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Introduction

The historical lack of models recapitulating the complexity of the human intestinal epithelium

has hindered studies into many aspects of human enteric virus biology. Immortalized and

transformed cell lines are typically limited by the presence of only one cell type, whereas sus-

ceptibility in animal models often requires infection routes that differ from humans or necessi-

tates modification of immune system components [1, 2]. In addition, comparing animals from

different species remains a confounding factor when trying to infer how findings may apply to

human health. Thus, the development of human gastrointestinal organoids to study virus–host

interactions marks a significant advance. They provide a physiologically relevant ex vivo plat-

form in which human enteric microorganisms can be studied interacting with the human

intestinal epithelium. Furthermore, their intermediate complexity, falling between cell lines

and animal models, adds an additional tool to better understand these viruses. Here, we high-

light how gastrointestinal organoids have provided new insights into the biology of human

enteric viruses and the potential of this technology for advancing the field.

The different flavors of gastrointestinal organoids

Gastrointestinal organoids are three-dimensional (3D) structures derived from primary tissues

(i.e., patient biopsy) containing intestinal stem/progenitor cells or from human pluripotent

stem cells (hPSCs) [3]. They contain multiple intestinal epithelial cell types that perform criti-

cal functions that are also observed in the human intestine (e.g., absorption, barrier function,

differentiation). Induced pluripotent stem cell–derived human intestinal organoids (HIOs)

most closely resemble the human fetal intestine [4] and may encompass an epithelium alone

[5] or also contain a mesenchyme [6]. However, most infectious disease laboratories work

with human intestinal enteroids (HIEs), patient-derived, 3D epithelium-only structures that

can be transitioned to a 2D monolayer on plates or transwells. HIEs maintain the physiological

and genetic characteristics of their sources for long periods [7–10]. They can be differentiated

from the crypt-like state into villus-like state by withdrawing growth factors required to main-

tain stem cells (i.e., WNT3A) from the culture media [11–13]. Cellular differentiation of spe-

cific cell lineages can be further achieved by pharmacologic or genetic means. For example,

secretory cells are enriched following dibenzazepine (DBZ) treatment to block NOTCH signal-

ing [12] and enteroendocrine cells by overexpression of NEUROGENIN-3 [14]. In addition,

receptor activator of NF-κB ligand (RANKL) treatment of HIE with and without tumor necro-

sis factor alpha (TNF-α) addition has been used to drive microfold cell development [15, 16].

However, HIE and HIO do not completely mimic the intestinal epithelium in vivo. For exam-

ple, they do not entirely reproduce the cellularity observed in vivo as few Paneth cells and no
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Tuft cells are present [17]. Furthermore, the lack of villi and genetic or pharmacologic skewing

of differentiation may also affect the proportionality of individual cell lineages.

Gastrointestinal organoids as culture models for clinical isolates of many

fastidious enteric viruses in vitro

HIOs and HIEs are currently being used to study host–virus interactions and have been suc-

cessfully implemented for difficult-to-cultivate enteric viruses. Enteric viruses in clinical sam-

ples have been traditionally refractive to replication in transformed cell lines [18]. However, a

significant breakthrough was made when intestinal organoid technology was applied for the

first time to the study of enteric virus biology, in particular, the cultivation of clinical rotavirus

isolates directly from stool samples in hPSC-derived HIOs [18]. Host specificity of rotavirus

infection was subsequently demonstrated in HIEs, wherein differentiated HIEs supported

higher human rotaviruses replication than animal rotaviruses [19]. Another example comes

from human norovirus, which has remained refractory to cultivation until recently. Although

a few strains replicate to a limited extent in immortalized human B cells (BJABs) [20], multiple

human norovirus genotypes can be propagated in differentiated HIEs derived from all the seg-

ments of the small intestine [11, 13]. Consistent with epidemiological studies, expression of

histoblood group antigens (HBGAs) is required for replication of some genotypes in HIEs

[13]. A more recent report also demonstrates the growth of human norovirus in epithelium-

only HIOs [21]. However, in a comprehensive comparison in 2 jejunal HIE lines, some geno-

types replicated better whereas other genotypes and specific clinical samples did not at all [11].

This is suggesting that some yet-to-be-determined host factors may be required under some

circumstances. Furthermore, undifferentiated ileal HIEs support both the prototype and clini-

cal human adenovirus 5 serotype species A (HAdV-A), HAdV-B, HAdV-C, and HAdV-F to

higher titers than in transformed lung adenocarcinoma (A549) and embryonic kidney (293)

cell lines. Replication in differentiated HIEs was demonstrated for HAdV-C and HAdV-F

[22]. Finally, our laboratory recently demonstrated that representative human astrovirus

strains from all 3 clades infect 2D HIEs derived from all intestinal segments irrespective of cel-

lular differentiation status [23]. Taken together, HIOs/HIEs support infection of multiple

enteric viruses from clinical samples (Fig 1). Future studies will determine whether they also

provide an avenue for the cultivation of other currently nonculturable human enteric viruses

such as sapoviruses, picobirnaviruses, and some picornaviruses (e.g., klassevirus), as well as

other not previously examined genogroups of the astroviruses (VA2-5 and MLB2-3).

Gastrointestinal organoid infection models uncover human cell tropism for

enteric viruses

Multiple cell types contribute to the complexity of intestinal epithelium and its many func-

tions. Single cell and bulk RNA sequencing, flow cytometry, and immunofluorescence data

have demonstrated that HIOs and HIEs possess distinct epithelial cell types, highlighted by

cell-specific markers including mucin-2 (goblet), Lgr5 (stem), E-cadherin, sucrase isomaltase

(enterocytes), Lysozyme-C (Paneth), and chromogranin A (enteroendocrine) cells [6, 12, 17,

19, 23]. These characteristics have facilitated the use of HIEs/HIOs to determine the cellular

tropism of several enteric viruses. Specifically, rotavirus replication was detected in both enter-

ocytes and mesenchyme in HIOs [18], in addition to the tropism for enterocytes and enteroen-

docrine cells observed in HIEs [19]. Similarly, enterovirus (EV) E11 infects enterocytes and

enteroendocrine cells, but not goblet cells, in HIEs [12], whereas the main causative agent of

hand-foot-and-mouth disease EV-A71 infects exclusively goblet cells [24]. Human adenovirus

type 5 (HAdV-5) preferentially infects goblet cells in HIE, whereas HAdV-41 equally infects
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both goblet and nongoblet cells [22]. Our study showed that human astrovirus VA1 infects

multiple cell types, including goblet cells, mature enterocytes, and intestinal progenitor cells

[23]. This is the first demonstration of progenitor cell infection by an enteric virus [23]. Collec-

tively, these studies demonstrate the potential of HIOs and HIEs to uncover the human cell

tropism of enteric viruses. Although most of the enteric viruses studied in HIEs replicate in

enterocytes (Fig 1) pointing to a mechanism of diarrhea induction, the infection of other cell

types is likewise critical for viral pathogenesis. For example, infection of enteroendocrine cells

provides an explanation for induction of vomiting responses in the host [25], whereas infec-

tion of goblet cells can provide a pathway for crossing the intestinal barrier [26] and mucosal

immune modulation [27].

Gastrointestinal organoids provide new insights into the human innate

immune response to enteric virus infection

Another advantage of the HIO/HIE model is their nontransformed status, thus enabling stud-

ies into the human host response to viral infection. In particular, many transformed cell lines

have defects in innate immune signaling [28], confounding studies regarding the innate

immune response to virus infections [23]. For example, Caco-2 cells did not show noticeable

innate immune responses, whereas HIEs potently induced cytokines and interferon (IFN)-

stimulated genes (ISGs) in response to astrovirus infection [23]. However, the response did

not completely abrogate, but only restricted, astrovirus infection [23]. IFN is also the dominant

HIE innate immune response to EV-E11 and EV-A71 [12, 24] and rotavirus [29]. In the case

of human rotavirus, antagonism of the host IFN response by hijacking host proteins was

directly demonstrated in HIE [30]. Additionally, HAdV was sensitive to type I and III IFNs

Fig 1. Enteric viruses propagated in HIOs and HIEs. Schematic representation of HIEs and HIOs and human enteric viruses

propagated in them to date. Left: HIEs derived from biopsies of intestinal crypts are grown in 3D cultures and then transformed

into 2D monolayers prior to virus infection. Middle: HIOs derived from PSCs can be propagated in 3D culture, chopped into

pieces, and infected with virus before plating. Right: PSC can also be propagated directly as a 2D monolayer prior to virus infection.

Bottom row: Enteric virus particles are shown in specific cell types to indicate their tropism. The figure was prepared with

BioRender (biorender.com). 2D, two-dimensional; HIE, human intestinal enteroid; HIO, human intestinal organoid; PSC,

pluripotent stem cell.

https://doi.org/10.1371/journal.ppat.1008212.g001
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only in HIEs but not in A549 cells [22]. Although these studies have shown the superiority of

HIOs/HIEs over transformed cell lines in investigating innate immune signaling, the lack of

immune cells and intestinal luminal contents (e.g., microbiota) in these models is a recognized

limitation in fully understanding the immune response of the human intestinal epithelium. In

addition, commensal bacteria modulate enteric virus interactions with the host [31]. Hence,

increasing complexity through co-culture with other cell types and/or luminal contents (e.g.,

commensal bacteria) will make these models even more physiologically relevant and superior

for the study of enteric virus pathogenesis [32] and represent an exciting future direction for

this technology.

Additional possibilities for using gastrointestinal organoids in infectious

disease studies

The ability to study clinical isolates that do not grow in transformed cells represents one appli-

cation of HIOs/HIEs toward the identification of antiviral strategies. For example, HIEs were

used to demonstrate the attenuated infectivity of a rotavirus vaccine strain [19]. HIEs also

show enhanced sensitivity compared with Caco-2 cells in rotavirus neutralization assays [33],

making them an important model to evaluate vaccine responses. In addition, HIEs were used

to test the efficacy of chemical inactivation strategies against human norovirus [11]. Recent

adaptations of HIE/HIO models for high-throughput screening approaches [34, 35] are an

exciting direction to advance therapeutic development in the future.

HIEs are also used to study pathophysiological responses to enteric virus infection, such as

demonstrating diarrhea with fluid section in rotavirus-infected HIEs [19]. Genetically modi-

fied HIEs, expressing genetically encoded calcium indicators, were further used to study rota-

virus-induced calcium signaling [36]. HIEs have also been used to validate the effects of

immunosuppressive agents on rotavirus infection [37]. Additionally, bile plays a critical role in

human norovirus replication in HIEs. Specifically, bile was essential for human norovirus

GII.3 (but not GII.4) replication [13]. In addition, EV infection of HIEs led to the discovery of

a cryptic upstream protein coding region encoding for a protein involved in EV virulence, an

effect not observed during infection of transformed cell lines [38]. Studying the role of host

and viral factors during infection of HIOs/HIEs will undoubtedly lead to additional new

insights into human enteric virus biology, which may ultimately lead to improved strategies to

reduce the public health burden of diarrheal diseases.

Conclusions

The advent of gastrointestinal organoid technology has been a critical breakthrough for the

study of virus–host interactions. For enteric viruses, the use of this technology to develop cell

culture systems for uncultivable enteric viruses has been transformative. Key findings have

already been made regarding their human cell tropism, effectiveness of antivirals and disinfec-

tants, and human antiviral innate immune responses and viral counteraction of these. However,

to date, these are generally individual findings for a particular virus family. The broad applica-

tion of this technology across the enteric virus families has the potential to lead to additional dis-

coveries in enteric virus biology and the identification of common principles of these viruses.

Furthermore, additional modification of the intestinal organoid models to ever more closely

mimic the human intestine in a dish offers unprecedented opportunities for future discovery.
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