
EXPERIMENTAL AND THERAPEUTIC MEDICINE  28:  439,  2024

Abstract. Prostate cancer poses a serious threat to the 
well‑being of men worldwide, with the leading cause of 
mortality being primarily through metastasis. Prostate cancer 
metastasis is dependent on cell communication, which is an 
essential component of this process; yet its exact mechanism 
remains obscure. Nonetheless, cell‑to‑cell communication 
plays a critical part in prostate cancer metastasis. Exosomes 
play an indispensable role in the development of metastatic 
growth by promoting intercellular communication. They are 
pivotal regulatory agents for both prostate cancer cells as well 
as their microenvironment. The present study investigated 
the makeup and function of exosomes in the tumor microen‑
vironment, highlighting their significance to prostate cancer 
metastasis.
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1. Introduction

In 2020, global cancer statistics reported prostate cancer as 
the second most widespread cancer in American men, repre‑
senting 7.3% of all cases. Lung cancer was the most prevalent 
cancer, accounting for 11.4% of all cases (1,2). These statistics 

indicate an estimate of 1,141,259 (7.3%) new cases and 375,304 
mortalities worldwide attributed to prostate cancer among 
men (1). Prostate cancer affects a large number of men every 
year and the incidence and mortality rates can be influenced 
by various factors, such as age, ethnicity, genetic background 
and staging  (3). Prostate cancer exhibits higher incidence 
and mortality rates in developed countries compared with 
developing countries (4). The improvement of prostate cancer 
treatment and the understanding of its pathogenesis are chal‑
lenging tasks. Researchers have identified exosomes and the 
tumor microenvironment (TME) as crucial areas of study and 
active topics of current literature.

Exosomes are nano‑sized organelles encased in a single 
membrane, typically ranging between 30 to 200 nanometers 
in diameter. These organelles contain various chemicals, 
including proteins, lipids, nucleic acids and other substances 
such as amino acids, and metabolites  (5). Exosomes are 
essential for various cellular activities and have the capacity to 
transmit information between cells. These single‑membrane 
organelles can be secreted by various cell types and mediate 
intracellular communication signaling  (6). Exosomes are 
natural nanoparticles that facilitate communication between 
cells, aiding in the regulation of cancerous growth. These 
cellular messengers transfer proteins and other biological 
substances through tissue fluids, affecting the development 
of cancer (7). Exosomes have the potential to respond to the 
growth and progression of tumor cells and can also have an 
impact on the metastasis of tumor cells that are located in 
a remote location (8). Exosomes have a crucial function in 
controlling the TME by affecting various processes, such as 
metastasis, angiogenesis and immunity. These functions are 
crucial in altering the state of the TME (9). The scientific 
community and clinical practitioners have shown considerable 
interest in the mechanism of exosome function in tumors.

The TME encompasses tumor cells, surrounding cells and 
their cytokine secretions, creating a conducive and abundant 
environment for tumor survival and proliferation (10). It is 
important to highlight the intricate and constantly altering 
nature of the TME, as well as the influence that the type of 
tumor may have on its individual components (11). However, 
the essential components of the TME include immune and 
stromal cells, blood vessels and the extracellular matrix (12). 
The composition of the TME and its existence are critical for 
the tumor development, advancement and spread (13). The 
understanding of the impact of the TME on cancer development 
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and progression is critical for identifying novel treatment 
strategies. This relationship can be considered similar to the 
connection between soil and seeds, with exosomes serving 
as essential messengers between the tumor and its environ‑
ment (14). Previous research has revealed a strong interaction 
between TME and exosomes (15). The interaction between 
exosomes and TME remains unclear. As a result, the current 
review aimed to examine the role of exosomes on the regulation 
of prostate cancer cells within the TME.

2. Composition and role of exosomes in the TME

The structure of exosomes and their inherent biological activity 
render them significant to intercellular communication. Their 
discovery and significance first gained prominence in a 1983 
article by Pan and Johnstone, which indicated that exosomes 
released alongside transferrin receptors are involved in sheep 
reticulocyte formation (16). Subsequent research has uncovered 
the ability of exosomes to transport various RNA molecules, 
including but not limited to mRNA, microRNA (miR), transfer 
RNA, ribosomal RNA, small nuclear RNA, small nucleolar 
RNA, piwi‑interacting RNA and small Cajal body‑specific 
RNA (17). As shown in Fig. 1A, exosomes consist of various 
components, such as miRs (miR‑409, miR‑141 and miR‑375), 
mRNAs, DNAs, lipids and functional proteins including 
cluster of differentiation (CD) 9, CD81, CD82, CD83, actin, 
myosin and tubulin (18).

These vesicles serve as important players in various 
physiological and pathological processes, posing challenges 
for researchers to fully comprehend their functions. Exosome 
formation encompasses initiation, endocytosis, multivesicular 
formation and secretion (19). Early endosomes are formed 
during the initiation stage through the invagination of cell 
membrane sites that contain ubiquitination surface recep‑
tors. This process allows for membrane fusion, which creates 
a platform for the detection of Fab1‑YOTB‑Vac1‑EEA1 
domain‑containing proteins, facilitated by the protein 
Rad5 (20). As multivesicular bodies mature, they can either 
undergo degradation by lysosomes or be secreted from the 
cell via Golgi processing or exosomal release. The proteins 
Rab GTPase (Rab) 6 and Rab7 have significant influence 
on multivesicular bodies; Rab6 directs them towards lyso‑
somal degradation, while Rab7 guides them towards Golgi 
processing (21). The involvement of the Rad protein family is 
crucial in various stages of exosome biogenesis.

Within the TME, tumor‑related fibroblasts represent a 
prominent cell population (22). The functioning mechanism of 
fibroblasts associated with tumors remains unknown. Fig. 1B 
demonstrates the significant role of exosomes in enabling 
communication between tumor cells and the neighboring 
microenvironment. A study conducted by Baroni et al (23) 
revealed that exosomes can transport miR‑9, which in turn 
transforms human breast fibroblasts into cells resembling 
cancer‑associated fibroblasts. Zhu et al (24) discovered that 
breast cancer cells can trigger cancer‑associated fibroblast‑like 
characteristics in human breast fibroblasts through exosomal 
miR‑425‑5p. The TGFβ1/reactive oxygen species (ROS) 
signaling pathway is the mediator of this process  (24). 
According to Yan et al (25), exosomal miR‑18b derived from 
cancer‑related fibroblasts can stimulate invasion and metastasis 

of breast cancer by modulating transcription elongation factor 
A‑like 7.

Exosomes have been identified as significant players 
in various cancers and diseases, including breast cancer. 
Kang et al (26) reported that exosomes derived from human 
umbilical cord mesenchymal stem cells (hucMSCs) can boost 
neural function restoration in rats with spinal cord injuries. 
According to their findings, exosomes obtained from hucMSCs 
have potential therapeutic benefits in enhancing motor function 
through their antiapoptotic and anti‑inflammatory properties. 
It is hypothesized that hucMSC exosomes may exert their 
protective effects through modulation of the Bcl2/Bax and 
Wnt/β‑catenin signaling pathways, which are implicated in 
spinal cord injury (26).

Wang et al (27) indicated that the application of exosomes 
sourced from hucMSCs containing miR‑326 can alleviate 
symptoms of bowel disease in mice by inhibiting neural 
communication. The findings suggest that the therapeutic 
potential of exosomes derived from hucMSCs are enhanced 
when they contain high levels of miR‑326, as demonstrated 
by the substantial improvements observed in inflammatory 
bowel disease mouse models treated with these exosomes in 
comparison to those treated with regular hucMSC‑derived 
exosomes  (27). Zhang  et  al  (28) indicated that exosomes 
obtained from hucMSCs can enhance the development 
of diabetic cardiomyopathy by adjusting autophagy 
through the signaling pathway of AMP‑activated protein 
kinase‑Unc‑51‑like autophagy‑activating kinase 1. More recent 
findings have revealed that exosomes obtained from hucMSCs 
selectively target the miR‑138‑5p/SRY‑related HMG‑box‑4 
pathway for regulation, resulting in the suppression of human 
melanoma cell survival (29).

Moreover, endometrial cancer is impacted by exosomes, 
as evidenced by a previous research study (30). Pan et al (30) 
demonstrated that exosomes containing miR‑503‑3p from 
hucMSCs can impede the advancement of endometrial cancer 
cells by suppressing mesoderm‑specific transcripts. Exosomes 
have been shown by numerous studies to enhance the func‑
tions of tumor stromal cells in the microenvironment, leading 
to the promotion of tumor progression (31,32).

3. Interactions between the TME and prostate cancer cells 
are mediated by exosomes

Earlier studies have suggested that exosomes are involved 
in the growth of tumors. A previous study conducted by 
Giovannelli et al (33) indicates that exosomes derived from 
prostate cancer cells can affect the TME, leading to tumor 
progression. Nevertheless, low oxygen levels and acidic condi‑
tions in the TME can influence the production and absorption 
of exosomes by cancer cells (34,35). Low pH will increase the 
yield of exosome separation (36,37).

A previous study has shown that an increase in the pH levels 
in the TME can enhance the therapeutic effects of pharmaco‑
logical ascorbic acid on castration‑resistant prostate cancer 
cells (38). Xi et al (39) have demonstrated that hypoxia‑induced 
activation of ataxia‑telangiectasia mutated regulates the 
secretion of exosomes that are involved in autophagy by 
cancer‑associated fibroblasts, thereby promoting cancer 
cell invasion. Tumor‑derived related exosomes can induce 
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immunosuppressive macrophages to promote the progression 
of intrahepatic cholangiocarcinoma; however the specific 
underlying mechanisms have not been fully elucidated (40). 
The intracellular signaling mechanism of macrophages, the 
processes involving exosome uptake and the regulatory payload 
of the TME have not been specifically elucidated.

Dendritic cells are an important component present in 
the TME. A previous study has shown that tumor‑derived 
exosomes can promote tumor metastasis and development by 
acting on dendritic cells through the heat shock protein (HSP) 
72/HSP105‑toll‑like receptor (TLR) 2/TLR4 pathway (41). 
Pancreatic cancer is characterized by a reduction in the number 
and function of dendritic cells, which affects antigen presenta‑
tion and contributes to immune tolerance (42). Concomitantly, 
hypoxia‑induced exosome secretion promotes the survival of 
prostate cancer cells in both African‑American and native 
American populations in the USA (43). Three distinct path‑
ways have been elucidated by which exosomes can enter 
prostate cancer cells (44). One mechanism of prostate cancer 
cell communication involves direct fusion with the recipient 
cell membrane (45). The second pathway involves the entrance 
of several molecules in the prostate cancer cell by binding to 
its membrane surface (46). The third pathway involves the 
process of endocytosis of prostate cancer cells that allows 
exosomes to enter and secrete exosome contents (2). It should 
be mentioned that p53 has a significant function in enhancing 
the dispersion of exosomes (47,48). In the following sections, 
the role of exosomes is examined in regulating intercellular 
communication between prostate cancer cells and TME, 
focusing on three crucial perspectives.

4. Cancer metastasis and cancer progression

Prostate cancer‑related mortality is predominantly attributed to 
metastasis (49). Prostate cancer cells detach from the primary 
tumor during metastasis, navigate in the bloodstream, and 
eventually establish secondary colonies. During metastasis the 
prevalent site for colonized prostate cancer cells is the bone (50). 

Three distinct categories of bone metastasis in cancer have 
been determined as follows: Osteolytic, osteoblastic and mixed 
lesions (51,52). A previous investigation has demonstrated that 
exosomes derived from prostate cancer cells can merge with 
and transmit signals to the bone stromal cells in the bone tissue. 
The results indicate that exosomes can have a possible function 
in promoting prostate cancer metastasis to the bone (53).

Normal prostate epithelial cells secrete exosomes that 
prevent bone metastasis by failing to transport them to bone 
stromal cells (54). A study conducted by Karlsson et al (55) 
revealed that exosomes extracted from the TRAMP‑C1 mouse 
prostate cancer cell line can considerably impede the advance‑
ment of mononuclear osteoclast precursors by obstructing 
their maturation, leading to a deceleration in their progression. 
Zhang et al indicated (2) that exosomes play a crucial role in 
the progression of androgen‑independent prostate cancer by 
activating heme oxygenase 1. Exosomes have multiple func‑
tions, which facilitate the spread of prostate cancer and promote 
the proliferation of prostate cancer cells through the activity 
of miRs. Therefore, the presence of miRs in exosomes may 
provide a novel diagnostic method for prostate cancer (56,57). 
The circ_0044516 exosome is highly promising as a biomarker, 
as it has the capacity to increase the proliferation and metastasis 
of prostate cancer cells (58). The contribution of exosomes to 
prostate cancer metastasis is yet not fully understood, indicating 
a need for further research in this area.

5. Related regulation of immunity

The immune system plays a crucial role in the growth of 
cancer. Effective communication between tumors and the 
immune system is imperative for the development and spread 
of the tumor, as well as its metastasis. Exosomes present in 
the environment surrounding the tumor, can cause both 
chemotherapy resistance, as well as immune system suppres‑
sion  (59). A detailed comprehension of the way by which 
exosomes mediate immune responses in cancer is essential to 
further examine the development of exosome‑based immuno‑
therapies. Notably, the binding of programmed death‑ligand‑1 
(PD‑L1) to programmed cell death protein 1 (PD‑1) and the 
subsequent signaling to CD8+ cells aims to alleviate immu‑
nosuppression (60). Numerous research studies have revealed 
that prostate cancer cells increase PD‑1 expression to evade 
the immune system (61,62). Simultaneously, the findings of 
Liu et al  (63) have corroborated this assertion. This study 
suggests that exosomes originating from gastric cancer cells 
can elicit immune suppression by altering the gene expression 
levels in CD8+ cells and the patterns of cytokine secretion (63).

Exosome immunotherapy has gained significant attention 
in recent years, particularly with regard to the impact of naso‑
pharyngeal carcinoma cell‑derived exosome PD‑L1 on CD8+ 
T cell activity and immune evasion (64). The exosome PD‑L1 
has been identified as a mechanism of immune resistance 
in non‑small cell lung cancer, which promotes the progres‑
sion of tumors (65). Exosomal miRs serve as mediators in 
the process of immune evasion in neuroblastoma (66). The 
immune evasion of breast cancer is facilitated by the increase 
of exosome miR‑27a‑3p, which is induced by endoplasmic 
reticulum stress. These exosomes regulate PD‑L1 expression 
in macrophages, thus reducing immune response (67).

Figure 1. (A)  The composition of exosomes. Exosomes include miRs 
(miR‑409, miR‑141 and miR‑375), mRNAs, DNAs, lipids and relevant 
functional proteins (CD9, CD81, CD82, CD83, actin, myosin and tubulin). 
(B)  Exosomes act as the mediator between tumor cells and the TME. 
Exosomes can originate from different types of cells, including cancer stem 
cells, macrophages and dendritic cells. Exosomes play a crucial role in regu‑
lating multiple physiological processes and the pathology of tumor cells. miR, 
microRNA; CD, cluster of differentiation; TME, tumor microenvironment.

https://www.spandidos-publications.com/10.3892/etm.2024.12728


WU et al:  EXOSOMES MEDIATE IN THE TUMOR MICROENVIRONMENT AND PROSTATE CANCER CELLS4

In patients with prostate cancer, myeloid suppressor and 
dendritic cells have been observed in the TME and are known 
to exhibit immunosuppressive effects. A previous study has 
indicated that these cells may contribute significantly to the 
proliferation and metastasis of cancer cells  (68). Previous 
studies have indicated that a large quantity of PD‑L1 within 
exosomes can potentially signify the advanced stages of pros‑
tate cancer, leading to a lower rate of survival and negative 
outcome (69,70). It should be emphasized that exosomes origi‑
nating from prostate cancer cells have the potential to alter the 
behavior of macrophages and adjust the immune response (71).

6. Angiogenesis

Hypoxia‑induced angiogenesis is a critical process that drives 
the advancement and dissemination of prostate cancer (72). 
Three stages of angiogenesis have been identified: i) The 
formation of blood vessels; ii) the angiogenesis stage; iii) and 
the maturation stage (73). Angiogenesis requires the synchro‑
nization of regulatory factors and activating signals  (74). 
Exosomes are known to carry angiogenic factors, including 
VEGF and fibroblast growth factors, which promote the 
growth of new blood vessels (75,76). Early detection of pros‑
tate cancer is possible by utilizing biomarkers that are derived 
from proteins present in plasma exosomes associated with 
survival (77).

The Src tyrosine kinase is crucial for the development 
and growth of prostate cancer  (78). Src tyrosine kinases 
impact the process of angiogenesis by activating signaling 
pathways through integrin (79). Earlier investigations have 
indicated that exosomes can contain Src tyrosine kinases 
and facilitate the progression of prostate cancer  (80,81). 
Alcayaga‑Miranda et al (82) revealed that exosomes extracted 
from menstrual stem cells have the ability to effectively 
suppress angiogenesis caused by prostate cancer. A previous 
study has indicated that exosomes can decrease ROS produc‑
tion and promote VEGF release, while also lowering NF‑κB 

activity (83). Exosomes have been shown to possess an impact 
on the formation of blood vessels and as a result influence 
the multiplication of cells in prostate cancer. However, the 
precise mechanisms responsible for this effect require further 
investigation. The in‑depth understanding of the angiogenesis 
mechanisms can be beneficial in improving prostate cancer 
treatment and prognosis.

7. Conclusion

Exosomes have been found to impact cancer metastasis 
and progression and regulate immunity and angiogenesis, 
which are involved in the spread of prostate cancer cells 
(Fig. 2). Nonetheless, the specific mechanisms underlying 
this correlation are currently uncertain. Further analysis of 
these mechanisms has the potential to advance the manage‑
ment and prediction of prostate cancer outcomes (Table I). 
Exosomes play a key inhibitory role in the progression of 

Figure 2. Exosomes play an important role in the communication between 
the TME and prostate cancer cells. Exosomes mainly play a role in cancer 
metastasis, related immune regulation and angiogenesis. TME, tumor 
microenvironment.

Table I. Role of exosomes in TME and prostate cancer.

Author	 TME	 Exosomes	 Mechanism	 (Refs.)

Li et al	 Low PH	 Exosomal proteins	 Acidic microenvironment may facilitate	 (27)
			   exosomes to fuse with prostate cancer cells.
Panigrahi et al 	 Hypoxia	 Unique proteins and	 Hypoxic microenvironment can promote	 (31)
		  triglycerides	 the secretion of exosomes in prostate cancer
			   cells.
Li et al 	 Hypoxia	 Circ0044516	 Promote bone metastasis of prostate cancer.	 (58)
Hosseini et al	 Myeloid	 PD‑L1	 PD‑L1 in exosomes inhibits immune cells	 (71)
	 suppressor and		  in TME and promotes the progression of
	 dendritic cells		  prostate cancer.
Alcayaga et al 	 Hypoxia	 VEGF and FGF	 VEGF and FGF carried by exosomes	 (82)
			   promote angiogenesis in a hypoxic
			   microenvironment and accelerate the spread
			   of prostate cancer cells.

TME, tumor microenvironment; PD‑L1, programmed death‑ligand‑1; FGF, fibroblast growth factors.
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androgen‑independent prostate cancer by activating heme 
oxygenase‑1 (2). Effective communication between tumors 
and the immune system is essential for tumor development 
and spread, as well as metastasis. Exosomes in the tumor 
microenvironment promote the progression of prostate cancer 
by secreting PD‑L1, but macrophages in the immune system 
are able to slow this process. Exosomes in the prostate cancer 
microenvironment can promote the release of VEGF by 
reducing the production of ROS, and at the same time reduce 
the activity of NF‑κB, inhibit angiogenesis, and effectively 
reduce the proliferation of prostate cancer.
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