperate zones, tropical rain forests, arctic tundra, deserts, acidic soils [1–3], marine and other
saline environments [4–7], and even caves [8], for example, are appropriate habitats. Myxobacteria can
be isolated from various natural sources as soil, bark, rotting wood, leaves of trees, compost [9], or
dung of herbivores [1,10]. They live aerobically, except the only described facultative anaerobic genus
and species, Anaeromyxobacter dehalogenans [11]. Nevertheless, it is highly likely that further facultative
or even strictly anaerobic myxobacteria exist, which hitherto withstand the common isolation efforts.
Currently the monophyletic order Myxococcales comprises 3 suborders, 10 families, 29 genera, and 58
species (Figure 1).
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for locomotion, and well studied in Myxococcus xanthus, are known: social (S-) motility, powered by 49 
retraction of type IV pili is responsible for the movement of cells which travel in groups [13]. In 50 
addition, extracellular matrix polysaccharide (EPS), also referred to as fibrils, are used. Therefore, the 51 
intrinsic polarity of rod-shaped cells lays the foundation, and each cell uses two polar engines for 52 
gliding on surfaces. It sprouts retractile type IV pili from the leading cell pole and secretes capsular 53 
polysaccharide through nozzles from the trailing pole [14]. On the other hand, slime secretion enables 54 
cell movements, when cells were isolated from the group (adventurous A-motility) [15]. For a 55 
detailed description of myxobacterial gliding mechanisms see Nan et al. [13] and Faure et al. [16]. 56 

Due to their nutritional behavior and based on their specialization in degradation of 57 
biomacromolecules, members of the order Myxococcales can be divided into two groups: predators 58 
(the majority), which are able to lyse whole living cells of other microorganisms by exhausting lytic 59 
enzymes, and cellulose-decomposers, the latter are represented by the genera Sorangium and 60 
Byssovorax [12]. But, as mentioned for the (facultative) anaerobic myxobacteria, it is also highly likely 61 
that further cellulose-degrading genera exist, which successfully resisted standard cultivation 62 
attempts. 63 

If nutrients become rare, the cells undergo an impressive process of cooperative morphogenesis. 64 
Cells agglomerate and form species-specific fruiting bodies by directed cell movement [12]. These 65 
fruiting bodies consist of one to several sporangioles [1]. The architecture of these fruiting bodies 66 
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Figure 1. Monophyletic order Myxococcales (delta-proteobacteria), suborders, families, and genera of
myxobacteria (status May 2018). The number of species within the genera is mentioned in brackets
(original graphic from Corinna Wolf, modified by K. I. Mohr).

Myxobacteria are fascinating because of their extraordinary social lifestyle, which is unique in the
bacterial domain. Under appropriate environmental conditions, vegetative cells move in swarms by
gliding over solid surfaces [12]. Myxobacteria do not have flagella, but two motility systems, used
for locomotion, and well studied in Myxococcus xanthus, are known: social (S-) motility, powered
by retraction of type IV pili is responsible for the movement of cells which travel in groups [13]. In
addition, extracellular matrix polysaccharide (EPS), also referred to as fibrils, are used. Therefore, the
intrinsic polarity of rod-shaped cells lays the foundation, and each cell uses two polar engines for
gliding on surfaces. It sprouts retractile type IV pili from the leading cell pole and secretes capsular
polysaccharide through nozzles from the trailing pole [14]. On the other hand, slime secretion enables
cell movements, when cells were isolated from the group (adventurous A-motility) [15]. For a detailed
description of myxobacterial gliding mechanisms see Nan et al. [13] and Faure et al. [16].

Due to their nutritional behavior and based on their specialization in degradation of
biomacromolecules, members of the order Myxococcales can be divided into two groups: predators
(the majority), which are able to lyse whole living cells of other microorganisms by exhausting
lytic enzymes, and cellulose-decomposers, the latter are represented by the genera Sorangium and
Byssovorax [12]. But, as mentioned for the (facultative) anaerobic myxobacteria, it is also highly likely
that further cellulose-degrading genera exist, which successfully resisted standard cultivation attempts.

If nutrients become rare, the cells undergo an impressive process of cooperative morphogenesis.
Cells agglomerate and form species-specific fruiting bodies by directed cell movement [12]. These
fruiting bodies consist of one to several sporangioles [1]. The architecture of these fruiting bodies ranges
from simple, single sporangioles (M. xanthus, Cystobacter spp.), stalked sporangioles (M. stipitatus), or
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even delicate tree-like structures of high complexity (Chondromyces spp.; Stigmatella spp.) [10]. Colors
of cells/fruiting bodies vary from milky, yellow, orange, red, brown to even black (Figure 2) [1].
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Figure 2. Variation of myxobacterial fruiting bodies. Genus/species, strain designation, (agar
medium) are mentioned. (a) Myxococcus xanthus Mxx42 (P); (b) Cystobacter ferrugineus Cbfe48 (VY/2);
(c) Archangium sp. Ar7747 (VY/2); (d) Chondromyces sp. (Stan 21 with filter); (e) Sorangium sp. Soce
1462 degrading filter paper on Stan 21 agar; (f) Polyangium sp. Pl3323 (VY/2); (g) Cystobacter fuscus
Cbf18 (VY/2); (h) Corallococcus coralloides Ccc379 (VY/2).

A known function of these mainly carotenoid or melanoid pigments is to provide protection
against photo-oxidation [17]. Within the fruiting bodies, most of the vegetative cells die and serve as
food for the remaining cells, which convert into short and hardy myxospores, especially resistant to
desiccation [18,19]. These spores are not as heat-resistant as Bacillus spores, but they can survive in the
environment and are able to germinate under appropriate conditions even after decades of resting [1].
Therefore, it is possible to isolate myxobacteria from dried environmental samples, which were stored
for several years at room temperature [10]. A fruiting body consists of 105–106 cells [18]. This ensures
that the new cycle starts with a sufficient amount of cells, necessary for the typical collaborative
feeding [20]. A further very interesting feature of myxobacteria is their ability to produce a large
number and variety of secondary metabolites, as described in the next section.

In 1892, Thaxter was the first who described myxobacteria in literature [19]. He found out that
Chondromyces crocatus was a bacterium and he had discovered its unicellular vegetative stage. This
was spectacular, because until such time, C. crocatus had been considered a slime mold for more than
20 years [14]. Studies by Bauer [21], Kofler [20], Jahn [22,23], and Kühlwein [24] followed in the early
20th century. Myxobacteria have always fascinated scientists due to their social behavior, including
cooperative swarming, group predation, and multicellular fruiting body formation. Myxococcus xanthus
for example has become one of the model systems for the study of prokaryotic development [25].
Today, beside their capabilities to produce promising bioactive secondary metabolites, myxobacteria
are of utmost importance in elucidating multicellular behavior in bacteria, as well as working out
social evolution theory.

3. Current Status of Antibiotics and Myxobacterial Secondary Metabolites

Before the first antibiotics were commercially available in the early 20th century, people were
delivered helplessly to various kinds of infections like pest, cholera, and tuberculosis, which often
reached epidemic proportions and have cost the lives of millions of people [26]. In 1940, quinine
was used against malaria, the arsenic derivative arsphenamine, Salvarsan, was used against syphilis,
and sulfa drugs like Prontosil were used against mainly Gram-positive cocci infections. However,
most agents of infectious diseases were still untreatable. The situation improved radically with the
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detection of the first beta-lactam antibiotic, penicillin, produced by the mold Penicillium rubens [27].
Henceforth, soil organisms like fungi [28] and bacteria [29] as producers of secondary metabolites
with bioactive properties moved into the focus of research. The Golden Age of Antibiotics started.
Aminoglycosides [30], tetracyclines [31], and macrolides [32] are only some examples of important
antibiotic classes, discovered in those days. Numerous pharmaceutical companies participated on
large-scale screening activities of antibiotic producing organisms, mainly actinobacteria [33]. However,
in most cases, it took only a few years from the launch of a new antibiotic to the detection of the first
resistant germs [34]. Incorrect use in human medicine, incorrectly prescribed antibiotics, extensive
agricultural use and fast spread of resistant bacteria caused by increasing mobility led to substantial
problems with multi-drug resistant bacteria. Some of the most problematic germs belong to the
so-called ESKAPE-panel: Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter
baumannii, Pseudomonas aeruginosa, and Enterobacter spp, are mainly responsible for nosocomial
infections. Since the 1960s more and more companies retracted from the time- and cost-consuming
screening procedures. Of the 18 largest pharmaceutical companies, 15 abandoned the antibiotic
field [35]. Indeed, from the late 1960s through the early 1980s, the pharmaceutical industry introduced
many new antibiotics to solve the resistance problem. After that the antibiotic pipeline began to dry
up and fewer new drugs were brought to market [36]. This led to a dangerous bottleneck of currently
available reserve-antibiotics and a widely held concern over the lack of innovation and productivity in
the research and development of novel bioactive substances [37]. Eligible countermeasures include the
development of synthetic and semi-synthetic drugs, evaluation of rediscovered drugs and the classical
screen of natural secondary metabolite producers. Here, especially new genera and species are of
great interest [38]. But for natural production of secondary metabolites in large-scale fermentation
processes the corresponding producer strains have to be isolated from nature. Maintenance, cultivation,
and upscale are challenging. Beside the appropriate expertise and equipment for fermentation and
isolation of substances from the fermenter broth, for every producer strain the specific biotic and abiotic
conditions need to be determined. Myxobacteria for instance are one of the most promising natural
product producers, but demanding with regard to isolation and large-scale cultivation. Successful
handling of these organisms places special challenges to microbiologists and biotechnologists in
equal measure.

Myxobacteria are among the best natural product producers, together with actinomycetes [39],
Bacillus species [40], and fungi [31]. Even shortly after their discovery, scientists described predatory
and cellulolytic action of myxobacteria. Already in 1947, Singh complained that many antibiotics were
isolated from various groups of microorganisms, except myxobacteria [41]. He observed that some
species of the Myxococcaceae lyse living bacteria, including Gram-negatives such as Pseudomonas
fluorescens and Bacterium (Escherichia) coli, and concluded that a detailed study of myxobacteria may
be profitable in discovering new antibiotics. In 1955, Mathews and Dudani investigated the lysis of
human pathogenic bacteria by myxobacteria [42] and in 1962, Noren and Raper described the antibiotic
activity of myxobacteria in relation to their bacteriolytic capacity [43]. But, it took another 15 years
until the first antifungal metabolite, ambruticin, was isolated from a Sorangium strain (Figure 3) [44].
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Figure 3. Sorangium sp. strain Soce 1014, an ambruticin-producer, swarming on VY/2-agar and
the structure of ambruticin A, the first secondary metabolite which was isolated and described
from myxobacteria.

The majority of myxobacterial compounds are polyketides, non-ribosomal polypeptides, and their
hybrids, terpenoids, phenyl-propanoids, and alkaloids [45]. Many of these substances show promising
activities against bacteria [46,47], viruses [48], fungi [49], cancer cells [50] immune cells [51], and
malaria [52], respectively, as well as unusual modes of action [53]. Many strains produce metabolites
belonging to multiple structural classes, as well as a number of chemical variants on each basic
scaffold [48]. Whole-genome sequencing of several myxobacterial strains like Sorangium cellulosum [54]
and Myxococcus xanthus [55] has revealed that the secondary metabolite potential is far greater than
that suggested by fermentation under standard laboratory conditions.

It is, of course, possible to isolate new substances from known (myxobacterial) species [51,52].
But again: the low hanging fruit have long been harvested and it is more likely to find new substances
in new families, genera and species [53,56–61]. The study of Hoffmann et al. confirmed this [41]. The
authors found a correlation between taxonomic distance and the production of distinct secondary
metabolite families, and supported the idea that the chances of discovering novel metabolites are
greater by examining strains from new genera rather than additional representatives within the same
genus. For comprehensive overviews about secondary metabolites produced by myxobacteria and
their mode of action, I recommend Weissman and Müller [48] and Herrmann et al. [49].

4. The Great Plate Count Anomaly and Microbial Biogeography

Based on cultivation, approximately only 1% of the naturally occurring bacterial community is
known and characterized so far [62]. Most bacterial groups remain uncultured and uncharacterized,
because appropriate culture conditions are lacking [63]. This Great Plate Count Anomaly is the
oldest unresolved microbiological challenge. The Austrian microbiologist Heinrich Winterberg was
the first who described this phenomenon in 1898 [64]. Winterberg observed that the number of
microbial cells in his samples did not match the number of colonies formed on nutrient media. Since
Winterberg, numerous authors who investigated bacterial communities in different habitats confirmed
this phenomenon. The establishment of culture independent analytical methods in the early 1990s
greatly expanded the dimension of knowledge about the bacterial diversity again [65]. Estimations,
that about 80% of bacteria resist standard laboratory cultivation approaches were obsolete after
publication of the first culture-independent analyses of bacterial communities, which were based on
16S rRNA-coding genes. Now, the estimated amount of uncultivable species has increased to 90–99%
and it can be assumed that many of these uncultured bacteria could be probably a source for new
antibiotics [66].

Notwithstanding the frequent discovery and description of new species/genera, the real number
of myxobacteria is unknown. The current knowledge about the diversity of organisms is always just a
snapshot. However, several (NCBI) 16S rRNA-sequences of cultures belong to the order Myxococcales,
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but are only distantly related to valid type strains (up to 12% distance) and therefore probably belong to
new species, genera, or even families. One example: “Anaeromyxobacter dehalogenans” strain WY75 (Acc.
no. KC921178) was isolated from ginger foundation soil and shows highest similarity (87.4%) to the
type strain of Sandaracinus amylolyticus. It is therefore at least a representative of a new myxobacterial
family (Figure 4). Nevertheless, as long as a valid publication of such strains in taxonomic journals
as for example IJSEM or Antonie van Leeuwenhoek is absent, even the current diversity of cultivable
myxobacteria is not fully reflected.
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Figure 4. Neighbour joining tree with myxobacterial type strains shows the phylogenetic position of
strain WY75, cultivated from ginger foundation soil, within the Sorangiineae suborder. Comparison of
16S rRNA sequences revealed only 87.4% similarity to the next myxobacterial type strain S. amylolyticus.
Accession numbers are in brackets. Bar, 0.1 substitutions per nucleotide position.

Although there are numerous reports about cultivable myxobacteria in soils and other habitats [1],
it has to be considered that myxospores may tolerate considerable environmental extremes. Most
isolation techniques involve the cultivation of extensively dried samples [10]. Species which are present
in the sample as vegetative cells will probably not survive this process and therefore will not grow on
the isolation plates. Also, and irrespective of the detection method used, it is difficult to determine
whether myxobacteria were present as dormant spores or metabolically active vegetative cells in the
environmental sample taken [12]. The standard procedure to isolate myxobacteria is drying the sample
(soil, plant material, etc.) at 30 ◦C to reduce growth of undesired bacteria and fungi, and subsequent
placement on water agar with E. coli-bait (to attract predators) and on Stan 21 agar with filter paper
(for cellulose decomposers), respectively (Figure 5). As the degradation of biomacromolecules like
microbial cells (E. coli bait) or cellulose requires a sufficient amount of viable myxobacterial cells in the
sample, underrepresented species will probably not be able to start growing.
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Stan 21 with filter paper to enrich cellulose decomposing strains and b. on water agar with E. coli bait
(cross) for predators. Numerous transfers of fruiting bodies/swarm edge material to fresh plates are
necessary to purify myxobacteria.

As was mentioned at the beginning, myxobacteria live in various habitats. It is recommended,
but not mandatory, to investigate uncommon habitats from different geographic regions with regard to
new secondary metabolite producers. But, already within microscale areas of environmental samples,
different strains of one myxobacterial species show surprising genetic differences, as biogeographical
studies of myxobacteria revealed. Biogeography is the study of the distribution of organisms across
space and time [67]. As mentioned by Ramette and Tiedje, prokaryotic biogeography is “the science
that documents the spatial distribution of prokaryotic taxa in the environment at local, regional,
and continental scales” [68]. Hanson et al. propose that four processes, selection, drift, dispersal,
and mutation, create and maintain microbial biogeographic patterns on inseparable ecological and
evolutionary scales [69]. For example, Bacteria and Archaea are globally distributed [70]. At the
class level, the β-proteobacteria, cyanobacteria, actinobacteria, and flavobacteria have been shown to
display worldwide distribution in marine or terrestrial ecosystems [71–73]. According to Hedlund
and Staley, at the genus level, many prokaryotes have a cosmopolitan distribution in their respective
habitats [74]. Recent global surveys indicate that most bacteria are restricted to broad habitat types, as
there is little overlap among bacterial taxa found in soils, sediments, freshwater, and seawater [75,76].
Dawid gave a comprehensive overview about the ecology and global distribution of myxobacteria
in the macroscale range [1]. The study was based on data given in the literature as well as on his
own analyses of almost 1400 soil samples from 64 countries and all continents. The study found that
an exceptionally high average species number was determined for soils from countries that belong
to the winter rain climates of the Mediterranean type, the permanent wet rain forest climates and
the tropical semi-desert climates. However, soils of countries with cold temperate coniferous forest
climates and cool temperate intermediate climates with peat mosses and coniferous forests harbor
a low average number of species. Jiang et al. determined biogeographic patterns of myxobacterial
taxa in deep-sea sediments [77]. They screened DNA from four different depths for myxobacteria-like
16S rRNA genes and provided the first evidence, that marine myxobacteria are phylogenetically
distinct from terrestrial species. Brinkhoff et al. studied the biogeography and phylogenetic diversity
of marine myxobacteria and found a deep-branching monophyletic cluster of exclusively marine
myxobacteria within the Myxococcales [78]. Wielgoss et al. sequenced the genomes of 22 Myxococcus
xanthus isolates from a 16 × 16-cm-scale patch of soil. They found out “that two closely related
M. xanthus clades inhabiting the same centimeter-scale patch of soil, display strong sexual isolation,
with homologous recombination occurring frequently between members within each clade, but with
almost no detectable levels of genetic exchange occurring across clades” [79]. Kraemer et al. resolved
the micro biogeography of social identity and genetic relatedness in local populations of M. xanthus at
small spatial scales [80]. The study comprises samples taken from fruiting bodies, neighboring fruiting
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bodies separated by millimeters, neighborhoods of fruiting bodies separated by centimeters and finally
soil patches separated by meters and kilometers. They found out that “relatedness decreases greatly
with spatial distance even across the smallest scale transition and that both, social relatedness and
genetic relatedness are maximal within individual fruiting bodies at the micrometer scale but are
much lower already across adjacent fruiting bodies at the millimeter scale.” What will this mean
with regard to myxobacteria and natural product research? The cellulose degrading genus/species
Sorangium cellulosum serves as an example: already in 2003, the myxobacterial strain collection of the
HZI (former GBF) comprises 7000 strains from which 23.2% belong to S. cellulosum. On the other
side, S. cellulosum strains produced 48.4% of all known secondary metabolites described so far from
myxobacteria [81]. This means that closely related strains also have huge potential to produce different
chemical and biological bioactive metabolites [48,49] and that the search for new antibiotic producers
can be successful in both, small and large scale. For a comprehensive overview about biogeographic
patterns of myxobacteria, I refer to Velicer et al. [82]. For a deeper insight to prokaryotic biogeography,
see the study of Ramette and Tiedje [73] and the review of Hanson et al. [74].

With regard to numerous studies based on cultivation-dependent approaches, the number of
publications that focus on the non-cultivable myxobacteria is comparatively small. Nevertheless, there
are about 4000 (often unpublished) 16S rRNA sequences deposited at the NCBI database which are
mentioned to be “uncultured Myxococcales”. Under consideration of further myxobacteria-related
sequences which are just deposited as “uncultured (delta) proteobacterium” [83] or even “uncultured
bacterium”, the true extent of uncultivated myxobacteria can just be surmised. Most of the deposited
sequences are “by-products” from cultivation-independent studies of bacterial communities in general,
without special focus on Myxococcales.

To give an impression about the diversity of cultivable and uncultivable myxobacteria in different
habitats, published and unpublished 16S rRNA sequences from NCBI are compared with each other
and the results are summarised subsequently.

5. Distribution of Myxobacteria in Different Habitats

5.1. Terrestrial Habitats

Myxobacteria are optimally adapted to terrestrial habitats, which manifests as a wide range
of different phenotypes, such as social swarming and gliding, fruiting-body formation, resting
myxospores, excretion of secondary metabolites with antibiotic or antifungal activity into the
environment, as well as predation or cellulose decomposition. It is therefore not surprising that
the majority of known species (and secondary metabolite producers) was isolated or detected from
soil samples. In 1947, Singh investigated myxobacteria in soils and composts, their distribution,
number, and lytic action on bacteria [44]. From soils of Great Britain, he isolated species of Myxococcus,
Chondrococcus (later renamed to Corallococcus) and Archangium and estimated that the numbers of
myxobacteria ranged from 2000 to 76,400/gram in soil. In an actively decomposing compost of sludge
and straw, the number of Myxococcus fulvus was more than 500,000/g. Singh was also the first who
detected the potential of myxobacteria to produce antibiotics.

In 2005, Wu et al. were the first to explore the diversity of myxobacteria (in a soil niche) by
cultivation-independent methods with myxobacteria-specific primers and probes [84]. Moreover, in
the latter study members of Myxococcus, Corallococcus, Cystobacter, and Nannocystis were cultivated.
Nevertheless, screening a special library using Cystobacterineae- and Sorangiineae-specific probes
and subsequent sequence analyses revealed a somewhat higher number of myxobacteria within the
sample, from which many show only minor similarity to known species. Therefore, even in this first
cultivation-independent study about Myxococcales, the authors suggested that myxobacteria in nature
are much more diverse than were ever known, even in a single soil sample.

Jiang et al. investigated fruiting and non-fruiting myxobacteria and gave a phylogenetic
perspective of cultured and uncultured members of this group [85]. The authors analysed the diversity
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of myxobacteria in campus garden soil and found out that many undescribed relatives exist in nature
and concluded that there are two forms: the fruiting and the non-fruiting types. They postulated
that most of the uncultured myxobacteria might represent taxa, which rarely form fruiting bodies, or
may lack some or all of the developmental genes needed for fruiting body formation. The majority
of sequences from the cultivation-independent approach are only distantly related to known genera
and species. As myxobacteria are widespread in terrestrial habitats, consequently, they are frequently
detected in those cultivation-independent studies on microbial diversity. Even in uncommon habitats
like adult worker ants myxobacteria were detected [86].

In our study about myxobacteria in two geographically distant locations, namely sand from
Kiritimati Island and German compost, we also compared the diversity of cultivable myxobacteria to
those from cultivation-independent clone libraries [9]. The study revealed an overrepresentation of the
genera Myxococcus and Corallococcus with standard cultivation methods (Figure 6).
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Figure 6. Myxobacterial cultures isolated from Kiritimati sand (a,d) and German compost (b–f)
modified from Mohr et al. [9]. (a) Corallococcus (Myxococcus) macrosporus, (b) Corallococcus sp.,
(c) Myxococcus sp. (d) Archangium gephyra, (e) Corallococcus sp., (f) Polyangium fumosum.

However, phylogenetic analyses of the 16S rRNA gene sequences from clones revealed a great
potential of undescribed myxobacteria in both sampling sites. Several OTUs (operational taxonomic
units; groups of sequences with ≥97% similarity) represented unknown taxa exclusively detected by
cultivation-independent analyses, but not by cultivation. Furthermore, clone library analyses indicated
that the myxobacterial community of the investigated samples is predominantly indigenous.

Most of the known myxobacterial secondary metabolites were previously isolated from
terrestrial myxobacteria, because the majority of strains was isolated from (moderate) terrestrial
habitats. However, myxobacteria are extremely adaptable and can also be found in demanding
environments like acidic soils, fresh water, oceans and salines, anaerobic/microaerophilic, and extreme
habitats, respectively.

5.2. Acidic and Alkaline Habitats

Acidic wetlands have a major impact on the global carbon and water cycles. With high acidity
(pH 3.5 to 5.0), low temperatures, and extremely low concentrations of mineral nutrients (5 to 50 mg
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per liter), wetlands are moderate to extreme habitats. Their microbial diversity remains poorly
understood, because only microbial populations involved in CH4 cycling, i.e., methanotrophic bacteria
and methanogenic archaea, have attracted considerable research interest. Other members of the
microbial communities in acidic Sphagnum peatlands remain largely unknown [87].

The pH range for growth of the majority of myxobacteria is rather narrow, approximately 6.5–8.5.
Therefore, they are common in soils of pH 6–8 (neutral to slightly alkaline pH). However, acidic
or alkaline habitats also seem to be suitable for myxobacteria [10]. Even in 1977, Hook isolated
ten species from waters of an alkaline bog and adjacent soils [88] like Archangium, Corallococcus,
Melittangium, Myxococcus, and Sorangium (former Polyangium). Corallococcus coralloides, (formerly
Myxococcus coralloides) was dominant in the terrestrial samples. With pH between 6.0 and 8.7, the
investigated habitats were between slightly acidic and slightly alkaline. In 1979, Rückert also described
C. coralloides as the predominant species in soils of pH 4.1–4.9 and as dominant as M. fulvus in soils of
pH 3.0–3.5 [89]. In alpine acidic soils C. coralloides was the third-most dominant species behind two
Myxococcus species. But, Rückert also noted that the overall myxobacterial diversity in acidic soils (pH
3.5–4.9) was less than in slightly acidic or neutral environments (pH 5.0–7.8). In 1984, Dawid isolated
Myxococcus xanthus, M. virescens and Polyangium sp., but no cellulolytic species from undisturbed
Sphagnum bogs of the Hohen Venn, Belgium [3].

Mohr et al. studied myxobacteria in peat bog and fen with cultivation and cultivation-independent
methods [2]. Therefore, 38 moor samples of soil, water, plant residues, mud, and feces-material
(Figure 7a–c) were screened using standard as well as moor-adjusted cultivation conditions (low pH,
low temperature, moor-water for preparation of agar plates), screening numerous replicates over
several years. The pH of moor samples analyzed in this study was between 4.0 and 7.0 and therefore
comparable to those from the other studies. But almost exclusively species of the genus Corallococcus
could be isolated from acidic soils of the Harz-region (Figure 7d,e). A Sorangium strain was detected
on a raw culture plate with filter (Figure 7f), but could not be purified. In addition, the community
composition of acidic high moor and fen revealed by cultivation-independent 16S rRNA clone library
analysis gave a rather different picture of the myxobacterial diversity.
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Figure 7. (a) Brockenfeld high moor; (b) fen Am Sandbeek; (c) Brockenfeld high moor scarp. Isolated
Corallococcus sp. strains from moors (d) strain B19, (e) strain B2t-1. (f) Sorangium cellulosum (orange)
on a raw culture plate (Stan 21 with filter) inoculated with soil material from moor. Pictures are from
Mohr et al. (2017) and modified [2].
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Phylogenetic analyses of clone sequences revealed a high diversity of undescribed myxobacteria
in high moor and fen. Many sequences represent totally unknown taxa. However, numerous clones
were closely related to sequences from other cultivation-independent studies of eubacterial diversity
in which samples from peat swamp, wetlands peat bog, Sphagnum moss, pine forest, acidic fen soil,
and forest soil were analysed (Figure 8). As mentioned above, cultivation exclusively revealed strains
from the genus Corallococcus (but from almost all analysed samples).
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Figure 8. Part of a distance tree showing some myxobacterial type strains, some representative clone
sequences and one representative culture sequence from our study [2] as well as sequences from
uncultivated myxobacteria from other studies. Red: clones from Brockenfeld high moor; blue: clones
from fen Am Sandbeek; green: representative culture from Brockenfeld high moor. Accession numbers
are given in brackets. Origin of sequences from uncultured myxobacteria are mentioned. Bar, 0.1
substitutions per nucleotide position.

To my knowledge, no publications about (bioactive) secondary metabolites from myxobacteria
isolated from acidic or alkaline habitats are available. However, we screened 21 Corallococcus
spp.-strains from the moor study for production of bioactive metabolites. Raw extracts of all strains
showed high activity against Gram positives (Micrococcus luteus, Staphylococcus aureus, Bacillus subtilis,
and Mycobacterium sp.), the yeasts Saccharomyces pombe and Rhodotorula glutinis, as well as against the
filamentous fungi Mucor hiemalis, but no activity against Gram negatives. HPLC analyses of the raw
extracts revealed three dominant peaks. By HPLC-fractionation of bioactive extracts and subsequent
HPLC-MS analyses the already known substances dibenzylpyrazine, myxothiazol A, and myxothiazol
Z/A-methylester, respectively, were identified (data not published). In summary, the moor habitat is
a promising source and of high interest with regard to the cultivation of prospective new bioactive
secondary metabolite-producing myxobacteria.

5.3. Freshwater Habitats

In natural aquatic environments, microbial cells often build complex, surface-attached biofilm
communities. Within the water body or pelagic zone of unpolluted freshwaters, the number and
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diversity of bacteria is normally lower than on the available substrates. Myxobacteria glide in swarms
over solid surfaces. If it is possible, they prefer attached in contrast to planktonic living.

Only very few studies about myxobacteria in fresh water habitats are published. In the
1960th/1970th several studies dealt with nonpathogenic or pathogenic non-fruiting “myxobacteria”
as colonizers of freshwater fish [90]. However, these publications deal with strains of the
Cytophaga-group, which do not belong to the Myxococcales, but to the Cytophaga—Flavobacterium—
Bacteroides group. No myxobacterial pathogens are published. Reichenbach mentioned that
myxobacteria can also be isolated from fresh water, but explained these findings with soil organisms
notoriously exchange into water bodies, being regularly washed or blown in and often surviving there
periodically or permanently [12].

In 2012, Li and co-workers investigated the myxobacterial community in freshwater lake
mud using high-throughput 454 pyrosequencing and myxobacteria-enriched libraries with
Cystobacterineae- and Sorangiineae-specific primer pairs, respectively, and reported that myxobacteria
were one of the major bacterial groups in the lake mud [91]. Phylogenetic analysis showed that
the limnetic myxobacteria exhibit closer relationships to their soil than to their marine relatives,
but there are also exclusive taxa of limnetic myxobacteria. The major conclusion was that the
unclassified Myxococcales in the lake mud comprise a large portion of the microbiota and exhibit
high species diversity. Kou et al. analysed bacterial communities in sediments of freshwater (Poyang
Lake) in China. There, Anaeromyxobacter dehalogenans turned out to be a main part of the bacterial
community composition (1–14.6%) [92]. In another study about methanogenic microbial communities
in sediments of Amazonian lakes using terminal restriction fragment length polymorphism (T-RFLP)
and pyrosequencing, the proteobacteria revealed as the most abundant phylum in all lake sediments.
Delta-proteobacteria (mainly Myxococcales, Syntrophobacteriales and sulfate/sulfur-reducing bacteria)
dominated this habitat [93]. In 2014, Kandel et al. investigated the abundance, diversity, and seasonal
dynamics of predatory bacteria in aquaculture zero discharge systems by cultivation-independent
analyses and found out that in addition to the detected Bdellovibrio and similar organisms, other
potential predators were highly abundant, especially from the Myxococcales [94].

In the absence of cultures which are verifiable natural fresh water inhabitants, up to now,
no (bioactive) metabolites have been isolated from limnic strains. However, the above-mentioned
detection of exclusively limnic taxa [95] suggest that also the habitat fresh water could be a promising
source for the cultivation of new secondary metabolite producing myxobacteria.

5.4. Marine/Saline Environments

Covering more than roughly 78% of the earth’s surface, water is the most prevalent natural
substance, of which approximately 97.5% is salt water in the world’s oceans [96]. The salt tolerance of
myxobacteria is low in general. It was assumed for a long time that myxobacteria exclusively live in
terrestrial habitats. Indeed, even in 1963, Brockman observed fruiting myxobacteria in sand samples
from an ocean beach in South Carolina [97]. Species of the already known terrestrial genera Archangium,
Chondrococcus (Corallococcus), Chondromyces, Myxococcus, and Polyangium, could be cultivated. As late
as 2002 with Haliangium ochraceum and H. tepidum, the first myxobacterial genus was isolated and
described from coastal salt marshes. The strains differ from known terrestrial myxobacteria with regard
to salt requirements (2–3% NaCl) and the presence of anteiso-branched fatty acids [4]. Other genera,
exclusively detected in marine habitats like Plesiocystis [5], Enhygromyxa [6], and Pseudenhygromyxa [7]
(all Nannocystineae-suborder) followed (Figure 9).
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Figure 9. Marine myxobacterial type strains on agar plates. (a) Haliangium tepidum (DSM 14436T) on
VY/2SWS, (b) Enhygromyxa salina (DSM 15217T) on VY/4SWS, (c) Pseudenhygromyxa salsuginis (DSM
21377T) on 1102, (d) Plesiocystis pacifica (DSM 14875T) on VY/2SWS.

In 2010, Jiang et al. investigated the diversity of marine myxobacteria in comparison to
terrestrial soil myxobacteria [82]. Therefore, they established myxobacteria enriched libraries of
16S rRNA gene sequences from four deep-sea sediments and a hydrothermal vent and identified 68
different myxobacteria related sequences from randomly sequenced clones of these libraries. The
authors concluded that the myxobacterial sequences were diverse but phylogenetically similar at
different locations and depths. However, they separate from terrestrial myxobacteria at high levels
of classification.

In 2012, the study of Brinkhoff and co-workers gave an impressive insight to the marine
myxobacterial community [83]. They detected a cluster of exclusively marine myxobacteria (marine
myxobacteria cluster, MMC) in sediments of the North Sea, but not in the limnetic section of the Weser
estuary and other freshwater habitats. In a quantitative real-time PCR approach, the authors found
out that the MMC constituted up to 13% of total bacterial 16S rRNA genes in surface sediments of
the North Sea. In addition, in a global survey including sediments from the Mediterranean Sea, the
Atlantic, Pacific, and Indian Oceans, and various climatic regions, the MMC appears in most samples
and to a water depth of 4300 m, but there was no synteny to other myxobacterial genomes. The
study of Brinkhoff et al. showed that the MMC is an important and widely distributed but largely
unknown component of marine sediment-associated bacterial communities. Figure 10 shows some
representative clones from different marine habitats mentioned in the Brinkhoff study. The 17 clones
show 95.1–100% similarity to each other and 88–91% to the next type strain Sandaracinus amylolyticus.
This implies that members of the MMC cluster do at least belong to new genera if not even families,
but presumably belong to the Sorangiineae suborder. However, the genus Sandaracinus was published
shortly after the Brinkhoff study, so this relative was not mentioned there.

In 2013, Zhang et al. isolated fifty-eight terrestrial and salt-tolerant myxobacteria from the
saline-alkaline soils collected from Xinjiang, China [95]. Based on morphology and 16S rRNA
gene sequences, the authors identified species of Myxococcus, Cystobacter, Corallococcus, Sorangium,
Nannocystis, and Polyangium. They reported that all the strains grew better with 1% NaCl than without
salt; some Myxococcus strains even grow with 2% NaCl.

Li et al. (2014) chose a cultivation-independent approach to analyze the diversity of myxobacteria
from saline-alkaline soils of Xinjiang, China, too. A semi-nested PCR-denaturing gradient gel
electrophoresis (DGGE) based on the taxon-specific gene mglA (a key gene involved in gliding
motility) was used [98]. In accordance to previous studies, Li et al. also suggested that there are
still many viable, but under standard laboratory conditions uncultured myxobacterial strains in the
investigated saline-alkaline habitat. Natural product classes discovered from marine Myxococcales
strains include polyketides, hybrid polyketide-nonribosomal peptides, degraded sterols, diterpenes,
cyclic depsipeptides, and alkylidenebutenolides [99]. Four genera of marine/saline origin are known so
far (Figure 10) and from two, Haliangium and Enhygromyxa, numerous (bioactive) secondary metabolites
could be isolated [100]: Haliangicin [101], salimabromide [102], salimyxins, enhygrolides [103], and
haliamide [104]. The above-mentioned data reveal that marine/saline environments as oceans harbor
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an enormous potential of new myxobacteria. These organisms are an unexplored resource of novel
antibiotics of novel chemical scaffolds, as mentioned by Albataineh and Stevens, who highlighted the
need for continued discovery and exploration of marine myxobacteria as producers of novel natural
products [104].
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Figure 10. Neighbour joining tree of myxobacterial type strains (16S rRNA-genes), some representative
clones from the MMC-cluster (blue) and the next cultivated relative Sandaracinus amylolyticus. Genera
isolated from marine environment are in green blue. Suborders of the order Myxococcales, origin of
clones, and accession numbers are shown. Bar, 0.1 substitutions per nucleotide position.

5.5. Facultative or Strictly Anaerobic Myxobacteria

All known myxobacteria live aerobically, with one exception: The facultative-anaerobic genus
Anaeromyxobacter comprises one species, A. dehalogenans. The type strain was isolated from stream
sediment and grows with acetate as electron donor and 2-chlorophenol (2-CPh) as electron acceptor [11].
Since 2002, several strains of Anaeromyxobacter were isolated from various habitats. Flooded rice
field soil [105], uranium contaminated surface environment [106], corrosion material of drinking
water pipelines [107], arsenic-contaminated soils [108], or chemically and electro-chemically enriched
sodic-saline soil (unpublished) served as sources for the cultivation of Anaeromyxobacter-strains. A total
of 23 sequences designated as Anaeromyxobacter (sequence lengths > 1000 bp) are available from the
NCBI database (FJ90053–FJ90062, FJ90048, FJ90049, FJ90051, EF067314, AJ504438, KF952446, AF382397,
AF382399, AF382400, FJ939131, KF952441, KF952438, KC921178) and were added to a phylogenetic tree
of myxobacterial type strains. A similarity matrix calculated with arb (www.arb-home.de) revealed
98.4–100% similarity (on basis of 16S rRNA gene) for 20 of these strains to the type strain of A.
dehalogenans. Assuming that the standard value for the definition of a new species is 98.65% [109]
and 94% for a new genus, respectively, the above-mentioned 20 cultures probably do belong to A.
dehalogenans. However, strains OnlyC-B2 (KF952441) and SSS-B8 (KF952438) show only 96.3% and
96.0% similarity to the corresponding type strain (but 99.4% to each other) and putatively represent a
new species. One culture, isolated from ginger foundation soil, and also designated as A. dehalogenans
(KC921178), shows only 86% similarity to the next cultivated (myxobacterial) type strain Vulgatibacter
incomptus. This culture definitely represents at least a new family if not even a new suborder of
myxobacteria (unpublished).

In summary, there are currently two cultivated species of Anaeromyxobacter, but only one is validly
described. But what about further facultative or even strictly anaerobic myxobacteria?

The NCBI search for 16S rRNA gene sequences of “uncultured Anaeromyxobacter” revealed more
than 1200 hits. Nevertheless, not all sequences designated as “Uncultured Anaeromyxobacter” are close
relatives of Anaeromyxobacter, as a revision of randomly selected sequences revealed. For example: the

www.arb-home.de
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sequence GU271851, mentioned as “Uncultured Anaeromyxobacter”, shows 91% similarity to the next
type strain Haliangium tepidum, but only 87% to the type strain of A. dehalogenans [110]. Clone GU271788,
also mentioned as A. dehalogenans, shows 92% to the next type strain, Sorangium cellulosum, but only
86% to Anaeromyxobacter [111]. On the other hand, there are probably numerous sequences deposited
at NCBI which are close relatives of Anaeromyxobacter. However, these sequences are just mentioned as
“uncultivated Myxococcales”, “uncultivated (delta) proteobacteria” or “uncultured bacterium clone”
such as clone EUB_19 (FJ189540), which shows 98.7% [112] or clone A_Ac-2_16 (EU307085), which
shows 97.8% similarity to the next type strain: A. dehalogenans [113]. In 2009, Thomas et al. analysed
the diversity and distribution of Anaeromyxobacter strains in a uranium-contaminated environment by
mainly cultivation-independent methods. Phylogenetic analyses of the clone and culture sequences
revealed that there are at least three distinct Anaeromyxobacter clusters at the IFC (Integrated Field-Scale
Subsurface Research Challenge) site near Oak Ridge, whereby two sides are exclusively represented
by clones. As mentioned above, quantitative PCR assay and pyrosequencing analysis of 16S rRNA
genes also revealed A. dehalogenans as a part of the microbial community in the sediment of Poyang
Lake, the largest freshwater lake in China [95].

To get an impression about the diversity of uncultured Anaeromyxobacter, I added about 80 clone
sequences from NCBI with corresponding designation to a phylogenetic tree of myxobacterial type
strains (data not shown). The clones revealed 90.0–100% similarity on the basis of 16S rRNA gene to
the type strain of A. dehalogenans (AF382396). Figure 11 shows the affiliation of some representative
clones. These clones represent at least several new genera, if not even families of myxobacteria, which
are probably also facultative or strictly anaerobic and which could not be cultivated so far.
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Although the 16S affiliation of clones does not give any information about metabolism of
the corresponding organism, high similarities to aerobic or anaerobic cultures indicate similar
metabolic capabilities. However, no bioactive secondary metabolites have been described so far from
Anaeromyxobacter strains, which is certainly because anaerobic isolation, cultivation, and large scale
fermentation requires special efforts regarding equipment and microbiological skills and experience.
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5.6. Moderate to Extreme Hot or Cold Environments

Myxobacteria are mesophilic and grow well at 30 ◦C, although their temperature range is much
wider. For most myxobacterial strains, the growth temperatures is between 4 ◦C and 44 ◦C. Usually
vegetative cells cannot survive temperatures above 45 ◦C, but myxospores suspended in water tolerate
58–60 ◦C. This property can be used to be purify myxobacteria from mesophilic accompaniment
organisms [12]. A moderate terrestrial habitat was investigated by Brockman in 1976 [114], who
isolated strains of Archangium, Chondromyces, Cystobacter, Myxococcus, Polyangium, and Stigmatella from
arid Mexican soils. He reported a greater species diversity from regions with higher annual rainfall
(400–800 mm compared to 200–400 mm). Moderate thermophilic myxobacteria of Cystobacterineae
and Sorangiineae-suborders, which grew very fast at temperatures of 42 ◦C–44 ◦C, were isolated from
soil samples of semiarid and warm climates by Gerth and Müller [115] (Figure 12). One strain even
grew at 48 ◦C, whereas the majority of the described species grows best at 30 ◦C.Molecules 2018, 23, x FOR PEER REVIEW  16 of 23 
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Figure 12. Moderately thermophilic strains of Sorangium on VY/2 agar. (a) GT47 and (b) GT 41, isolated
by Dr. K. Gerth.

Recently, a new Nannocystis species, N. konarekensis, was isolated from an Iranian desert [111].
The strain shows an optimal growth temperature at 37 ◦C, in contrast to the other known Nannocystis
species N. pusilla and N. exedens, which show optimal growth at 30 ◦C. Iizuka et al. reported about
enrichment and phylogenetic analysis of moderately thermophilic myxobacteria. During their search
for thermophilic myxobacteria in geothermal environments, four strains that grew at temperatures
up to 50 ◦C (optimum 45 ◦C–49 ◦C) could be isolated from various hot springs in Japan [116]. Three
of the cultures were from fresh water hot springs and one was from a coastal saline spring. Even
after repeated enrichment procedures, other thin film-like spreading bacteria accompanied the strains.
PCR, cloning, and sequencing of 16S genes revealed that all cultivated bacteria belong to the order
Myxococcales and showed between 89–99% homology to strains of myxobacteria. Therefore, some of
these cultures represent new undescribed but cultivable species, genera, and perhaps even families
(Figure 13).

Although numerous (cultivation-independent) studies about bacterial diversity of hot
springs/geothermal sources are published, the NCBI search for sequences of uncultured thermophilic
myxobacteria or myxobacteria from hot springs revealed only very few matches. Hot springs are
probably not the most suitable habitat for the mainly mesophilic myxobacteria. But, based on the
cultivation success mentioned by Iizuka et al. [116], it is certainly worth investigating these habitats
more precisely to isolate new myxobacteria.
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(in bold) from hot springs (AB246767-AB246770, AB246772) [117] and alkaline hot spring, all from
Japan. Suborders of the order Myxococcales, origin of samples, and accession numbers are shown. Bar,
0.1 substitutions per nucleotide position.

Some publications deal with myxobacteria from cold environments like Arctic soils. However,
in the study of Brockman who tried to isolate myxobacteria from Alaskan and Canadian Arctic soils,
myxobacterial growth was only observed when soil plates were incubated at 24 ◦C–26 ◦C, but not at
6 ◦C–8 ◦C [118]. In contrast, Dawid described psychrophilic myxobacteria which grow at 4 ◦C but not
under mesophilic conditions between 18 ◦C and 30 ◦C (after 7–9 month of incubation) on samples of
Antarctic soils [117].

Due to long incubation times of psychrophilic strains, their biotechnological use in large scale
fermentation would be expensive and time consuming and would only be worthwhile if a highly
promising antibiotic was detected in such a psychrophilic strain.

6. Conclusion

In summary, myxobacteria are highly adaptable cosmopolitans. They can grow/survive in various
kind of habitats and areas of different, even extreme climatic conditions. In 1993, only 2 suborders, 4
families, 12 genera, and 38 species were assigned to the order Myxococcales [28], but in 2018, already 3
suborders, 10 families, 29 genera, and 58 species are described. Although the number of species grows
every year, consideration of data from cultivation-independent studies reveals that we only see the tip
of the diversity iceberg.

In 2010, 67 distinct core structures and about 500 derivatives were known from approximately
7500 myxobacterial strains [48]. Only seven years later, Herrmann et al. could refer to five natural
product classes produced by myxobacteria [49]. These new molecules show such promising activity
that several of them may serve as early lead structures for drug development. This shows the enormous
potential of myxobacteria as producers of new, bioactive secondary metabolites. As mentioned by
Müller and Wink, three of the most promising approaches toward finding novel anti-infectives from
microorganisms are the use of biodiversity to find novel producers, the variation of culture conditions
and induction of silent genes, and the exploitation of the genomic potential of producers via “genome
mining” [119]. With focus on novel producers, the biggest challenge for microbiologists is to get access
to the so far uncultivated bacteria.
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