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Genome-wide association studies (GWAS) have success-
fully identified genetic loci associated with glycemic traits.
However, characterizing the functional significance of
these loci has proven challenging. We sought to gain
insights into the regulation of fasting insulin and fasting
glucose through the use of gene expression microarray
data from peripheral blood samples of participants without
diabetes in the Framingham Heart Study (FHS) (n = 5,056),
the Rotterdam Study (RS) (n = 723), and the InCHIANTI
Study (Invecchiare in Chianti) (n = 595). Using a false dis-
covery rate q <0.05, we identified three transcripts asso-
ciated with fasting glucose and 433 transcripts associated

with fasting insulin levels after adjusting for age, sex, tech-
nical covariates, and complete blood cell counts. Among
the findings, circulating IGF2BP2 transcript levels were
positively associated with fasting insulin in both the FHS
and RS. Using 1000 Genomes–imputed genotype data, we
identified 47,587 cis-expression quantitative trait loci
(eQTL) and 6,695 trans-eQTL associated with the 433 sig-
nificant insulin-associated transcripts. Of note, we identi-
fied a trans-eQTL (rs592423), where the A allele was
associated with higher IGF2BP2 levels and with fasting
insulin in an independent genetic meta-analysis comprised
of 50,823 individuals. We conclude that integration of
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genomic and transcriptomic data implicate circulating
IGF2BP2 mRNA levels associated with glucose and in-
sulin homeostasis.

Genome-wide association studies (GWAS) using arrays
containing hundreds of thousands of single nucleotides
polymorphisms (SNPs) have revealed multiple genetic
variants associated with fasting glucose or fasting insulin
in humans (1–5). Yet, all together, those SNPs explained
only a small percentage of the total variation in fasting
glucose (4.8%) and fasting insulin (1.2%) (6). Transcrip-
tomic profiling provides a high-throughput platform to
expand genomic associations and reveal how gene expres-
sion complements studies on genetic variations.

To date, most transcriptomic studies of fasting glucose
and fasting insulin have examined a limited number of
genes. Transcriptomic response to insulin treatment has
been reported, but the sample sizes have been relatively
small (7,8). These studies have been instrumental in testing
hypothesis-driven studies on the acute molecular effects of
insulin. However, few studies have comprehensively investi-
gated the genetic regulation of steady-state fasting glucose
or fasting insulin levels, particularly using blood transcript
levels.

To deepen our understanding of the regulation of fasting
glucose and fasting insulin, we performed a transcriptome-
wide association study (TWAS) in three well-characterized
cohort studies: Framingham Heart Study (FHS), the Rotter-
dam Study (RS), and the InCHIANTI Study (Invecchiare in
Chianti). Using a hypothesis-free approach, we applied
stringent criteria for cross-replication across cohorts and
applied pathway analyses to provide an integrated view of
our findings. We further used expression quantitative
trait loci (eQTL) to link TWAS and GWAS findings to
identify associated transcripts that may be under genetic
control.

RESEARCH DESIGN AND METHODS

Overview of Approach
As depicted in Fig. 1, we conducted a TWAS in three in-
dependent cohorts (described below). We then focused on
highly reproducible transcripts across cohorts, which we
defined as having a false discovery rate (FDR) of q ,0.05
in both sets of results, separated by array platform (i.e.,
Affymetrix vs. Illumina). Multiple approaches were used
to assess the reproducibility and biological relevance of
our transcript associations. First, we examined the tran-
scriptomic associations of published genes assigned to ge-
netic variants reported in prior fasting glucose and fasting
insulin GWAS. Next, we used eQTL analysis to compre-
hensively assess any convergence of findings from associ-
ations between genetic variants and transcripts identified
by our TWAS as well as with insulin and glucose levels.
Signals confirmed by both approaches represent highly
reproducible findings that span several large populations.
Last, we conducted gene set enrichment analysis (GSEA)

to provide insights into biological pathways that may be
involved in the regulation of transcripts associated with
fasting glucose or insulin levels.

Gene Expression Correlations Across Tissues
RNA sequencing data from the Genotype-Tissue Expression
(GTEx) Project (http://www.gtexportal.org/static/datasets/
gtex_analysis_v6/rna_seq_data/GTEx_Analysis_v6_RNA-seq_
RNA-SeQCv1.1.8_gene_rpkm.gct.gz, accessed on 29 June
2016) (9). Analysis was restricted to tissues determined a
priori to be of relevance to glycemic traits, including vis-
ceral fat, kidney, liver, muscle, and pancreas. Values with
reads per kilobases of transcript per million mapped reads
,1 were excluded. Replicate samples were combined by
taking the median (or mean, if even number of replicates)
value for each transcript. For each pairwise tissue com-
parison, Spearman correlations were computed for each
individual that had transcript levels available in both tis-
sues. Correlation coefficients for each tissue pair were ob-
tained by taking the mean across individuals with transcript
data in both tissues. To estimate the sample size needed
in nonblood tissue to achieve equivalent statistical power
as our study, we multiplied the sample size from our study
with the squared correlation coefficient obtained from our
GTEx analysis, following the approach described in Pritchard
et al. (10).

Study Populations
Detailed descriptions of the three population-based cohorts
that were included in the current analysis can be found in
the Supplementary Data. Briefly, the first cohort (FHS) in-
cluded participants from the FHS Offspring Study’s 8th
examination cycle (n = 2,049) and the Third Generation’s
2nd examination cycle (n = 3,007). The second cohort (RS) in-
cluded participants from the third recruitment cohort of the
RS (n = 881). The third cohort (InCHIANTI Study) included
participants from the third follow-up visit (n = 698). Partic-
ipants were excluded if they were missing data on glucose,
insulin, or blood cell counts or had type 2 diabetes. Informed
consent was obtained from each FHS participant and the
study protocol was approved under Boston University Med-
ical Center’s institutional review board protocol (H-27984).
RS has been approved by the Medical Ethics Committee of
the Erasmus University Medical Center Rotterdam and by
the Ministry of Health, Welfare and Sport of the Nether-
lands, which implemented the Wet Bevolkingsonderzoek:
ERGO (Population Studies Act: Rotterdam Study). All RS
participants provided written informed consent to partici-
pate in the study and to obtain information from their
treating physicians. Ethics approval of the InCHIANTI Study
was granted by the Istituto Nazionale di Riposo e Cura per
Anziani institutional review board in Italy, and participants
gave informed consent to participate.

Outcome Definitions
FHS participants fasted overnight to provide blood speci-
mens, which were frozen in EDTA tubes at 280°C until
assayed. Fasting insulin levels were quantified using the
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Roche e411 immunoanalyzer (Roche Diagnostics, Risch-
Rotkreuz, Switzerland). Ten percent of our samples were
run in duplicate. The interassay coefficients of variation
(CV) for fasting insulin were 4.5% in the Third Generation
and 3.8% in the Offspring cohorts. Fasting glucose sam-
ples were run on fresh EDTA plasma samples using a
hexokinase assay on the Roche Hitachi 911 chemistry
analyzer (Roche Diagnostics). All samples were measured
in duplicate. The interassay CV for glucose was 1.8%.

Glycated hemoglobin (HbA1c) was measured in whole
blood using a turbidimetric immunoassay on the Roche
Hitachi 911 chemistry analyzer following a hemolysis
step. A total of 15.3% of samples were run in duplicate
to provide an interassay CV of 2.7%.

For the RS samples, venous blood samples were obtained
after an overnight fast (at least 8 h). The glucose samples
were stored in 220°C serum samples for ,1 week before
processing. Insulin was measured in serum samples stored

Figure 1—Overview of analytic approach.
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at 280°C. Serum glucose was assessed using the hexokinase
method (Boehringer Mannheim, Mannheim, Germany).
Serum insulin levels were quantified using the cobas Roche
electrochemiluminescence immunoassay (12017547 122) on
a Modular Analytics E170 analyzer (Roche Diagnostics). The
interassay CV was ,4.9% for insulin and 1.7% for glucose.

InCHIANTI participants fasted overnight (12 h) and
were sedentary for at least 15 min before providing blood
samples. Aliquots of plasma and serum were prepared and
frozen at 280°C. Fasting glucose was determined by an
enzymatic colorimetric assay using a modified glucose
oxidase-peroxidase method (Roche Diagnostics GmbH,
Mannheim, Germany) and a Modular P800 Hitachi analyzer
(Hitachi Chemical, Tokyo, Japan). The intra-assay CV was
0.9%, and the interassay CV was 1.8%. Fasting insulin was
not quantified in InCHIANTI at this examination cycle.

Transcriptomic Profiling
Detailed descriptions of the transcriptomic profiling can
be found elsewhere (11). Briefly, whole-blood samples
were collected in PAXgene tubes. Following RNA amplifi-
cation, global transcript levels were quantified using the
Affymetrix Human Exon1.0 ST Array for FHS, Illumina
HumanHT-12 v4 Expression BeadChip for RS, and Illumina
Human HT-12 v3 BeadChip for InCHIANTI, as described
previously (11). Transcriptomic data were RMA normalized
(12) for FHS or quantile normalized and log2-transformed
for RS and InCHIANTI. Data are accessible to the public
for FHS at dbGaP (accession “phs000363.v7.p8”), for RS
at the Gene Expression Omnibus (GEO) (GSE33828), and
for InCHIANTI at GEO (GSE48152).

Analysis of Transcript Associations With Glycemic
Traits
Fasting insulin levels were natural log-transformed due
to their skewed distributions. Associations between the
transcript levels (independent variables) and glycemic traits
(dependent variables) were adjusted for age, age2, and sex
using linear regression in RS and InCHIANTI and with
mixed-effect models in FHS to account for familial corre-
lation. Separate models were further adjusted for BMI to
assess its contribution to the transcript associations with
glucose or insulin levels. Because fasting insulin levels
were not available in InCHIANTI, the fasting insulin re-
sults reported are from FHS and RS only, but the fasting
glucose results include all three cohorts. Statistically sig-
nificant transcript associations with glucose (or insulin)
levels were defined as FDR q ,0.05 in FHS and the meta-
analysis of RS and InCHIANTI in a cross-replication man-
ner (13). The glucose results from the RS and InCHIANTI
were meta-analyzed because they used similar microarray
platforms and had substantially smaller sample sizes com-
pared with the FHS data set. To test for enrichment of
known biological pathways in our top gene lists we used
GSEA preranked feature using 1,000 permutations (14).
We used the Kyoto Encyclopedia of Genes and Genomes
(KEGG) gene sets restricted to those containing between
15 and 500 genes from our analysis.

Integration of Genomic, Transcriptomic, and Glycemic
Trait Data
To infer causal direction of effect, we tested for consis-
tency of associations across genomic, transcriptomic, and
trait data (Fig. 1, bottom). First, we identified eQTL for
transcripts that were associated with fasting glucose or
insulin levels at FDR q ,0.05 across cohorts (FHS and RS
for insulin, FHS and meta-analysis of RS and InCHIANTI
for glucose). We tested associations between each identi-
fied cross-replicated transcript and genotypes with minor
allele frequencies greater than 1% and 1000 Genomes
imputation R2 .0.3 in FHS. In total 1.52 3 1011 tests
were conducted; significant eQTL were identified as
having FDR q ,0.05. After identifying these eQTL in
FHS samples, we examined the eQTL’s association with
the respective trait (glucose or insulin) in the HapMap-
imputed data from the Meta-Analyses of Glucose and
Insulin-related traits Consortium (MAGIC) (15) after ex-
cluding data from FHS, RS, and InCHIANTI samples (n =
50,823 after exclusion of the three cohorts). This list of
SNPs was then pruned based on linkage disequilibrium
(r2 .0.8 in HapMap) and limited to SNPs with at least
10 cohorts contributing results. We considered an eQTL
to be significantly associated with glucose or insulin levels
in the MAGIC data set using an FDR q ,0.05. We used
corroborating evidence from transcript-to-trait, SNP-to-
transcript (i.e., eQTL), and SNP-to-trait to support hy-
potheses of directionality and biological relevance.

RESULTS

Study Population Characteristics
Study population characteristics are presented in Table 1.
All three cohorts were from European descent, partici-
pants were middle-aged at the time of blood draw, and
about 55% were women. The InCHIANTI Study partic-
ipants were older on average than FHS or RS participants.
BMI levels were comparable across cohorts. Although fast-
ing glucose levels were comparable between FHS (median
96.0 mg/dL) and RS (95.4 mg/dL), InCHIANTI partici-
pants were substantially lower (87 mg/dL). Fasting insulin
levels in RS were substantially higher (median 76.0 pmol/L)
than that of FHS participants (56.1 pmol/L).

Gene Expression Correlations Across Tissues
Using publicly available RNA sequencing data from the
GTEx Project, the correlations of transcript levels from
whole blood to other tissues were assessed. Spearman
correlations with whole blood ranged from r = 0.39
in liver to r = 0.54 in kidney (Table 2 and Supplementary
Fig. 1). Thus, if the transcript associations that we ob-
served in our analysis with fasting insulin hold in other
tissues, a sample size of 110 liver samples would be suf-
ficient to achieve the same statistical power as RS, and a
sample size of 769 liver samples would be sufficient to
achieve the same power as FHS. For kidney samples, sam-
ples sizes of 211 and 1,474 would be sufficient to achieve
the same power as RS and FHS, respectively.
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Transcriptomic Associations With Fasting Glucose
To identify transcriptomic signatures that were replicated
in multiple data sets, we focused on transcripts that were
significantly associated (FDR q ,0.05) with fasting glucose
in FHS and in the meta-analysis of RS and InCHIANTI.
Using this criterion, we identified three out of 12,051
unique transcripts that were significantly associated with
fasting glucose in both FHS and the meta-analyzed results
from RS and InCHIANTI (Fig. 2). The three identified
gene transcripts were MARCH8 (FHS q = 4.5 3 10215;
RS + InCHIANTI q = 8.4 3 1023), OSBP2 (FHS q = 2.0 3
10211; RS + InCHIANTI q = 1.3 3 1022), and TNS1 (FHS
q = 4.3 3 10212; RS + InCHIANTI q = 4.6 3 1022). The
full set of fasting glucose TWAS results can be found in
Supplementary Table 1 (all Supplementary Tables can be
accessed at http://sites.bu.edu/fhspl/publications/pbtsfgic_
supp/). After BMI adjustment, no transcripts met our
stringent significance criteria (Supplementary Table 2).
However, the direction and magnitude of t-statistics
with and without BMI adjustment were highly corre-
lated (r = 0.90 in FHS and r = 0.92 in RS + InCHIANTI)
(Supplementary Fig. 2).

Transcriptomic Associations With Fasting Insulin
We applied a similar strategy for cross-cohort reproduc-
ibility of transcripts significantly associated with fasting
insulin (Fig. 2). Fasting insulin was associated with 433

transcripts with FDR q ,0.05 in both FHS and the analysis
of RS. The full set of fasting insulin TWAS results can be
found in Supplementary Table 3. Further adjustment for
BMI yielded 117 transcripts that were significant in both
sets of results, of which 112 (95.7%) were also significant
in the BMI-unadjusted results (Supplementary Table 4).
Among significant findings, two of the transcripts from
our fasting glucose analyses (OSBP2 and TNS1) were also
associated with fasting insulin (with or without adjust-
ment for BMI). The t-statistics for the fasting insulin
associations across all transcripts with and without BMI
adjustment were highly correlated (r = 0.89 in FHS and
r = 0.87 in RS), suggesting minimal influence on the
transcript-insulin associations by BMI (Supplementary
Fig. 2). Fasting insulin and fasting glucose associations
across all transcripts were highly consistent in FHS (t-
statistic correlations r = 0.83) but less so in RS (r = 0.48)
(Supplementary Fig. 3).

Transcriptomic Associations in Gene Regions From
Prior GWAS
Genetic variants have been previously shown to be asso-
ciated with fasting glucose and fasting insulin in GWAS
(1,6,16). Variants may influence levels of gene expression
and circulating transcripts of closely positioned genes
(i.e., cis-eQTL), so we investigated whether the transcript
levels of putative genes assigned to genetic variants iden-
tified in GWAS of fasting glucose and fasting insulin
(1,6,16) were associated with their respective trait (fast-
ing glucose or fasting insulin). We performed separate
analyses in FHS and in the combined data set of RS +
InCHIANTI for each trait. Among 22 putative fasting in-
sulin genes and 45 putative fasting glucose genes reported
in prior GWAS, we were able to test 11 fasting insulin
transcripts and 27 fasting glucose transcripts that were
available on both microarray platforms used in our study
(1,6,16). Among loci identified by fasting glucose GWAS,
circulating IGF2BP2 transcript levels were most strongly
associated with fasting glucose in the current analysis
(P = 1.32 3 10218 in FHS and P = 3.01 3 1025 in RS +

Table 2—Spearman correlation coefficients between tissue
transcript levels from the GTEx Project

Visceral Kidney Liver Muscle Pancreas Blood

Visceral 1.00 0.77 0.66 0.61 0.71 0.50

Kidney 1.00 0.72 0.62 0.78 0.54

Liver 1.00 0.58 0.72 0.39

Muscle 1.00 0.62 0.41

Pancreas 1.00 0.40

Blood 1.00

Table 1—Characteristics of the study participants

Discovery cohort Replication cohorts

FHS RS InCHIANTI

n 5,056 723 595

Age (years), mean 6 SD 54.0 6 13.1 59.3 6 7.9 71.5 6 15.9

Sex (male), n (%) 2,261 (44.7) 320 (44.3) 262 (44)

BMI (kg/m2), mean 6 SD 27.7 6 5.3 27.4 6 4.5 26.9 6 4.2

Microarray platform Affymetrix GeneChip
Human Exon 1.0 ST

Illumina HumanHT-12
v4 BeadChip

Illumina HumanHT-12
v3 BeadChip

Biomarker levels, median (IQR)
Fasting glucose (mg/dL) 96.0 (90.0–102.0) 95.4 (90.0–102.6) 87 (79–95)
Fasting insulin (pmol/L) 56.1 (38.2–83.1) 76.0 (55.0–106.7) NA

Fasting glucose conversion from mg/dL to mmol/L, multiply by 0.0555. Fasting insulin conversion from pmol/L to mIU/mL, multiply by
0.144.
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InCHIANTI) (Table 3); this association remained the
same after adjustment for BMI. Among loci identified
by fasting insulin GWAS, we found that fasting insulin
levels were strongly associated with circulating levels of
TCF7L2 transcripts (P = 4.66 3 10219) and ARL15 tran-
scripts (P = 6.51 3 10214) in FHS, but these findings
were not replicated in RS (Table 4).

eQTL Analysis of Glucose- or Insulin-Associated
Transcripts and Integration With Genetic Association
of Glucose and Insulin Levels
Consistency of evidence across multiple levels of biology
(e.g., between SNP, transcript, and phenotypic trait) may

help identify transcripts whose levels alter fasting glucose
(or insulin) levels rather than the converse. To this end,
we identified SNPs (i.e., eQTL) that were significantly
associated with transcript levels for the genes identified
in our primary TWAS (three transcripts associated with
fasting glucose and 433 transcripts with fasting insulin).
Using 1000 Genomes–imputed SNPs in FHS, we identi-
fied cis- and trans-eQTL at FDR q ,0.05. In total, we
identified 43 cis-eQTL and 357 trans-eQTL for fasting
glucose transcripts, 47,567 cis-eQTL and 6,695 trans-
eQTL for fasting insulin transcripts, and 9,815 cis-eQTL
and 1,017 trans-eQTL for BMI-adjusted fasting insulin

Figure 2—Plots of transcriptomic associations with fasting glucose and fasting insulin in discovery (n = 5,056) vs. replication cohorts (n =
1,318). Significant associations in both discovery and replication cohorts (Bonferroni correction) are highlighted in red. FDR q<0.05 in both
discovery and replication cohorts are highlighted in blue. All models adjusted for age, sex, technical covariates, blood counts, and family
structure (FHS only).
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transcripts. These eQTL included many SNPs that were
in linkage disequilibrium with one another, so we pruned
the list to select independent eQTL from each genomic
region.

On the basis of these lists of cis- and trans-eQTL, we
associated each independent eQTL with its respective
phenotypic trait (fasting glucose or fasting insulin) in
the MAGIC data set. None of the cis-eQTL of the signif-
icant insulin transcripts were associated with fasting in-
sulin (FDR ,0.05), but 92 trans-eQTL were significantly
associated with fasting insulin. These 92 trans-eQTL were
associated with three transcripts identified in our fasting
insulin TWAS—RAB36 (lowest q = 0.003 for the eQTL
association with fasting insulin), IGF2BP2 (q = 0.05), and
PLEK2 (q = 0.05) (Table 5 and Supplementary Table 5).
Among these three genes, the RAB36 SNP-to-transcript
association was highly significant (q = 1.28 3 10235), but
the transcript association with fasting insulin was relatively
weak (trans-eQTL for rs1049256 t = 22.98; q = 0.04). In

contrast, the IGF2BP2 and PLEK2 trans-eQTL associations
were modest (q = 0.002 and q = 0.05, respectively), but the
transcript associations with fasting insulin were highly sig-
nificant (q = 3.46 3 1028 and q = 1.76 3 1027, respec-
tively). It is notable that the same SNP on chromosome
6 (rs592423) was associated with IGF2BP2 and PLEK2 tran-
scripts in trans. IGF2BP2 and PLEK2 transcript levels were
moderately correlated in FHS (Spearman r = 0.53, P, 2.23
10216). None of the eQTL identified for fasting glucose
transcripts were associated with fasting glucose levels in
the MAGIC meta-analyses. Despite the moderate corre-
lations of global transcript levels across tissues, none of
the cross-tissue correlations were significant for IGF2BP2
(ENSG00000073792.11) (Supplementary Fig. 4), PLEK2
(ENSG00000100558.4) (Supplementary Fig. 5), or
RAB36 (ENSG00000100228.8) (Supplementary Fig. 6) in
GTEx.

GSEA
Fasting glucose and fasting insulin are complex traits that
result from the effect of multiple genetic influences and
regulation. As a complementary approach to examining
associations for single gene transcripts individually, we
tested whether gene sets representing biological pathways
were enriched among fasting glucose– or fasting insulin–
associated transcripts. To accomplish this task, we con-
ducted GSEA using FHS results selected as the cohort with
the largest sample size in our study. Association results from
RS and InCHIANTI were underpowered and were not used
in this analysis (Supplementary Fig. 7). Systemic lupus
erythematosus–related pathway genes were significantly
enriched for fasting glucose (with or without BMI adjust-
ment) and fasting insulin GSEA analyses (all q,0.05) (Table
6). Gene sets that were significantly enriched in both fasting
glucose and BMI-adjusted fasting insulin levels included
tryptophan metabolism, porphyrin metabolism, proteasome,
fatty acid metabolism, butanoate metabolism, lysine degra-
dation, and propanoate metabolism. Branched-chain amino

Table 3—Transcriptomic associations with fasting glucose
levels for genes identified in GWAS of fasting glucose

Gene

FHS
(n = 5,056)

RS and InCHIANTI
(n = 1,318)

t P value Z P value

IGF2BP2 8.84 1.32E-18 4.17 3.01E-05

ARAP1 25.44 5.53E-08 22.55 1.08E-02

TOP1 3.94 8.29E-05 0.03 9.78E-01

TCF7L2 3.01 2.66E-03 0.39 7.00E-01

PDX1 22.18 2.91E-02 20.10 9.22E-01

OR4S1 22.18 2.92E-02 0.32 7.45E-01

MTNR1B 2.16 3.12E-02 0.19 8.53E-01

SLC30A8 2.11 3.50E-02 0.04 9.68E-01

P2RX2 21.78 7.58E-02 1.63 1.04E-01

FOXA2 21.47 1.41E-01 0.03 9.74E-01

GLIS3 21.28 2.00E-01 0.42 6.73E-01

CREB3L1 21.27 2.03E-01 20.40 6.86E-01

DPYSL5 1.12 2.63E-01 2.09 3.70E-02

KL 1.08 2.80E-01 20.23 8.21E-01

CDKAL1 0.63 5.29E-01 21.12 2.62E-01

IKBKAP 0.58 5.65E-01 21.26 2.07E-01

CRY2 0.55 5.82E-01 1.13 2.59E-01

PCSK1 0.55 5.83E-01 21.08 2.80E-01

GRB10 0.45 6.52E-01 1.79 7.38E-02

SLC2A2 20.44 6.59E-01 20.06 9.52E-01

G6PC2 20.42 6.77E-01 0.22 8.22E-01

FADS1 0.22 8.24E-01 22.32 2.02E-02

GCKR 20.21 8.32E-01 0.58 5.61E-01

ADRA2A 20.20 8.45E-01 2.05 4.06E-02

GIPR 20.12 9.08E-01 0.02 9.86E-01

PROX1 0.10 9.19E-01 0.84 4.01E-01

GCK 0.05 9.58E-01 20.91 3.61E-01

Table 4—Transcriptomic associations with fasting insulin
levels for genes identified in GWAS of fasting insulin

Gene

FHS (n = 5,056) RS (n = 723)

t P value t P value

TCF7L2 8.96 4.66E-19 1.31 1.92E-01

ARL15 27.52 6.51E-14 20.84 3.99E-01

UHRF1BP1 5.14 2.89E-07 20.29 7.71E-01

PDGFC 4.49 7.28E-06 20.29 7.68E-01

LYPLAL1 23.85 1.18E-04 2.18 2.97E-02

FTO 2.19 2.86E-02 20.46 6.45E-01

GRB14 21.41 1.58E-01 0.14 8.88E-01

PEPD 20.84 4.01E-01 22.93 3.45E-03

RSPO3 0.82 4.10E-01 21.23 2.19E-01

HIP1 20.60 5.48E-01 21.70 8.99E-02

GCKR 20.53 5.98E-01 1.21 2.25E-01
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acid (BCAA) degradation for valine, leucine, and isoleucine
were identified as significantly enriched pathways that
emerged from the GSEA analyses of BMI-adjusted fasting
insulin–associated transcripts (q = 0.03).

DISCUSSION

We examined whole blood mRNA transcript associations
with fasting glucose and fasting insulin levels in individ-
uals without diabetes from three independent studies to
identify genes that may be involved in the regulation of
glycemic traits. We found 433 transcripts associated with
fasting insulin and 3 with fasting glucose that were
significant (FDR q ,0.05) in independent sets of data. In
contrast to GWAS of fasting glucose and insulin levels (1),
we found higher number of significant associations with
fasting insulin than with fasting glucose. We also identi-
fied genetic variants that were associated with our insu-
lin/glucose-associated transcripts (eQTL), most notably a
trans-eQTL (rs592423) that was associated with circulat-
ing transcript levels of IGF2BP2. The same eQTL was also
associated with fasting insulin in a large independent
sample from MAGIC. Thus, the convergence of genomic
and transcriptomic associations suggest a role for IGF2BP2
and its circulating transcript in the regulation of fasting
insulin.

Although the correlations between transcript levels
from blood and other tissues in the GTEx Project were
generally moderate, our study was able to provide sample
size estimates for future studies that may choose to
investigate nonblood tissues. Although these studies will
prove difficult logistically and ethically in healthy individu-
als, these estimates serve as a step forward in bringing forth
such studies.

We found that higher circulating transcript levels of
IGF2BP2 were associated with higher fasting insulin. In
animal models, overexpression of IGF2BP2 causes b-cell
damage in islets (17). Animal models also showed that
IGF2BP2 knockout mice are leaner than controls (18).
In our human study, we found that the association be-
tween fasting insulin and IGF2BP2 transcript levels
remained significant after adjustment for BMI, suggesting
that obesity may not be the predominant driver of this
observation. SNPs rs4402960 and rs1470579 located in
IGF2BP2 (on chromosome 2) have been associated with
type 2 diabetes in multiple studies (19–22), but our cis-
eQTL analyses did not highlight these two variants.

Surprisingly, our eQTL analyses revealed that rs592423
(chromosome 6) was associated with IGF2BP2 (chromosome
3) transcript levels in trans. This eQTL association was re-
ported previously in an independent eQTL analysis of three
large, population-based cohorts (23). The same variant
rs592423 (chromosome 6) was also associated in trans
with transcript levels of PLEK2 (chromosome 14), an-
other transcript that we found significantly associated
with insulin levels in both FHS and RS. Proxy SNPs with
rs592423 (i.e., rs628751 at r2 = 0.90 and rs643381 at
r2 = 0.74) were associated with PLEK2 transcript levels
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in a prior eQTL meta-analysis that included RS and
InCHIANTI samples (24). Little is known currently about
PLEK2, but it may play an integral role in erythropoiesis
(25). Although the PLEK2 association may be suggestive of
a tissue-specific artifact, a biological role for IGF2BP2 cannot
be ruled out. We found that the A allele at rs592423 was
nominally associated with higher fasting insulin (b = 0.009,
P = 0.004) in the MAGIC GWAS meta-analysis. The A allele
of rs592423 has also been previously associated with adi-
ponectin levels in GWAS (MANTRA Bayes Factor = 6.5;
n = 37,430) (26). Our observation that the same eQTL
(rs592423) was associated with two different insulin-
associated transcripts (IGF2BP2 and PLEK2) in trans sug-
gests that this genetic variant may influence a transcription
factor that may affect expression of multiple genes. The
rs592423 variant is located 145 kb from the closest coding
sequence, CITED2, which is a transcriptional coactivator of

the peroxisome proliferative activated receptor g coactivator
1a (PGC-1a) and peroxisome proliferator–activated receptor
a pathways (27,28). Furthermore, CITED2 expression was
downregulated in response to insulin infusion in vivo, which
may be explained by negative feedback due to the elevated
insulin levels (29). In addition, located within 50 kb of
rs592423 is a long noncoding RNA (LOC645434) that is
expressed highly in breast tissue and moderately in adi-
pose and brain tissues. Future studies are needed to test
whether CITED2 or LOC645434 influences levels of
IGF2BP2, PLEK2, insulin, or adiponectin, as well as eluci-
dating their specific roles in regulating fasting insulin
levels. Studies of model organisms may be used to provide
further insights into the mechanisms between rs592423
(or its equivalent in other species) and expression of
IGF2BP2, PLEK2, and CITED2. Inbred knockouts of the
CITED2 gene ortholog may elucidate its role in relation to
IGF2BP2 and/or PLEK2 expression. Outbred animal mod-
els may also be used to confirm the utility of our approach
of genetic variation altering gene expression in more con-
trolled settings.

In addition to IGF2BP2, our TWAS findings identified
several known genes associated with various metabolic
traits. Notable associations with fasting insulin transcripts
included genes involved in insulin signaling (IRS2, FOXO4)
and adipocyte biology or adipokine regulation (ITLN1, PID1,
ADIPOR1). ITLN1 plays a role in insulin-stimulated glucose
uptake in adipocytes. PID1 participates in adipocyte prolif-
eration. ADIPOR1 is a receptor for adiponectin. The eQTL
for ITLN1 (rs4656953) was nominally associated with fast-
ing insulin (adjusted for BMI) in the MAGIC GWAS meta-
analysis (b = 0.006, P = 0.04), implying genetic regulation
of ITLN1 that also influences insulin regulation. Our
TWAS also identified other transcripts of genes near loci
that were previously identified in GWAS of type 2 diabetes
(IGF2BP2, JAZF1) (21), HbA1c levels (PIEZO1) (30), and
lipid profiles (MYLIP, AKT1) (31). Significant cross-replicated
insulin transcripts associations also identified genes that are
known BCAA transporters (SLC16A3, SLC43A2, SLC1A5,
SLC7A5), whose related metabolites were implicated with
type 2 diabetes (32). These confirmatory findings serve as
a positive control for the ability for transcriptomic data in
whole blood to screen for trait-related genes.

Among the gene sets that were enriched in BMI-adjusted
insulin associations was degradation of valine, leucine, and
isoleucine, three major BCAAs. Increased levels of BCAA are
associated with insulin resistance and higher risk of type
2 diabetes incidence (32–34). From the list of individual
transcripts that were significant in both FHS and RS for
fasting insulin, SLC16A3, SLC43A2, SLC1A5, and SLC7A5
are known BCAA transporters. We also found the signif-
icant insulin-associated transcript SLC22A4, which was
previously identified in a GWAS of the ratio of valine to
isovalerylcarnitine (35) This GWAS also implicated a var-
iant near SLC7A5 (BCAA transporter) in association with
plasma levels of kynurenine, a metabolite of tryptophan.
The tryptophan metabolism gene set emerged from our

Table 6—GSEA of transcriptomic associations for fasting
glucose and fasting insulin in FHS Offspring cohort

KEGG
Enrichment

score
FDR q
value

Fasting glucose
Systemic lupus erythematosus 22.15 0.001
Porphyrin and chlorophyll

metabolism 2.05 0.007
Fatty acid metabolism 1.91 0.010
Tryptophan metabolism 1.93 0.012
Butanoate metabolism 1.88 0.012
Lysine degradation 1.86 0.012
Proteasome 1.95 0.013
Propanoate metabolism 1.82 0.018

Fasting glucose (BMI-adjusted)
Systemic lupus erythematosus 21.90 0.015
Asthma 22.02 0.017
Intestinal immune network for

IgA production 21.92 0.018

Fasting insulin
Systemic lupus erythematosus 21.97 0.008

Fasting insulin (BMI-adjusted)
Tryptophan metabolism 2.12 0.001
Proteasome 2.01 0.003
Lysine degradation 1.95 0.007
Aminoacyl tRNA biosynthesis 1.92 0.008
Alanine aspartate and

glutamate metabolism 1.86 0.010
Fatty acid metabolism 1.87 0.011
Citrate cycle TCA cycle 1.88 0.012
Porphyrin and chlorophyll

metabolism 1.81 0.013
Glyoxylate and

dicarboxylate metabolism 1.82 0.014
Butanoate metabolism 1.81 0.015
Valine leucine and

isoleucine degradation 1.73 0.030
Propanoate metabolism 1.72 0.031
Cysteine and methionine

metabolism 1.70 0.035
Primary immunodeficiency 1.69 0.035
Huntington disease 1.66 0.042
RNA polymerase 1.64 0.048
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GSEA of both glucose- and BMI-adjusted insulin-associated
transcripts. BCAA and tryptophan pathways have strong
biological evidence for a role in insulin resistance. In muscle,
the mTOR growth pathway receives signals via three path-
ways: growth factors including insulin, glucose levels via
AMPK, and BCAAs via mTORC1 (36). This is of particular
relevance due to the link between type 2 diabetes and cancer
(36) and the role of skeletal muscle in insulin resistance and
the development of type 2 diabetes (37). Overall, our results
support the notion that BCAA are likely implicated in insulin
resistance pathways. Functional studies and intervention
trials are still needed to clarify their direction of effect and
exact biological role.

Our findings may lead to identification of novel genes
implicated in glucose/insulin regulation. For example, we
found that multiple eQTL on chromosome 3 were associated
with both RAB36 transcript levels and with fasting insulin in
the MAGIC GWAS meta-analysis. RAB36 is a member RAS
oncogene family and is suspected to be involved in vesicular
traffic (38), which is a crucial step in insulin secretion.

Our main limitation is our inability to infer direction
of effect of observed transcript associations with glycemic
traits, given the cross-sectional nature of our study.
Although further studies are needed to confirm the exact
biological roles of our transcriptomic findings in relation
to glucose/insulin regulation, anchoring transcriptomic
results to eQTL and eQTL-to-trait may provide some in-
dication of whether the transcriptomic signature is under
genetic control or is a response to levels of the glycemic trait.
We hypothesized that transcript levels under genetic
control would have an eQTL that is associated both with a
glucose/insulin-associated transcript and with the respec-
tive trait. A causal inference test for IGF2BP2 could not be
conducted because the identified eQTL was a weak instru-
ment (based on a small R2) and thus would have biased
results in a formal causal test (39).

Additional limitations should be noted when interpreting
the results of our study. First, extrapolating transcriptomic
signatures from one tissue to another is difficult. Although
tissues may share a portion of their transcriptomic sig-
natures (40,41), it remains unclear how to distinguish the
shared and unshared signatures. These tissue-specific tran-
script levels may partly account for the lack of associations
in our whole-blood transcriptomic data for many known
fasting glucose and fasting insulin biosynthesis and metab-
olism genes. Next, we only examined mRNA transcript levels
present in the Affymetrix and Illumina gene expression
microarrays, but a more comprehensive quantification of
the transcriptome (e.g., RNA sequencing) and splicing iso-
forms may be able to provide additional insights (42). More-
over, array-specific differences might have caused us to miss
significant and reproducible transcript associations with the
glycemic traits. The Illumina array probes hybridize to the 39
ends of mRNA transcripts, and the Affymetrix Exon array
probes hybridize to the exons. Thus, the Affymetrix array
may detect total mRNA transcripts (i.e., multiple isoforms),
while the Illumina array detects only a subset of isoforms.

Last, a large number of comparisons were conducted study-
wide. To reduce the risk of false positive findings, we used
several highly stringent approaches. In addition to computing
FDRs and validation in independent samples, we further re-
quired transcript-to-phenotype associations to reach this level
of significance in both discovery and replication samples. Fur-
thermore, we used complementary approaches using genetic
variation to provide further support for our main findings.

In conclusion, using three well-characterized, population-
based cohorts, we identified hundreds of mRNA transcripts
whose levels in whole blood were associated with fasting
glucose or fasting insulin levels. We identified genes and
pathways that have been discovered using other biological
assays, supporting the use of circulating mRNA transcript
levels as a discovery tool. For instance, our GSEA identified
BCAA regulation, which was primarily related to type 2
diabetes through metabolomic studies. Furthermore,
we identified an eQTL associated with fasting insulin and
acting as a trans-eQTL for the insulin-associated transcript
IGF2BP2, one of the most reproducible type 2 diabetes and
glycemic trait GWAS findings. Taken as a whole, transcrip-
tomics, particularly when combined with genomic data, was
a tractable modality for highlighting important genes and
pathways that may be involved in the regulation of fasting
insulin levels.
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