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Objective: Angelicae Sinensis Radix (ASR, Danggui in Chinese), Cistanches Herba (CH, Roucongrong in
Chinese), Ginseng Radix et Rhizoma (PG, Renshen in Chinese), and Panacis Quinquefolii Radix (PQ,
Xiyangshen in Chinese), widely used as medicine and dietary supplement around the world, are suscep-
tible to fungal and mycotoxin contamination. In this study, we aim to analyze their fungal community by
DNA metabarcoding.
Methods: A total of 12 root samples were collected from three main production areas in China. The sam-
ples were divided into four groups based on herb species, including ASR, CH, PG, and PQ groups. The fun-
gal community on the surface of four root groups was investigated through DNA metabarcoding via
targeting the internal transcribed spacer 2 region (ITS2).
Results: All the 12 samples were detected with fungal contamination. Rhizopus (13.04%�74.03%),
Aspergillus (1.76%�23.92%), and Fusarium (0.26%�15.27%) were the predominant genera. Ten important
fungi were identified at the species level, including two potential toxigenic fungi (Penicillium citrinum
and P. oxalicum) and eight human pathogenic fungi (Alternaria infectoria, Candida sake, Hyphopichia bur-
tonii, Malassezia globosa, M. restricta, Rhizopus arrhizus, Rhodotorula mucilaginosa, and Ochroconis tsha-
wytschae). Fungal community in ASR and CH groups was significantly different from other groups,
while fungal community in PG and PQ groups was relatively similar.
Conclusion: DNA metabarcoding revealed the fungal community in four important root herbs. This study
provided an important reference for preventing root herbs against fungal and mycotoxin contamination.
� 2023 Tianjin Press of Chinese Herbal Medicines. Published by ELSEVIER B.V. This is anopen access article

under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

With the numerous advantages, herbs have been known and
popular around the world for thousands of years (Yu et al.,
2021). Root herbs have been used as medicinal and nutritional
materials due to its distinctive characteristics (Sofowora, 1996).
Recently, as an increasing number of studies on mycotoxins occur-
ring in herbs, the safety issue of herbs has been paid close attention
by the public (Guo, Jiang, Luo, Yang, & Pang, 2018). The content of
aflatoxins and ochratoxin A has been strictly regulated by the Chi-
nese Pharmacopeia Commission in Chinese Pharmacopoeia (2020
edition). Previous studies pointed out that the main potential tox-
igenic fungi were Penicillium, Aspergillus, and Fusarium in herbs
(Rocha-Miranda & Venâncio, 2019). Fungal contamination could
occur during the whole production process of herbs, including
planting, harvesting, processing, transporting, and storage (Stevic
et al., 2012). As root herbs are direct contacting with the soil, they
are prone to be contaminated by harmful materials, including
fungi, heavy metals, and pesticides (Stevic et al., 2012). Su et al.
(2018) collected 48 root herbs from Chinese market and found
1 844 isolates belonging to 25 genera. The majority of the isolates
were from Penicillium and Aspergillus. Chen et al. (2010) reported
that Penicilliumwas the dominant fungal genus in seven root mate-
rials, followed by Fusarium and Aspergillus. Wang et al. (2010)
investigated the fungal community in Ophiopogonis Radix (Mai-
dong in Chinese), a traditional root product with both food and
medical functions. The study noted that the main fungal invasion
species during the storage were from Aspergillus. Therefore, it is
necessary to monitor fungal community of root herbs by using
an effective technology.

DNA metabarcoding technology has become a useful tool for
analyzing fungal communities in soil, air, and sediment samples
(Raclariu, Heinrich, Ichim, & de Boer, 2018). In complex sample,
it could identify multiple species with low abundance (Bittinger
et al., 2014; Tedersoo et al., 2014). At present, DNA metabarcoding
technology has been successfully used in fungal identification of
herbs. The internal transcribed spacer (ITS) region has been consid-
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ered as primary DNA barcode to identify fungal species. Guo, Jiang,
Yang, Dou, & Pang (2020) investigated the fungal contaminations
in Cassiae Semen (Juemingzi in Chinese), a traditional herbal med-
icine and roasted tea in China, through DNA metabarcoding by tar-
geting the ITS2 region. The result showed that Ascomycota and
Aspergillus were the predominant at the phylum and genus levels.
The study detected a total of six potential toxigenic fungi as well.
Myristicae Semen (Roudoukou in Chinese), as a vital herbal medi-
cine and spice for years, was prone to be contaminated by fungi
and mycotoxins under some conditions. Jiang et al. (2020) detected
the fungal community of the herb by using DNAmetabarcoding via
targeting the ITS2 sequence. The study found that Aspergillus was
the most abundant fungi at the genus level and six potential toxi-
genic fungi were identified, including Penicillium capsulatum, Peni-
cillium steckii, and Aspergillus fumigatus. The fungal community of
Platycladi Semen (Baiziren in Chinese) was analyzed by DNA
metabarcoding through shooting at the ITS2 region (Yu et al.,
2020). The results indicated that Ascomycota and Aspergillus were
the most abundant phylum and genus, and four potential toxigenic
fungi were found, including Penicillium steckii, Aspergillus fumiga-
tus, and A. flavus.

In this study, DNA metabarcoding technology was applied to
analyze the fungal community on the surface of four root samples,
including Angelicae Sinensis Radix (ASR), Cistanches Herba (CH), Gin-
seng Radix et Rhizoma (PG), and Panacis Quinquefolii Radix (PQ), via
targeting the ITS2 sequence. It could provide references for effi-
ciently supervising fungal contamination in herbs to ensure safety
and quality of the herbal industry.
2. Materials and methods

2.1. Sampling

A total of 12 batches of ASR, CH, PG, and PQ samples were col-
lected from three main production areas in China, namely Sichuan,
Gansu, and Jilin Provinces. They were identified by Prof. Xiaohui
Pang. The samples were divided into four groups (ASR, CH, PG
and PQ groups) based on herb species. Detailed information of
the samples was listed in Table 1.

2.2. DNA extraction and PCR amplification

Approximate 5.0 g root samples were transferred into a 50 mL
sterilized centrifuge tube with 20 mL of 1 � PBS buffer (Beijing
Solarbio Science & Technology Co., Ltd., Beijing, China), then sha-
ken and filtered by double layers of sterilized gauze in the sterile
condition. The fungal DNA was extracted by the EZNA� 434 soil
DNA kit (Omega Bio-tek., Inc., Norcross, GA, USA) on the basis of
the manufacturer’s instructions. The total DNA was stored
at � 20 �C.
Table 1
Sample information for 12 root samples.

Estimators No. Samples Coll

ASR1 Angelicae Sinensis Radix 202
ASR2 Angelicae Sinensis Radix 202
ASR3 Angelicae Sinensis Radix 202
CH1 Cistanches Herba 202
CH2 Cistanches Herba 202
CH3 Cistanches Herba 202
PG1 Ginseng Radix et Rhizoma 202
PG2 Ginseng Radix et Rhizoma 202
PG3 Ginseng Radix et Rhizoma 202
PQ1 Panacis Quinquefolii Radix 202
PQ2 Panacis Quinquefolii Radix 202
PQ3 Panacis Quinquefolii Radix 202
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To amplify the ITS2 sequences, the polymerase chain reaction
(PCR) was conducted by the primer pairs ITS3 (50-GCATCGATGAA
GAACGCAGC-30) and ITS4 (50 -TCCTCCGCTTATTGATATGC-30)
(White, Bruns, Lee, & Taylor, 1990). The conditions of the amplifi-
cation were as the following steps: the initial denaturation at
95 �C for 5 min, and 37 cycles of denaturation at 95 �C for 30 s,
annealing at 55 �C for 50 s, then elongation at 72 �C for 45 s, the
final extension at 72 �C for 10 min. To minimize the PCR bias, the
amplification was performed for each sample in triplicate. Then
the products were verified and purified respectively by 2% agarose
gel and DNA gel extraction kit (Axygen, Union City, CA, USA) for the
desired fragment.
2.3. Sequencing and data analysis

The Illumina Miseq PE300 platform (Illumina, San Diego, CA,
USA) was applied for sequencing the PCR amplifications. We de-
multiplexed and checked the raw reads via fastp software (version
0.19.6 https://github.com/OpenGene/fastp) (Chen et al., 2018),
then merged the sequences by using the FLASH (version 1.2.11
https://ccb.jhu.edu/software/FLASH/index.shtml) (Magoc &
Salzberg, 2011). The ITS2 reads were truncated to obtain an aver-
age quality score of < 20 over a 50 bp sliding window. The ambigu-
ous bases or < 10 bp overlapping sequences and chimeric
sequences were detected and removed through USEARCH software
(version 7.0 http://www.drive5.com/usearch/). The sequences
were clustered into OTUs with 97% similarity by Uparse software
(version 7.0.1090 http://www.drive5.com/uparse/) (Edgar, 2013).
To ensure the 100% accuracy of the taxonomical classification of
the OTUs, we manually search the reads via the basic local align-
ment search tool (BLAST) in the International Nucleotide Sequence
Database Collaboration. Based on the UNITE database (version 8.0
https://unite.ut.ee/) (Edgar, 2010), OTUs were denominated at dif-
ferent taxonomical levels, including phylum, class, order, family,
genus, and species through bar map, heatmap, and Cricos diagram
(Krzywinski et al., 2009). Rarefaction curves were performed by R
software to illustrate the normalization to even depths across each
sample. Five a-diversity indices were calculated to demonstrate
the fungal community by using the MOTHUR software (version
1.30.2 https://www.mothur.org/wiki/Download_mothur) (Amato
et al., 2013). Venn analysis was conducted by R software to indi-
cate the distribution of the OTUs in different groups (version
3.3.1). The b-diversity was shown by principal co-ordinates analy-
sis (PCoA) analysis and hierarchical clustering and non-metric mul-
tidimensional scaling (NMDS) through Quantitative Insights into
Microbial Ecology (version 330 1.9.1 http://qiime.org/install/in-
dex.html). Statistical difference analysis was performed by using
the Kruskal-Wallis H test through stats in R software and SciPy
in Python software. Linear discriminant analysis effect size (LEfSe)
analysis was conducted to compare the significant differences of
ection date Sampling location Groups

0.10–2020.11 Sichuan ASR
0.10–2020.11 Sichuan ASR
0.10–2020.11 Sichuan ASR
1.10–2021.11 Gansu CH
1.10–2021.11 Gansu CH
1.10–2021.11 Gansu CH
1.07–2021.08 Jilin PG
1.07–2021.08 Jilin PG
1.07–2021.08 Jilin PG
1.07–2021.08 Jilin PQ
1.07–2021.08 Jilin PQ
1.07–2021.08 Jilin PQ
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the taxonomical levels, from phylum to genus (http://hutten-
hower.sph.harvard.edu/galaxy/root?tool_id=lefse_upload). The co-
occurrence analysis was conducted by Network X packages in
Python (Hagberg et al., 2008).
3. Results

3.1. Fungal diversity in four root herbs

After excluding the chimeric sequences, there were 724 194
high-quality ITS2 sequences detected in 12 herbal samples. The
average length of reads was 345 bp. Rarefaction curves indicated
that all sobs indices almost reached asymptote, which reflected
that the sequences were sufficient to represent the fungal commu-
nity for each sample (Fig. 1A). These reads were clustered into 226
OTUs. Venn analysis showed a total of 28 shared OTUs based on the
types of root herbs (Fig. 1B). There were 152, 105, 60, and 63 OTUs
detected in ASR, CH, PQ, and PG groups, respectively.

Five a-diversity indices of 12 root samples were shown in
Table 2, namely ACE, Chao1, Shannon, Simpson, and Coverage.
The high value of ACE and Chao1 illustrated the high fungal diver-
sity. The highest abundant was in ASR1, and PQ2 had the lowest
variation among species. The indices of Shannon and Simpson in
ASR3 indicated that the fungal diversity in the samples was the
lowest. CH2 had the highest Shannon index and lowest Simpson
index, reflecting its highest fungal diversity. The Coverage results
Fig. 1. Fungal diversity of 12 root samples. (A) Rarefa

Table 2
Alpha diversity of fungal community in 12 root samples.

Estimators ACE Chao1

ASR1 106.62 106.27
ASR2 100.18 99.80
ASR3 102.98 99.15
CH1 97.22 96.50
CH2 82.00 82.00
CH3 66.91 67.00
PG1 50.00 50.00
PG2 48.35 47.33
PG3 37.73 36.50
PQ1 54.59 53.50
PQ2 0.00 29.00
PQ3 45.21 45.00
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showed that the values in 12 samples were over 99.9%, indicating
a good overall sampling.

3.2. Fungal composition in four root herbs

The detected 226 OTUs were further clustered into five phyla,
18 classes, 41 orders, 94 families, and 146 genera. There were three
phyla with the relative abundance > 1% (Fig. 2A). Mucoromycota
were the predominant phylum, accounting for 13.07%�74.07% of
the fungal reads. Ascomycota and Basidiomycota were followed,
with the relative abundance of 24.98%�81.72% and 0.95%�
11.76%. At the class level, Mucoromycetes (13.07%�74.07%) were
dominant in all samples collected from four root herbs, followed
by Sordariomycetes (6.54%�46.00%) and Eurotiomycetes (3.02%�
25.77%) (Fig. 2B). Among the 21 fungal orders with relative abun-
dance > 1%, Mucorales was the most dominant (13.07%�74.07%),
followed by Eurotiales (1.98%�25.77%) and Hypocreales (2.90%�
28.85%) (Fig. 2C). Further taxonomical classification at the family
level indicated that the three most abundant were Rhizopodaceae,
Aspergillaceae, and Nectriaceae, with the relative abundance of
13.04%�74.03%, 1.98%�25.77%, and 2.63%�26.21% (Fig. 2D).

There were 36 genera with the relative abundance > 1% in 12
samples at the genus level. Rhizopus (13.04%�74.03%), Aspergillus
(1.76%�23.92%), and Fusarium (0.26%�15.27%) were the most
common genera detected in 12 root samples. Besides, the relative
abundance of Penicilliumwas comparatively higher than 31 genera.
The distribution of the top 30 genera was demonstrated in Fig. 3.
ction curves for OTU. (B) Venn diagram of OTUs.

Shannon Simpson Coverage/%

0.87 0.64 99.99
0.40 0.87 99.98
0.36 0.88 99.96
2.44 0.19 100.00
2.76 0.13 100.00
2.61 0.13 100.00
1.84 0.36 100.00
1.55 0.42 100.00
1.81 0.29 100.00
2.02 0.25 100.00
2.04 0.23 100.00
1.54 0.41 100.00
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http://huttenhower.sph.harvard.edu/galaxy/root?tool_id=lefse_upload


Fig. 2. Percentage of community abundance at phylum (A), class (B), order (C), and family (D) levels in12 root samples.

Fig. 3. Heatmap of top 30 abundant genera in root samples.
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Rhizopus, Aspergillus, Fusarium, and Penicillium were distributed in
all herbal samples. Only ASR1 found the occurrence of Dendrospo-
rium and Acidomelania, and Pleurotus only distributed in PQ3.

Additionally, a total of 44 OTUs could be identified at the spe-
cies level among the 226 OTUs via manual BLAST search. There
were ten important fungi investigated in 12 root samples, includ-
ing two potential toxigenic fungi (Penicillium citrinum and Penicil-
lium oxalicum) and eight human pathogenic fungi (Alternaria
infectoria, Candida sake, Hyphopichia burtonii, Malassezia globosa,
146
Malassezia restricta, Rhizopus arrhizus, Rhodotorula mucilaginosa,
and Ochroconis tshawytschae).

3.3. Fungal comparison in four root herbs

The ACE index represented that the richness of the ASR group
was the highest, followed by CH, PG, and PQ groups (Fig. 4A).
The observed species in the CH group were significantly higher
than that in the PG group (P < 0.05). Moreover, in terms of the



Fig. 4. Differences in ACE (A) and Shannon (B) indices in 12 root samples. *P � 0.05, **P � 0.01, ***P � 0.001.
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Shannon index, the fungal diversity of the CH group was the high-
est (Fig. 4B). The Shannon index of PQ group was much higher than
the ASR group (P < 0.01). Meanwhile, the diversity in ASR group
was significantly lower than that in PG group (P < 0.01). The PCoA
analysis was conducted to illustrate the beta diversity of four
groups at the genus level (Fig. 5A). The result indicated that ASR
and CH groups distinguished from other groups, while the differ-
ences between PQ and PG groups were small based on the type
of root herbs. Meanwhile, a similar result was shown in the NMDS
Fig. 5. Comparison of fungal community in different groups. (A) Principal coordinate a
estimated at the OTU level.

Fig. 6. Significant difference of 12 root samples. (A) Hierarchical clustering based on b-
various taxonomic levels in four groups as visualized by LEfSe analysis.

147
analysis, which was performed at the OTU level (Fig. 5B). ASR and
CH groups were distinguishable from the other groups.

The study compared the differences in the fungal structure of
four groups from the genus level to the phylum level (Fig. 6A). Leo-
tiomycetes in ASR group had the highest average percentage of
community abundance. At the family level, the relative abun-
dances of Piskurozymaceae and Plectosphaerellaceae in ASR group
were significantly higher than that in other groups. It was observed
that the relative abundance of Solicoccozyma was much higher in
nalysis (PCoA) plots of fungal compositions at the genera level. (B) NMDS diagram

diversity distance matrix analysis. (B) Relative abundances of fungal community at
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ASR group than in other groups. The relative abundances of Euro-
tiomycetes, Eurotiales, Filobasidiales, Aspergillaceae, Aspergillus,
and Filobasidium in CH group were significantly higher than that
in other groups at the class, order, family, and genus level. Further-
more, the PQ group had the highest abundances of Wallemiomy-
cetes, Ustilaginomycetes, Wallemiales, Ustilaginales,
Wallemiaceae, Ustilaginaceae, Wallemia, and Moesziomyces at the
class, order, family, and genus level. The statistical analysis was
calculated by the Kruskal-Wallis H test to compare the significant
difference in fungal composition of 12 root samples from four
types of root herbs (Fig. 6B). The results were similar to the LefSe
analysis. The relative abundances of Wallemia and Moesziomyces
were much higher in the PQ group (P = 0.023 74, P = 0.024 88). It
was illustrated that CH group had the highest abundances of Asper-
gillus and Filobasidium (P = 0.024 88, P = 0.022 32). In addition,
Solicoccozyma was much higher in ASR group (P = 0.013 25).
3.4. Co-occurrence analysis

The interaction between fungal genera in four groups was ana-
lyzed to reveal the community diversity (Fig. 7). The top 20 fungal
genera belonged to three phyla, namely Ascomycota, Basidiomy-
cota, and Mucoromycota. There were 57 correlations detected in
12 root samples. As the dominant genus, Rhizopus was positively
correlated with Aspergillus, Cladosporium, Rhodotorula, and Wicker-
hamomyces. Penicillium displayed positive correlation with Cla-
dosporium, Rhodotorula, Aspergillus, Wallemia, Clonostachys, and
Fusarium. Aspergillus had positive correlation with Rhodotorula,
Alternaria, Wallemia, Clonostachys, Moesziomyces, Epicoccum, Plec-
tosphaerella, Fusarium, and Hyphopichia. Fusarium exhibited posi-
tive correlation with Wallemia, Clonostachys, Moesziomyces,
Epicoccum, Plectosphaerella, and Hyphopichia. Moreover, Alternaria,
belonging to Ascomycota, positively correlated with Wallemia
and Moesziomyces belonging to Basidiomycota.
Fig. 7. Co-occurrence analysis of fungal members estimated of top 20 fungal taxa in root s
species and different species, separately.
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4. Discussion

4.1. Fungal community in four root herbs

The four root herbs have been used as important edible and
medicinal materials in many countries, including China, America,
and Korea. With the functions of promoting the body’s circulation
nourishment and repairing energy, ASR has been applied for the
treatment of constipation and rheumatism in Asia (Chinese
Pharmacopeia Commission, 2020). Recorded by Shennong’s Classic
of Materia Medica and Compendium of Materia Medica, CH could
improve the activities of the kidneys, loins, and knees (Xu et al.,
2008). Modern pharmacological studies reported that PG and PQ
work on promoting healing, antitumor, and antiaging (Wang
et al., 2020). Hundreds of researchers around the world considered
that the two Panax species benefit blood vessels, immune, and cen-
tral nervous systems (Holden, 2004). The numerous benefits of
root herbs have led to a growing demand in both domestic and
international markets. Nevertheless, some studies have indicated
that fungal contaminations could affect herbal safety and quality
(Ting et al., 2013). Chen et al. (2011) reported that 16 fungal spe-
cies mainly from Aspergillus, Fusarium, Penicillium, and Mucor were
detected in liquorice root, a medicinal material in China. In 2017,
the study conducted by Zheng et al. showed that there were seven
fungal species from Aspergillus, Eurotium, Penicillium, and Fusarium
detected in three ASR samples. Besides, it was revealed that three
PQ samples were contaminated by 11 fungal species belonging to
Penicillium and Cladosporium (Zheng et al., 2017). In the present
study, the results indicated that Mucoromycota, Mucoromycetes,
Mucorales, and Rhizopodaceae were the most abundant at the
phylum, class, order, and family levels in 12 root samples. Rhizopus,
Aspergillus, and Fusarium were the dominant genera, with the rela-
tive abundance of 13.04%�74.03%, 1.76%�23.92%, and 0.26%�
15.27%. Rhizopus, Dendrosporium, and Cadophora were the domi-
amples at genus level. The size and different colors of nodes represent abundance of
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nant fungal genera in three ASR samples. In PQ, PG, and CH sam-
ples, Rhizopus, Aspergillus, and Fusarium were the most predomi-
nant genera. The relative abundance of Rhizopus was higher than
that of other genera in all the four root herbs. A total of two poten-
tial toxigenic fungi and eight human pathogenic fungi were identi-
fied in the present study. P. oxalicum could produce aflatoxin B1

and secalonic acid D under suitable conditions (Adegoke et al.,
1993; Balasubramanian et al., 2000). These mycotoxins, strictly
restricted in many countries, could greatly damage human and ani-
mal health. P. citrinum was the main producer of citrinin that was
nephrotoxic and could affect the male reproductive system (Aydin
et al., 2021). Moreover, the human pathogenic fungi could influ-
ence various important systems and functions of human. For
example, A. infectoriawas harmful for the human skin and immune
function (Almeida et al., 2019; Kieselová et al., 2021). C. sake, a
commonly pathogenic fungus, had a close relationship with the
human immunodeficiency virus (HIV) (Hoegl, Schönian, Ollert, &
Korting, 1998). H. burtonii could cause the peritonitis reported by
(Chamroensakchai et al., 2021). M. globose and M. restricta were
the major contributors of dandruff and seborrheic dermatitis
(Dawson, 2007; Koga et al., 2020). R. arrhizus could induce angioin-
vasion (Li et al., 2021). R. mucilaginosa should be responsible for
human chronic renal disease (Jarros et al., 2020). O. tshawytschae
was verified as the cause of human subcutaneous phaeohyphomy-
cosis (Ge et al., 2012). In addition, there were five plant pathogens
identified in 12 root samples, namely Stemphylium vesicarium, Ily-
onectria robusta, Mycocentrospora acerina, Nigrospora oryzae, and
Podosphaera leucotricha. These pathogens are mainly related to root
and leaf diseases, affecting plant growth and quality, and even
leading to plant death. In 2020, investigations in New York and
Arequipa considered that S. vesicarium was the primary culprit of
the foliar disease in onion and Medicago sativa that was the local
main cultivated crop (Díaz-Valderrama et al., 2020; Sharma, Hay,
& Pethybridge, 2020). Zheng et al. (2021) found that Codonopsis
tangshen Oliv., as a widely medical and agricultural herb, was
affected by I. robusta, which caused the root rot disease (Zheng
et al., 2021). In Spain, a report revealed that I. robustawas the main
contributor to black foot disease of grapevine (Martínez-Diz et al.,
2018). You et al. (2021) indicated that M. acerina could cause the
leaf spot in Panax japonicus C. A. Mey, a medicinal herb (You
et al., 2021). Besides, during the storage, carrots were susceptible
M. acerina, which might lead its rot and even being discarding
(Louarn et al., 2012). N. oryzae was the main contributor to the leaf
spot in Asiatic dayflower and the wilt in Summer Cypress (Anjum
et al., 2021; Qiu, Zhu, Niu, & Liu, 2021). The studies in 2020 and
2021 revealed that the powdery mildew in apple and pear trees,
resulting large economic loss of commercial orchards, was caused
by P. leucotricha (Gañán, White, Friesen, Peever, & Amiri, 2020;
Gañán-Betancur, Peever, & Amiri, 2021). Therefore, it is necessary
to supervise the fungal community in root herbs during the whole
production process, so as to guarantee the quality and safety of
medicinal materials.

4.2. Prospect of DNA metabarcoding in analyzing fungal community in
herbs

DNA metabarcoding technology has been successfully applied
in many fields such as food, soil, and environment so far (Chang
et al., 2022; Ercolini, 2013; Guo, Jiang, Yang, Dou, & Pang, 2020).
Compared with traditional culture-based identification methods,
DNA metabarcoding overcomes some restrictions. It could effi-
ciently identify multiple fungal species with low abundances in
complex environment (Daniel, 2004). Besides, it exhibited remark-
able ability in identifying fungi that fails to grow in traditional iso-
lation culture. In recent years, DNA metabarcoding has been used
to monitor the fungal contamination in the whole production chain
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of herbs. Wei et al. (2020) investigated the fungal community in 12
rhizospheric soil of Salvia miltiorrhiza samples through ITS
sequencing. The result showed that Aspergillus and Candida were
detected significantly with high relative abundances. Rasmussen
et al. (2018) analyzed the roots and root-associated soil from Plan-
tago lanceolata plants by targeting ITS sequence. The report indi-
cated that fungal community structures were much similar
between roots and root-associated soil, including fungal genera
and shared OTUs. Guo, Jiang, Yang, Dou, & Pang, 2020 compared
the fungal community between the raw and roasted Cassiae Semen
(Juemingzi in Chinese) samples through high-throughput sequenc-
ing. The relative abundance of Penicillium and Periconia were
higher in roasted samples compared with the raw samples. Wei
et al. (2019) reported the fungal diversity in Magnoliae Officinalis
Cortex (Houpu in Chinese) during the ‘‘sweating” process by target-
ing ITS1 region (Wei et al., 2019). At the beginning of ‘‘sweating”,
the dominant fungi were not obvious. Candida and Aspergillus were
the predominant fungal species during the medium and last stage
of ‘‘sweating”, respectively. Yang et al. (2021) applied high-
throughput sequencing to investigate the microbial community
in Citri Reticulatae Pericarpium (Chenpi in Chinese) during three-
year aging process by targeting ITS1 sequence. At the early stages,
Aspergillus was not detected. The relative abundance of Aspergillus
gradually increased at the later stage of storage. Meng et al. (2019)
detected the fungal community in Pheretima through traditional
plate method and high-throughput sequencing. Wallemia was the
most abundant among 127 detected fungal genera. The differences
of fungal community in herbs during the storage could be observed
through DNA metabarcoding (Ercolini, 2013). DNA metabarcoding
has been demonstrated as an efficient method for detecting fungal
contaminations in herbs, feathering broad application prospects.
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