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Deep learning (DL) is a branch of machine learning and artificial intelligence that has been applied to many areas in different
domains such as health care and drug design. Cancer prognosis estimates the ultimate fate of a cancer subject and provides
survival estimation of the subjects. An accurate and timely diagnostic and prognostic decision will greatly benefit cancer
subjects. DL has emerged as a technology of choice due to the availability of high computational resources. The main
components in a standard computer-aided design (CAD) system are preprocessing, feature recognition, extraction and
selection, categorization, and performance assessment. Reduction of costs associated with sequencing systems offers a myriad
of opportunities for building precise models for cancer diagnosis and prognosis prediction. In this survey, we provided a
summary of current works where DL has helped to determine the best models for the cancer diagnosis and prognosis
prediction tasks. DL is a generic model requiring minimal data manipulations and achieves better results while working with
enormous volumes of data. Aims are to scrutinize the influence of DL systems using histopathology images, present a
summary of state-of-the-art DL methods, and give directions to future researchers to refine the existing methods.

1. Introduction

Cancer is defined as abnormal cell growth that arises from
any body organ. In essence, further growth of the cells in
these organs is saturated. These silent and saturated cells
are increased at a rapid rate till either their removal through
a physical procedure such as surgery, medication, use of hor-
monal therapy, or radiation therapy or their disappearance
on their own naturally. The natural disappearance of cancer
cells can happen in cancers related to kidney or melanomas.
These cells can be screened using tools such as colonoscopy
or pap smear examination or using mammograms. There

are more than 150 different kinds of cancer, and there is a
lack of strategies to cure them in their early stages. Cancer
stem cells are an effective way to form stromal cells thus pav-
ing a way for the cure of cancers. Apart from stem cells,
WNT16B protein also increases resistance against cancer
along with chemotherapy. Therapies such as laser therapy
and cryotherapy are some of the most vibrant approaches
to treat cancer. Some of the most prevalent types of cancers
worldwide include lip, oral cavity, breast and cervical, and
thyroid cancers. On the other hand, rare cancers such as
osteosarcoma, Ewing’s sarcoma, male breast cancer, gastro-
intestinal stromal tumors, chondrosarcoma, mesothelioma,
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adrenocortical carcinoma, cholangiocarcinoma, kidney
chromophobe carcinoma, pheochromocytoma and paragan-
glioma, sarcoma, and ependymoma made up more than 20%
of cancer cases and are rare types of cancers [1–4].

Cancer is a disease of genes. The process of replication,
mitosis, and bombardment by oxygen cells bring continuous
changes in normal and cancer cells. This process begins at
the birth of a cancer cell and goes on till death. During this
process, cancer cell gains mass using stromal support cells,
immune cells, and endothelial cells. These cells become a
part of cancer mass due to factors like stress ligands and
antigens. Other emblems of cancer-based cellular stress are
proteotoxicity, metabolic changes, and displaced acids of
nucleotides. Another pattern of genes that drive them is
chromosomes. They are drivers of a cell’s nucleus. The
human body has around 20,000 genes in somatic cells, and
their study known as cytogenetics has seen large strides of
progress over the past several decades where it is now possi-
ble to build a 3D model of chromosomes [5–7].

Sugar is an important constituent of tumor cells that
fuels the rapid growth of these cells. They are an important
part of the diet of cancer cells, and their growth ensures
the formation of new clones. Bacteria and microbial cells
colonize the human body. Microbial cells are estimated to
be as abundant as human cells, yet their genome is roughly
100 times the human genome, providing significantly more
genetic diversity. Helicobacter pylori, Chlamydia trachoma-
tis, Salmonella enterica serovar typhi, Fusobacterium nucle-
atum, enterotoxigenic Bacteroides fragilis, Koribacteraceae,
etc., are some of the most prominent bacteria that are
associated with cancer. Apoptosis and necroptosis are two
avenues of programmed cell death [8–10].

Cancer has long inspired fears. In the distant past,
physicians related depression or melancholic humour to
cancer’s pathogenesis. It was believed that melancholy could
give rise to a tumor as people attributed their cancer to
sadness. Recently, inflammation and nonspecific immune
activation are found to be key factors in the pathophysiology
of depression related to cancer. Urban centers are at an
increasing risk of cancer-related risks due to factors like
nutrition; infections such as sea turtle fibropapillomatosis
and feline immunodeficiency virus; urban chemical pollu-
tion such as carcinogens, polychlorinated biphenyls, gluta-
thione, and urethane-induced adenomas; light and noise
pollution such as suppression of pineal melatonin produc-
tion; changes in survival; and life history strategies [11–13].

Deep learning (DL) has seen phenomenal growth in
recent years in the use of artificial intelligence allowing
complex computational models to represent abstractions
gathered from data with wide applications in speech
processing, visual processing, and other domains. These
methods work by discovering fine structures in large and
often complex datasets using a backpropagation algorithm.
Compared to DL, conventional methods such as machine
learning-based methods have limitations in processing natu-
ral data in its basic form without preprocessing [14].

Convolutional Neural Networks (CNNs) are DL systems
equipped with the power to learn invariant features. CNNs
have filter banks, feature pooling layers, batch normalization

layers, dropout layers and dense layers that work in har-
mony to create patterns for different object recognition tasks
such as detection, segmentation, and classification. CNNs
have multilevel hierarchies where the distribution of inputs
changes during the process of training. Preprocessed inputs,
such as those obtained through the process of whitening,
etc., are highly desirable to obtain better performances
across tasks [15]. CNNs have many different variants such
as those offering shorter connections, for example, DenseNet
architecture, which offer advantages in terms of feature cir-
culation and offer substantial reduction in hyperparameters
to build efficient architectures [16]. The focal and nonfocal
electroencephalogram signals in tunable Q-factor wavelet
transform domain have been investigated and identified
with the help of feature selection and neural network
methods [17]. A recent study concerning the low-density
parity-check (LDPC) codes for Internet of things networks
has been conducted via a novel technique for obtaining the
first two minima of check-node update operation of the
min-sum-LDPC decoder [18]. In addition, a review of future
robust networks including various scenario for 6G has been
discussed in [19].

Other types of CNN architectures that have gained pop-
ularity in recent years are ResNets, Xception, and GoogLe-
Net architectures. The need for these networks arises due
to degradation in performances across tasks when the net-
work is getting deeper, the need for multiscale processing,
and the search for better architectures with less number of
parameters [20–23].

Another issue that holds considerable importance in DL
is the ability of an architecture to store information over
extended time intervals. One solution proposed for this
problem is Long Short-Term Memory (LSTM). LSTM archi-
tecture works by enforcing consistent error flow that is non-
global in space and time through states of specialized
units [24].

Another idea worth mentioning in DL is the notion of
transfer learning. In transfer learning, features extracted
from deep CNNs are repurposed to new and novel tasks.
The need arises because generic tasks may differ by a wide
margin from the original tasks due to which there may be
insufficient labelled or other data to train or adapt a DL
architecture to new tasks. Using transfer learning, features
can be adapted to have sufficient generalization expression
using simple techniques reliably [25–27].

Finding better architecture design parameters for DL
models is a problem worth considering. Reinforcement
learning methods can help in this task. An inspirational
example is NASNet architecture that uses a number of dif-
ferent network topologies to find repeated motifs that can
be combined in series to handle inputs of varying spatial
dimensions and depth [28, 29].

This paper presents an overview of DL methods for the
task of cancer diagnosis, prognosis, and prediction. The
aim is to highlight the differences between different model
constructions and to provide limitations and future perspec-
tives for further exploration of this exciting domain.

The rest of the paper is organized as follows. Section 2
presents the gist behind the selection of studies that are
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made a part of this survey article. Section 3 presents an over-
view of publically available datasets for cancer research
followed by the description of current applications of DL in
cancer diagnosis, prognosis, and prediction tasks in Section
4. Section 5 presents the discussion covering limitations of
the existing methods, perspectives, and some directions for
future work. Finally, Section 6 concludes this work and pro-
poses avenues for further research in this domain.

2. Methodology

The criterion used for the selection of articles for this mini-
review was language and authenticity of electronic sources.
Articles written only in English language are made a part
of this survey due to wide recognition of English as the lan-
guage of scientific and biomedical domains. Years of sources
of articles considered for this study range between 1997 and
2020. We used PubMed, Web of Science, IEEE Xplore, and
Science Direct platforms to conduct the research. The search
terms used were diagnosis of cancer, prognosis of cancer,
prediction of cancer using DL, and transfer learning models.

3. Publically Available Datasets for Cancer
Research Using DL Methods

In this section, we will provide a brief description of publically
available datasets for cancer studies. We will briefly describe
The Cancer Genome Atlas (TCGA) database, Rotterdam
tumor bank, Study to Understand Prognoses and Preferences
for Outcomes and Risks of Treatment (SUPPORT), Molecular
Taxonomy of Breast Cancer International Consortium
(METABRIC), MITOS-ATYPIA-14 dataset, Tumor Prolifera-
tion Assessment Challenge (TUPAC) 2016 dataset, INbreast
database, Lung Image Database Consortium and Image Data-
base Resource Initiative (LIDC-IDRI) datasets, Lung Nodule
Analysis (LUNA16) dataset, Breast Cancer Histopathological
Image Classification (BreakHis) dataset, 2015 Bioimaging
breast histology classification challenge, Cancer Metastases
in Lymph Nodes Challenge breast cancer metastasis detection
(CAMELYON) dataset, PatchCamelyon dataset, 2018 Inter-
national Conference on Image Analysis and Recognition
(ICIAR) dataset, MITOS12 dataset, Leukemia microarray
gene data, Gene Expression Omnibus repository, BioGPS data
portal, The Cancer Imaging Archive (TCIA), Genomic Data
Commons (GDC), Therapeutically Applicable Research to
Generate Effective Treatments (TARGET), 1000 Genomes
Project, Kvasir dataset, University of California Santa Barbara
Bio Segmentation Benchmark (UCSB-BB) dataset, and the
Multimodal Brain Tumor Image Segmentation Benchmark
(BRATS) dataset.

(1) TCGA Database. Beginning in 2006, TCGA is a
result of a joint partnership between the National
Cancer Institute and the National Human Genome
Research Institute characterizing over 20,000 pri-
mary cancer and matched normal samples span-
ning 33 cancer types such as acute myeloid
leukemia, adrenocortical carcinoma, breast lobular
carcinoma, and uveal melanoma. The total number

of cases in this database is approximately 11,125. It
also contains cases of rare types of cancers. This data-
base is available at https://www.cancer.gov/about-
nci/organization/ccg/research/structural-genomics/
tcga (accessed on September 24, 2021).

(2) Rotterdam Tumor Bank. This dataset [30] is com-
prised of 2982 primary breast cancer patients of
whom 1546 are positive cases, i.e., they had the dis-
ease. Different factors such as estrogen receptors,
progesterone receptors, hormonal treatment, num-
ber of positive lymph nodes, differentiation grade,
and tumor size characterize this dataset. An R pack-
age of this dataset can be accessed at https://stat
.ethz.ch/R-manual/R-devel/library/survival/html/
rotterdam.html (accessed on September 24, 2021).

(3) SUPPORT Database. This database [31], gathered
with the support of five teaching hospitals in the
United States, is comprised of 9105 adults with an
overall 6-month mortality rate of 47%. Subjects are
recruited in twophases. Phase I recruited 4301patients
while phase II recruited 4804 patients. In phase II, the
intervention group has 2652 subjects while the control
group has 2152 subjects. Patients are diagnosed with
one of nine life-threatening diagnoses.

(4) METABRIC Dataset. This dataset [32] is comprised
of 2509 primary breast tumor subjects with 548
matched normal subjects. There are 2506 breast
cancer subjects and 3 breast sarcoma subjects. Sub-
jects with breast invasive ductal carcinoma are the
most frequently occurring in this dataset while
subjects of metaplastic breast cancer and breast
angiosarcoma are the least frequently occurring clas-
ses. In total, there are eight classes of cancer subjects.
This dataset is available at https://www.cbioportal
.org/study/summary?id=brca_metabric (accessed on
September 24, 2021).

(5) MITOS-ATYPIA-14 Dataset. This dataset contains
histological images of breast cancer for the detection
ofmitotic cells and for the evaluation of nuclear atypia
score for the prognosis of breast cancer. These
annotations are provided by two senior and three
junior pathologists. The dataset provides samples of
haematoxylin and eosin-stained slides with the size
of 1539 × 1376 pixels at 20x and 40x magnification
levels. For every slide, the pathologists selected several
frames at ×10 magnification which are further subdi-
vided into four frames at ×20magnification which are
further subdivided into four frames at ×40 magnifica-
tion. Evaluation metrics for mitosis are the number of
detected mitosis, number of true positives, number of
false positives, number of false negatives, sensitivity,
precision, and F1-value. This dataset is available at
https://mitos-atypia-14.grand-challenge.org/Home/
(accessed on September 24, 2021).

(6) TUPAC 2016 Dataset. This dataset [33] provides a
way to predict tumor proliferation scores from
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whole-slide images. The challenge dataset is made up
of 500 training and 321 testing breast cancer histology
whole-brain slides. This dataset is designed to fulfill
three purposes. The first one is to predict mitotic
scores while the second one is to predict gene
expression-based proliferation scores. A third task
was later added to the challenge for mitosis detection.

(7) INbreast Dataset. This breast cancer dataset [34]
has a total of 115 cases and is made up of full-
field digital mammograms. The number of images
of these cases is 410. In these 115 cases, 90 cases
are from women with both breasts affected while
25 cases represent mastectomy patients. Several
types of lesions such as masses, calcifications, asym-
metries, multiple findings, normal, and distortions
are included. Eight cases also have images acquired
at different timings.

(8) LIDC-IDRI Database. Initiated by the National
Cancer Institute (NCI), this dataset [35] of Com-
puted Tomography (CT) scans contains 1018 cases
of three categories: nodule ≥ 3mm, nodule < 3mm,
and nonnodule ≥ 3mm. A two-phase image annota-
tion process was performed by four experienced tho-
racic radiologists. The goal of this dataset is to
identify as completely as possible all lung nodules in
each CT scan. This dataset is available at https://
wiki.cancerimagingarchive.net/display/Public/LIDC-
IDRI#1966254194132fe653e4a7db00715f6f775c012
(accessed on September 24, 2021).

(9) LUNA16 Dataset. Collected from the LIDC-IDRI
dataset, the LUNA16 [36] dataset is designed for
the detection of pulmonary nodules from CT scans.
The scans where slices were thicker than 2.5mmwere
excluded. It facilitates lung nodule segmentation by
providing the option of multiple candidates per nod-
ule. In total, this dataset includes 888 CT scans. Irrel-
evant findings that were not made a part of this
dataset include nonnodules, nodules < 3mm, and
nodules annotated by only 1 or 2 radiologists. This
dataset is available at https://luna16.grand-challenge
.org/Data/ (accessed on September 24, 2021).

(10) BreakHis Dataset. This dataset [37] of breast cancer
subjects contains 9109 microscopic images. These
images of tumor tissue are collected from 82 sub-
jects at four different magnification levels which
are 40x, 100x, 200x, and 400x. It contains 2480
benign and 5429 malignant samples. These samples
are stored in PNG format. The resolution of each
sample is 700 × 460 pixels, 3-channel RGB with
eight-bit depth in each channel. This database
resulted from the collaboration of the P&D Labora-
tory Pathological Anatomy and Cytopathology,
Parana, Brazil, and Laboratory of Vision, Robotics,
and Imaging, Federal University of Parana, Brazil.
Benign tumors are slow-growing and remain local-
ized to a region while malignant tumors can spread

to distant regions and possess the ability to destroy
adjacent structures which may cause death. This
dataset is available at https://web.inf.ufpr.br/vri/
databases/breast-cancer-histopathological-database-
breakhis/ (accessed on September 24, 2021).

(11) 2015 Bioimaging Breast Histology Classification
Challenge Dataset. This dataset [38] of breast cancer
subjects has four classes which are normal, benign, in
situ carcinoma, and invasive carcinoma. It has high-
resolution, uncompressed, and annotated H&E stain
slides. The images have a resolution of 2040 × 1536
pixels. It supports both image and patch-wise classi-
fication tasks. This dataset is available at https://
rdm.inesctec.pt/dataset/nis-2017-003 (accessed on
September 24, 2021).

(12) CAMELYON Dataset. This dataset [39] is designed
for breast cancer metastasis detection and classifica-
tion in whole-slide images of histological lymph
nodes. It facilitates patient-level analysis by combin-
ing the assessment of several lymph node slides into
one outcome for direct deployment in a clinical set-
ting which will facilitate pathologists while at the
same time reducing the subjectivity in diagnosis. It
contains 1399 unique whole-slide images of lymph
nodes which have a slide-level label indicating
whether it contains no metastases, macrometastases,
micrometastases, or isolated tumor cells. In addition,
the dataset has detailed contours drawn by experts
for all metastases in 209 whole-slide images. This
dataset is available at https://camelyon17.grand-
challenge.org (accessed on September 24, 2021).

(13) PatchCamelyon Dataset. This dataset [40] contains
histopathologic scans of breast cancer lymph node
sections. Each image in this dataset is annotated
with a label to indicate the presence of metastatic
tissue. It contains 327,680 color images with a reso-
lution of 96 × 96 pixels. It is trainable on a single
GPU. For size comparisons, it is bigger than
CIFAR10 and smaller than the ImageNet dataset.
This dataset is available at https://www.tensorflow
.org/datasets/catalog/patch_camelyon (accessed on
September 24, 2021).

(14) 2018 ICIAR Dataset. This dataset is composed of
haematoxylin and eosin-stained breast histology
microscopy and whole-slide images. The images are
labelled as normal, benign, in situ carcinoma, or
invasive carcinoma. There are a total of 400 micros-
copy images with 100 images per class stored with
.tiff extension. The microscopy images are color
images with a dimension of 2048 × 1536 pixels. The
whole-slide images are color images with a dimen-
sion of 42113 × 62625 pixels and are stored in .svs
format with pixel-wise labels. This dataset is available
at https://iciar2018-challenge.grand-challenge.org/
Dataset/ (accessed on September 24, 2021).
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(15) MITOS12 Dataset. This dataset [41] contains 50
breast cancer biopsy slides at a 40x magnification
level with more than 300 mitoses in these slides.
The dimensions of these images are 2084 × 2084
pixels and 2252 × 2250 pixels. This dataset is helpful
with mitotic count to estimate the aggressiveness of
the breast tumor. This dataset is available at http://
ludo17.free.fr/mitos_2012/dataset.html (accessed on
September 24, 2021).

(16) Leukemia Microarray Gene Data. This dataset [42]
contains gene expression data from 60 bone marrow
samples of patients belonging to acute lymphoblastic
leukemia, acute myeloid leukemia, chronic lympho-
cytic leukemia, chronic myeloid leukemia, and
healthy bone marrow. Microarray technology has
been instrumental in genome-wide expression studies
especially as the knowledge of metazoan genomes is
improving. Further information about this dataset is
available at https://www.bioconductor.org/packages/
devel/data/experiment/manuals/leukemiasEset/man/
leukemiasEset.pdf (accessed on September 24, 2021).

(17) Gene Expression Omnibus Repository. This reposi-
tory [43] provides comprehensive sets of microarray,
next-generation sequencing, and other genomic data
to facilitate research in different types of cancers.
Further information about this repository is available
at https://www.ncbi.nlm.nih.gov/geo/ (accessed on
September 24, 2021).

(18) BioGPS Data Portal. This portal [44] supports eight
species which are humans, mouse, rat, fruitfly,
nematode, zebrafish, thale-cress, frog, and pig to
facilitate research in genes. Many different kinds
of cancers are supported such as lung cancer, breast
cancer, esophageal cancer, thyroid cancer, pancre-
atic cancer, colorectal cancer, and colon cancer.
This portal is available at http://biogps.org/#goto=
welcome (accessed on September 24, 2021).

(19) TCIA. This service [45] provides deidentification
and hosting of a large archive of medical images
of cancer for public access using different modali-
ties such as Magnetic Resonance Imaging (MRI),
CT, and digital histopathology. It also provides
supporting data such as patient outcomes, treat-
ment details, and genomics. This service is available
at https://www.cancerimagingarchive.net (accessed
on September 24, 2021).

(20) GDC. This portal provides genomic, clinical, and
biospecimen data for different types of cancers such
as bone marrow, breast, eye, skin, lung, liver, and
nervous system. It supports cancer research initia-
tives such as TCGA and TARGET. This portal is
available at https://gdc.cancer.gov (accessed on
September 24, 2021).

(21) TARGET. This program provides vast amounts of
genomic data to estimate molecular alterations in

childhood cancers. The goal is to use data for the
development of effective, less toxic therapies. It drives
research in acute lymphoblastic leukemia, acute
myeloid leukemia, kidney tumors, neuroblastoma,
osteosarcoma, etc. Further information is available
at https://ocg.cancer.gov/programs/target# (accessed
on September 24, 2021).

(22) 1000 Genomes Project. The aim of this project [46]
is to find common genetic variants by taking
advantage of developments in sequencing technol-
ogy. It helps in sequencing a large number of people
to provide a comprehensive resource on human
genetic variation. Cell lines and DNA are available
for all 1000 Genomes samples. These samples are
completely anonymous with no associated medical
data. Further information about this project is
available at https://www.internationalgenome.org/
1000-genomes-summary (accessed on September
24, 2021).

(23) Kvasir Dataset. This dataset [47] is accessible at
https://dl.acm.org/do/10.1145/3193289/abs/ (accessed
on September 24, 2021). It is designed to facilitate
research in gastrointestinal (GI) tract cancer. The
initial dataset consists of 4000 annotated images
belonging to 8 classes with 500 images per class. The
anatomical landmarks are Z-line, pylorus, and cecum,
while the pathological finding includes esophagitis,
polyps, and ulcerative colitis. Resolution of images
ranges from 720 × 576 up to 1920 × 1072 pixels. This
dataset continues to play an important role in deep
learning research.

(24) UCSB-BB Dataset. This dataset [48] contains images
of human,monkey, and cat species at subcellular, cel-
lular, and tissue levels with resolutions ranging from
300 × 200 to 1024 × 1024 pixels. There are 58 images
of breast cancer belonging to malignant/benign clas-
ses in humans with sizes of 896 × 768 and 768 × 512
at the cellular level associated with ground truth data.
This dataset is available at https://bioimage.ucsb.edu/
research/bio-segmentation (accessed on September
24, 2021).

(25) BRATS Dataset. This dataset [49] is composed of
clinical and synthetic images. The clinical data has
65MRI scans of low- and high-grade glioma patients.
Four MRI contrasts which are T1, T1c, T2, and
FLAIR are represented by clinical data. The synthetic
data has 35 high-grade and 30 low-grade glioma sub-
jects. It is aimed at facilitating segmentation of
tumors and patient survival through prediction and
differentiation between tumor recurrence and pro-
gression. This dataset is available at https://www
.med.upenn.edu/cbica/brats2020/ (accessed on Sep-
tember 24, 2021).

Table 1 displays a summary of the databases/service-
s/projects to facilitate cancer research covered in this section.
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Table 1: Summary of the datasets for cancer research.

Dataset/service/project Link Type(s) of cancer(s) Description

TCGA database
https://www.cancer.gov/aboutnci/organization/ccg/

research/structural-genomics/tcga
Multiple

33 cancer types, total no. of cases
is 11125

Rotterdam tumor bank
https://stat.ethz.ch/R-manual/R-devel/library/survival/

html/rotterdam.html
Breast cancer

2982 primary breast cancer
patients; 1546 are positive cases

SUPPORT database [31] Multiple
9105 adults, an overall 6-month

mortality rate of 47%

METABRIC dataset
https://www.cbioportal.org/study/summary?id=brca_

metabric
Breast cancer

2509 primary breast tumor
subjects, 548 matched normal

control subjects

MITOS-ATYPIA-14
dataset

https://mitos-atypia-14.grand-challenge.org/Home/ Breast cancer
Resolution of 1539 × 1376 pixels
at 20x and 40x magnification

levels

TUPAC 2016 dataset [33] Breast cancer
500 training and 321 testing
breast cancer histology whole-

brain slides

INbreast dataset [34] Breast cancer
Total of 115 cases and 410

images

LIDC-IDRI database
https://wiki.cancerimagingarchive.net/display/Public/

LIDCIDRI#1966254194132fe653e4a7db00715f6f775c012
Lung cancer

CT scans of 1018 subjects, three
categories (i) nodule ≥ 3mm, (ii)

nodule < 3mm, and (iii)
nonnodule ≥ 3mm

LUNA16 dataset https://luna16.grandchallenge.org/Data/ Lung cancer
888 CT scans, facilitates
segmentation studies

BreakHis dataset
https://web.inf.ufpr.br/vri/databases/breast-
cancerhistopathological-database-breakhis/

Breast cancer

9109 microscopic images; four
different magnification levels
which are 40x, 100x, 200x, and
400x collected from 82 subjects

2015 Bioimaging
Breast Histology
Classification
Challenge

https://rdm.inesctec.pt/dataset/nis-2017-003 Breast cancer

Four classes which are normal,
benign, in situ carcinoma, and
invasive carcinoma; resolution

of 2040 × 1536 pixels

CAMELYON dataset https://camelyon17.grand-challenge.org Breast cancer

Facilitates patient-level analysis;
1399 unique whole-slide images;
no metastases, macrometastases,
micrometastases, and isolated

tumor cells

PatchCamelyon dataset
https://www.tensorflow.org/datasets/catalog/patch_

camelyon
Breast cancer

327,680 color images with
resolution of 96 × 96 pixels;
bigger than CIFAR10 and

smaller than ImageNet dataset

2018 ICIAR dataset https://iciar2018-challenge.grand-challenge.org/Dataset/ Breast cancer

Represent normal, benign, in
situ carcinoma, and invasive
carcinoma; 400 microscopy

images with 100 images per class

MITOS12 dataset http://ludo17.free.fr/mitos_2012/dataset.html Breast cancer
50 biopsy slides; 40x

magnification level; more than
300 mitoses

Leukemia microarray
gene data

https://www.bioconductor.org/packages/devel/data/
experiment/manuals/leukemiasEset/man/leukemiasEset

.pdf

Bone marrow
cancer

60 bone marrow samples; acute
lymphoblastic leukemia, acute
myeloid leukemia, chronic

lymphocytic leukemia, chronic
myeloid leukemia, and healthy

bone marrow
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4. Current Applications of Deep Learning in
Cancer Diagnosis, Prognosis, and Prediction

In this section, we will discuss some current research trends
in the domain of DL for cancer diagnosis, prognosis, and
prediction tasks. We will cover techniques for the prognos-
is/prediction of tumors, breast cancer, and other types of
cancer. In addition, we will also cover techniques for the seg-
mentation/detection of breast cancer and other types of can-
cer. Furthermore, we will cover different methods for the
classification of breast cancer and other types of cancer.
We will also cover techniques for the classification, segmen-
tation, and detection of brain tumors. Figure 1 shows
histopathological views of some of the cancer subtypes that
will be covered in this review article.

4.1. Prognosis/Prediction of Tumors, Breast Cancer, Skin
Cancer, Head and Neck Cancer, Brain Cancer, Liver
Cancer, Colorectal Cancer, Ovarian Cancer, and Other
Types of Cancer. Petalidis et al. [50] reported a gene expres-
sion dataset for astrocytic tumors. They employed an
Artificial Neural Network (ANN) algorithm to combine sig-
natures from histopathological subclasses of these tumors in
order to address the need for proper grading of these
tumors. In this study, they found 59 genes which belong to

three classes, namely, angiogenesis, lower-grade astrocytic
tumor discrimination, and cell differentiation. They further
report that these tumor subtypes have very high prognostic
value, and they are missing in other studies reported in the
literature. Finally, they report 11 classifiers that used genes
to differentiate among primary/secondary subtypes of glio-
blastomas. They used a custom as well as independent data-
set reporting accuracy of 96.15% to identify correct classes
for these subtypes. Chi et al. [51] use morphometric features
to compare prediction outcomes on two different breast can-
cer datasets. They report successful predictions with good
and bad prognostic values. Here, good means that prognosis
stands valuable even after five years while bad suggests less
than five years. The authors in [52] conducted experiments
in female breast carcinoma patients using a DL approach.
They did prediction using a Cox regression model and gene
expression datasets. They called their approach Survival
Analysis Learning with MultiOmics Neural Networks
(SALMON). They report that performance of SALMON is
improved when more data is used to combine and simplify
cancer biomarkers and gene expressions to enable prognosis
prediction. Shimizu and Nakayama [53] conducted experi-
ments to identify breast cancer genes for prognosis predic-
tion using The Cancer Genome Atlas (TCGA) database.
They identified 184 genes using artificial intelligence (AI),

Table 1: Continued.

Dataset/service/project Link Type(s) of cancer(s) Description

Gene Expression
Omnibus repository

https://www.ncbi.nlm.nih.gov/geo/ Multiple

Provides comprehensive sets of
microarray, next-generation

sequencing, and other genomic
data

BioGPS data portal http://biogps.org/#goto=welcome Multiple
Supports eight species including
humans; supports different types

of cancers

TCIA https://www.cancerimagingarchive.net Multiple

Supports a large number of
modalities; supports data such as
patient outcomes, treatment

details, and genomics

GDC https://gdc.cancer.gov Multiple
Provides genomic, clinical, and

biospecimen data

TARGET https://ocg.cancer.gov/programs/target# Multiple

Childhood cancers are
supported; provides vast

amounts of genomic data to
estimate molecular alterations

1000 Genomes Project
https://www.internationalgenome.org/1000-genomes-

summary
Multiple

Provides a comprehensive
resource on human genetic

variation

Kvasir dataset https://dl.acm.org/do/10.1145/3193289/abs/
Gastrointestinal
tract cancer

4000 annotated images
belonging to 8 classes

UCSB-BB dataset https://bioimage.ucsb.edu/research/bio-segmentation
Supports breast

cancer research in
human species

Contains images of human,
monkey, and cat species at

subcellular, cellular, and tissue
levels

BRATS dataset https://www.med.upenn.edu/cbica/brats2020/ Brain tumor

MRI scans of 65 subjects each in
clinical and synthetic datasets,
for brain tumor segmentation

task
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and for that purpose, they used random forest and neural
network models. Furthermore, they used a molecular score
for prognosis that uses only 23 of these genes. They con-
firmed that they have found potential drug targets in these
genetic discoveries. The authors in [54] performed their
experiments using malignant melanoma. They used a data-
set with 1160 females and 786 males. They used an ANN
architecture employing a flexible nonlinear structure for
prognosis prediction of survival probabilities. They found
the performance of their model to be at par with the Cox
model with the advantage that it offers a flexible approach
when analyzing data using a specified distributional form.
Jing et al. [55] introduced a loss function combining a pair-
wise ranking loss and a mean squared error loss to optimize
a DL model validated on four publically available datasets,
such as the Worcester Heart Attack Study (WHAS), Rotter-
dam tumor bank, Study to Understand Prognoses and Pref-
erences for Outcomes and Risks of Treatment (SUPPORT),
and Molecular Taxonomy of Breast Cancer International
Consortium (METABRIC). Their model achieved superior
performance results than medical experts for nasopharyn-
geal carcinoma prognosis. Hao et al. [56] proposed a DL
network predicting prognoses and describing complex
biological pathways thus providing their model the power
to interpret its outcomes. They conducted experiments for
prediction in glioblastoma multiforme brain cancer from
TCGA database. Their model achieves an Area under the
Curve (AUC) of 0:6622 ± 0:013 and an F1 score of
0:3978 ± 0:016 outperforming other models such as Logistic
Least Absolute Shrinkage and Selection Operator (LASSO),
Random LASSO, Support Vector Machines (SVMs), and a
dropout neural network model which shows the superiority
of their approach. The authors [57] put forward a multi-
modal DL network integrating multidimensional data. Their

model combined gene expression data, alteration data, and
other forms of clinical data achieving better performance
than models with 1D data and other approaches. Chaudhary
et al. [58] proposed the DL-based approach based on a com-
bination of RNA and methylation data from TCGA to model
hepatocellular carcinoma subjects. Their model achieves a
concordance index of 0.68 and a p value of 7:13 × 10−6. They
found that TP53 mutations, KRT19 and EPCAM stemness
markers, and Wnt and Akt signaling pathways are associated
with more aggressive subtypes. The authors in [59] proposed
a DL model combining CNN and Recurrent Neural Network
(RNN) architectures for the prediction of colorectal cancer
subjects using digitized haematoxylin-eosin-stained tumor
tissue microarray samples. In the low- and high-risk patients,
their model achieved a hazard ratio of 2.3 for visual assess-
ment of histological tissues and a hazard ratio of 1.65 on
the whole-slide level for both low- and high-risk subjects.
Wang et al. [60] come up with a DL model to predict serous
ovarian cancer subjects by extracting prognostic biomarkers
from CT images. They further proposed a combined DL
and Cox hazards model and achieved a concordance index
of 0.713 and 0.694 for individual and three years of recur-
rence probability of subjects, respectively. The authors in
[61] used a DL-based ANNmodel from transcriptomics data.
They deployed TCGA datasets of RNA sequences belonging
to ten different kinds of cancers. Their model achieved supe-
rior or equal level performance at both the pathway and gene
levels. The authors in [62] came up with a DLmodel combin-
ing a Cox proportional hazards model with one of the best
performing survival methods. They conducted experiments
on WHAS, METABRIC, and SUPPORT datasets achieving
good prediction performance levels for personalized treat-
ment recommendations. Mobadersany et al. [63] predicted
time-to-event results from histopathology images and gene-

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 1: Histopathological images of different cancer subtypes: (a) breast cancer, (b) skin cancer, (c) head and neck cancer, (d) brain
cancer, (e) liver cancer, (f) colorectal cancer, (g) ovarian cancer, (h) lung cancer, (i) bladder cancer, (j) gastric cancer, (k) prostate cancer,
and (l) pancreatic cancer.
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based biomarkers using CNNs as DL models from glioma
and glioblastoma cohorts of TCGA. They used a sampling-
and filtering-based approach for the improvement of their
predictions by not taking into account the intratumoral het-
erogeneity. Their model achieved a median concordance
index of 0.754 surpassing other state-of-the-art approaches.
The authors in [64] developed a DL-based approach using
CNNs to predict the survival of mesothelioma cancer sub-
jects. They used TCGA and a French source to test their
approach. They achieved a concordance index of 0.656 on
the TCGA cohort surpassing the performance of human
experts and found key regions in the stroma that are associ-
ated with inflammation and cellular diversity. Liu et al. [65]
modeled diagnostic prediction using DLmodels. The authors
conducted their study on 27 diverse cancer types obtained
from TCGA and Gene Expression Omnibus dataset. They
successfully decoded 12 CpG and 13 promoter markers.
The CpG markers that they identified achieved a sensitivity
of 100% in the prediction of prostate cancer samples while
promoter markers achieved 92% using cell-free deoxyribonu-
cleic acid (DNA) methylation data.

Table 2 displays a summary of the studies for the task of
prognosis and prediction of cancers covered in this subsection.

4.2. Segmentation/Detection of Breast Cancer, Lung Cancer,
Bladder Cancer, and Other Types of Cancer. Yap et al. [66]
used DL approaches for breast lesion detection using ultra-
sound images. They investigated the performance of LeNet,
U-Net, and a pretrained AlexNet. They conducted their
experiments on two custom datasets of 306 and 163 images
termed dataset A and dataset B, respectively. Their pre-
trained AlexNet-based model achieved the best overall per-
formance by achieving an F-measure of 0.91 and 0.89 on
both datasets. The authors in [67] come up with different
variants of fully convolutional networks (FCNs) for the seg-
mentation of lesions of breast cancer subjects. They tried an
AlexNet-based FCN, as well as 8-, 16-, and 32-layered FCN
models. To overcome the problem of data deficiency, they
used transfer learning and pretraining on the ImageNet
dataset. Their dataset has two classes, benign and malignant.
They reported an average dice score of 0.7626 using FCN
with 16 layers on benign lesions. Their model correctly rec-
ognized 89.6% of benign lesions and 60.6% of the malignant
lesions successfully. Liu et al. [68] used DL to detect breast
cancer in lymph node biopsies. They used 399 slides from
the Camelyon16 challenge dataset to achieve an AUC of
99% at the slide level. They used a second custom dataset
that has 108 slides to achieve an AUC of 99.6%. As a prepro-
cessing step, they used a color normalization procedure. The
authors in [69] used different DL methods such as faster
region CNN, ResNET-50, and DenseNet-201 architectures
for breast cancer detection using histopathology images.
They used three datasets to conduct their experiments which
are International Conference on Pattern Recognition 2012,
MITOS-ATYPIA-14, and Tumor Proliferation Assessment
Challenge 2016 dataset. They achieved a precision of 0.876
on the International Conference on Pattern Recognition
2012 dataset, 0.848 on MITOS-ATYPIA-14, and a precision
of 0.641 on the Tumor Proliferation Assessment Challenge

2016 dataset. As data augmentation methods, they employed
horizontal and vertical flipping, translation, and resizing
operations to artificially increase the size of datasets. Anur-
anjeeta et al. [70] used shape and morphological features
derived from segmented images to detect cancer cells using
a number of DL and machine learning-based models. They
used J-Rip, logistic modal tree, rotation forest, multilayer
perceptron, and other models trained by histopathological
images. Rotation forest performed the best in cancerous/-
noncancerous detection achieving an accuracy of 85.7%.
The authors in [71] used a modified regional CNN method
to efficiently determine mitosis in breast cancer using histo-
pathological images. They employed subjects belonging to
the 2014 International Conference on Pattern Recognition
(ICPR) and TUPAC 2016 datasets in their study. They
achieved 0.76 in precision on the TUPAC 2016 dataset.
Zhou et al. [72] used a 3D deep CNN model to detect lesions
in the breast cancer MRI dataset. They deployed a custom
dataset with 1537 female patients and classify them as
benign or malignant. They achieved an accuracy of 83.7%
for the diagnostic task and a dice distance score of 0.501
for the detection task. The authors in [73] proposed a DL
integrated architecture with the capability of performing
classification, segmentation, and detection for the screening
of breast masses as benign or malignant. They used digital
X-ray mammograms from the INbreast database. Their
model achieved a mass detection accuracy of 98.96%, while
for mass segmentations, they achieved a dice score of
92.69%. To augment the dataset, the authors applied rota-
tion 8 times to synthetically increase the size of the dataset.
Nasrullah et al. [74] deployed DL-based architectures for
the diagnosis of malignant nodules in lung cancer. They
conducted studies on LUNA16 and LIDC-IDRI datasets.
They used faster region CNN and U-Net styled architecture
to achieve an accuracy of 94.17% on the classification task.
The authors in [75] used a DL-based system for screening
lung cancer using CT scans. They used LIDC-IDRI and Kag-
gle data science bowl challenge datasets for the experiments.
Their system was based on 3D CNN architectures. The
authors used heavy augmentations to artificially increase
the size of the datasets using methods such as rotations, scal-
ing, translation, and reflection. They achieved a dice coeffi-
cient of 0.4 on the LIDC-IDRI dataset. Shkolyar et al. [76]
deployed DL-based models for the detection of papillary
and flat bladder cancer. They used CNNs to construct an
image analysis platform. They used two datasets of 100
and 54 subjects. Their model successfully detected 42 of 44
papillary and flat bladder cancers. They reported a per-
tumor sensitivity of 90.9%. Fourcade et al. [77] used a com-
bination of DL and superpixel segmentation-based methods
to segment full body organs such as the brain and heart from
Positron Emission Tomography (PET) images. To syntheti-
cally increase the size of the dataset, the authors deployed
rotations, scaling, mirroring, and elastic deformations. Their
best performing model achieved a dice score of 0.93. The
authors in [78] deployed DL architectures to detect brain
metastasis on MRI. They used data from 121 subjects in
their proposed study. They used a faster region CNN model
achieving an area under the ROC curve of 0.79. Ma et al.
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[79] used you only look once v3 dense multireceptive fields
CNN for thyroid cancer nodule detection. They used ultra-
sound images and deployed different data augmentation
methods such as color jitter, change saturation, exposure,
and hue on two datasets of 152 and 699 images. The number
of images increased to 10845 after the application of data
augmentation schemes. The values of mean average preci-
sion (mAP) reported by the authors were 90.05 and 95.23.
Das et al. [80] proposed a system combining watershed seg-
mentation, Gaussian mixture model (GMM), and deep neu-
ral network for the classification and segmentation of liver
cancer using CT scans. Their model performed recognition
of hemangioma, hepatocellular carcinoma, and metastatic
carcinoma subjects. They employed 225 CT scans in their
study achieving a dice score of 0.9743 on the testing set for
the segmentation task and an accuracy of 99.38% for the

multiclass classification task. The authors in [81] proposed
a DL-based model for the segmentation of histopathology
images of the liver organ. Their proposed DL model com-
bined residual block, bottleneck block, and an attention
decoder block. The authors further created a new dataset
of 80 histopathology images which they named as the
KMC liver dataset and proposed a joint loss function com-
bining dice and Jaccard losses. They conducted their exper-
iments on two datasets: KMC liver and multiorgan Kumar
datasets. Each image in the Kumar dataset has a dimension
of 1000 × 1000 while each image in the KMC liver dataset
has a dimension of 1920 × 1440. Their model achieved a Jac-
card index of 0.7206 on the KMC liver dataset and 0.6888 on
the Kumar dataset. Wang and Chung [82] proposed a mod-
ified U-Net-based architecture for the segmentation and
diagnosis of the colon gland. The authors employed two

Table 2: Summary of the studies for the prognosis/prediction of cancers.

Publication Type(s) of cancer Type of data Methods Performance

[50] Astrocytic tumor Microarray gene dataset ANN 96.15% accuracy

[51] Breast cancer
Nuclear morphometric

features
ANNs Good (>5 years) and bad (<5 years) prognoses

[52]
Breast invasive
carcinoma

Gene expression data
Multiomics neural

networks
Improved performance using more omics data

[53] Breast cancer TCGA
Random forest,
neural network

Log-rank p < 0:05

[54]
Malignant
melanoma

Custom dataset
Nonlinear ANN

model
ANN model performs better than Cox model

[55] Multiple
WHAS, SUPPORT,

METABRIC, Rotterdam
tumor bank

Deep feedforward
neural network

Better prognostic accuracy than the clinical experts
for the prognosis of nasopharyngeal carcinoma

[56]
Glioblastoma
multiforme

TCGA
Pathway-associated
sparse deep neural

network
AUC = 0:6622 ± 0:013, F1 = 0:3978 ± 0:016

[57] Breast cancer

Gene expression
profile+copy number

alteration profile+clinical
data

Multimodal deep
neural network

The proposed method achieves better performance
than the prediction methods with single-

dimensional data and other existing approaches

[58]
Hepatocellular
carcinoma

TCGA DL-based model
p value = 7:13 × 10−6

Concordance index = 0:68

[59] Colorectal cancer
Images of tumor tissue

samples

Combined
convolutional and

recurrent
architectures

Prediction with only small tissue areas
(hazard ratio 2.3), tissue microarray spot
(hazard ratio 1.67), and whole-slide level

(hazard ratio 1.65)

[60] Ovarian cancer CT images
Combined DL and
Cox proportional
hazards model

Concordance index was 0.713 and 0.694

[61] Multiple TCGA ANN framework
Same or better predictive accuracy compared to

other methods

[62] Multiple
WHAS, SUPPORT, &

METABRIC

Cox proportional
hazards deep neural

network

Superior in predicting personalized treatment
recommendations

[63]
Lower-grade glioma
and glioblastoma

TCGA CNNs Median concordance index = 0:754

[64] Mesothelioma TCGA+French source CNNs Concordance index of 0.656 on TCGA cohort

[65] Multiple
TCGA+Gene Expression

Omnibus dataset
DL-based model

For both marker types, the specificity of normal
whole blood was 100%
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datasets for the experiments: the gland segmentation dataset
from Medical Image Computing and Computer-Assisted
Intervention (MICCAI) challenge and an independent colo-
rectal adenocarcinoma gland dataset. The authors conducted
validation experiments on 378 images augmented using elas-
tic transformation, cropping, rotation, flipping, blurring, and
distortion operations. Their model achieved a dice score of
0.929 on the gland segmentation dataset from MICCAI
and 0.89 on the independent colorectal adenocarcinoma
gland dataset for the segmentation task. The authors in
[83] proposed a CNN architecture combining three CNNs
for the segmentation and classification of colorectal cancer
using MRI images of 28 adenocarcinomas and 5 mucinous
carcinomas. Their model achieved a dice score of 0.60, pre-
cision of 0.76, and recall of 0.55 on the testing set. The
authors used cropping and min–max scaling as preprocess-
ing methods. Juebin et al. [84] proposed segmentation algo-
rithms based on U-Net models from ultrasound images of
ovarian cancer. Image clipping was used as a preprocessing
method. The methods are validated on 127 patients and a
total of 469 images. Their best model achieved a dice score
of 0.87, an average Pearson correlation of 0.90, and an
average intraclass correlation of 0.89. Shibata et al. [85]
used the mask R-CNN algorithm for the segmentation of
1208 healthy and 533 gastric cancer endoscopic images.
The resolution of the images ranges from 640 × 480 to
1440 × 1080 pixels. Their model achieved an average dice
index of 71%. Wang and Liu [86] proposed an architecture
based on Deeplab v3+ for the segmentation of 1340 patho-
logical slices of gastric cancer. The authors used image mir-
roring, random flip, scale, and rotation as augmentation
techniques. Mean subtraction followed by division with
variance was used as a preprocessing method. Their model
achieved a dice score of 0.9166. Shrestha et al. [87] pro-
posed a DL system combining four U-Net models. They
used MRI images of prostate cancer from an online data-
base. Each image has a resolution of 256 ∗ 256 pixels. They
used a combination of modified dice and binary cross-
entropy loss for the segmentation task. They preprocess
the images using denoising and intensity normalization
procedures achieving an overall average accuracy of
95.3%. Liu et al. [88] proposed a DL method integrating
mask R-CNN and Inception version 3 models for the clas-
sification, segmentation, and detection tasks of prostate
cancer. They used a dataset of 1200 ultrasound images.
Their model achieved a dice score of 0.88 and a precision
of 76% on malignant and 75% on benign classes for the
classification task using an Inception v3 architecture. The
authors in [89] proposed a 2D U-Net model deploying
CT images of 556 cases of prostate cancer. They achieved
a dice score of 0.85, 0.94, and 0.85 for three organs,
namely, prostate, bladder, and rectum, respectively. Liang
et al. [90] developed a DL-based model employing CNN
architecture for the segmentation of pancreatic tumors.
The authors deployed a dataset of T1w MRI images of 40
subjects. They achieved a dice score of 0.73 using rotation
and flipping as data augmentation methods. The authors
in [91] proposed a DL method using spiral transformation
to perform segmentation of MRI images of pancreatic can-

cer. The authors used rotation and spiral transformation as
data augmentation methods. They deployed a dataset of
MRI images belonging to 73 patients. Their architecture is
a combination of ResNet and U-Net architectures. They
achieved a dice score of 0:656 ± 0:1021.

Table 3 displays a summary of the studies for the task of
segmentation and detection of cancers covered in this
subsection.

4.3. Classification of Breast Cancer. Huynh et al. [92] used
DL methods to classify regions of interest taken from ultra-
sound images. Cystic, benign, or malignant labels were
assigned to each region. Two binary classification tasks were
performed using pretrained CNNs, nonmalignant (benign+-
cystic)/malignant and benign/malignant. They used SVM as
a classifier on the CNN-derived features. On the nonma-
lignant/malignant classification task, they obtained an
AUC of 0.9 while on the benign/malignant task, their
method obtained an AUC of 0.88. The authors in [93] used
CNNs as their DL approaches and introduced the concept of
a matching layer to convert grayscale to red, green, and blue
patterns. They used 882 ultrasound images obtained from
two publicly available datasets. Using fine-tuning and
matching layer, their method approached an AUC of 0.936
on a test set of 150 cases. Byra et al. [94] used DL transfer
learning-based approaches such as Inception version 3 and
VGG19 architectures on reconstructed B-mode images
experiencing a decrease in classification performances. To
counter this, they used data augmentation to reconstruct
B-mode images achieving better performances on breast
ultrasound images. The authors in [95] combined cross-
modal and cross-domain transfer learning for the benign/-
malignant classification task. In comparison to training from
scratch and simple fine-tuning, their approach achieved bet-
ter performance with 97% accuracy on ultrasound images.
Hadad et al. [96] deployed cross-modal transfer learning
using mammography images achieving an accuracy of 0.93
which is better than cross-domain transfer learning. The
authors in [97] presented a study on the use of MRI in
screening individuals younger than 40 years confirming the
effectiveness of MRI as a modality of choice for such diagno-
ses. They reported a very high sensitivity around 93% to
100% and low specificity in the range of 37% to 97%. They
found MRI to be effective especially after reconstructive sur-
gery. Hu et al. [98] developed a transfer learning methodol-
ogy using an MRI modality with multiple parameters. They
used different sequences such as dynamic contrast-enhanced
and a T2-weighted sequence to distinguish benign lesions
from malignant. They used image, feature, and classifier
fusion methods and achieved an AUC of 0.87 for the feature
fusion scheme that statistically outperformed other methods.
The authors in [99] proposed a methodology using Incep-
tion version 4 and the residual network transfer learning
architectures as well as a recurrent CNN architecture on
the 2015 Breast Cancer Classification Challenge and Break-
His datasets for binary and multiclass classification tasks.
They used rotation, translation, and other data augmenta-
tion methods to artificially increase the size of the datasets
achieving an accuracy of 97:57 ± 0:89% on multiclass and
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Table 3: Summary of the studies for the segmentation/detection of cancers.

Publication Type(s) of cancer Type of data Methods Performance

[66] Breast cancer
Ultrasound images, 2 datasets

(A & B)
LeNet, U-Net, AlexNet

F‐measure = 0:91 (on dataset A)
and F‐measure = 0:89 (on

dataset B)

[67] Breast lesions Two custom datasets
FCN-AlexNet, FCN-32s, FCN-16s,

and FCN-8s
Dice score of 0.7626 (FCN-16s)

[68] Breast cancer Camelyon16 DL algorithm Slide-level AUC of 99%

[69] Breast cancer

International Conference on
Pattern Recognition 2012,

MITOS-ATYPIA-14, Tumor
Proliferation Assessment

Challenge 2016

Faster region CNN, ResNET-50,
DenseNet-201

0.691 F1-measure for the MITOS-
ATYPIA-14 dataset

[70] Multiple
Custom histopathology image

dataset

Multilayer perceptron, logistic
modal tree, sequential minimal

optimization, Naïve Bayes, random
forest, rotation forest, J-Rip, and

PART algorithms

Rotation forest algorithm achieved
an accuracy of 85.7% for binary
classification between cancerous

and noncancerous cells

[71] Breast cancer
ICPR 2014 mitosis dataset,
TUPAC 2016 mitotic cell

dataset
Modified regional CNN

Precision = 0:76, recall = 0:72, F1‐
score = 0:736 on TUPAC 2016

dataset

[72] Breast cancer
Custom dynamic contrast-
enhanced MRI dataset

3D deep CNN architecture

83.7% accuracy, 90.8% sensitivity,
69.3% specificity, AUC of 0.859,
overall dice distance of 0:501 ±

0:274

[73] Breast cancer INbreast database Different DL methods

Accuracy of 98.96%, MCC of
97.62%, F1-score of 99.24%,

Jaccard similarity coefficient of
86.37%

[74] Lung nodules LUNA16, LIDC-IDRI
Two deep 3D customized mixed
link network encoder-decoder

architectures
Accuracy of 94.17%

[75] Lung cancer
LIDC-IDRI dataset, Kaggle data
science bowl challenge dataset

3D CNN architectures
Dice coefficient for LIDC-IDRI of
0.40, with 0.25 precision and 0.93

recall

[76] Bladder cancer Custom datasets DL algorithm
Per-frame sensitivity and

specificity were 90.9% and 98.6%

[77] Full body PET images DL-based approach Dice score of 0:93 ± 0:05

[78] Brain metastases Custom MRI dataset
DL-based approach (faster region-

based CNN model)
96% sensitivity, AUC = 0:79

[79] Thyroid nodules
Two custom datasets of

ultrasound images
You only look once v3 dense
multireceptive field CNN

mAP = 90:05 and 95.23

[80] Liver cancer
225 CT scans of hemangioma,
hepatocellular carcinoma, and

metastatic carcinoma

Watershed segmentation, Gaussian
mixture model (GMM), and deep

neural network

Dice score of 0.9743, accuracy of
99.38%

[81] Liver cancer
KMC liver dataset, multiorgan

Kumar dataset

DL model combining residual
block, bottleneck block, and

attention decoder

Jaccard index of 0.7206 on KMC
liver dataset and 0.6888 on Kumar

dataset

[82] Colorectal cancer
MICCAI gland segmentation

dataset, colorectal
adenocarcinoma gland dataset

Modified U-Net-based architecture

Dice score of 0.929 on MICCAI
gland segmentation dataset, 0.89
on the colorectal adenocarcinoma

gland dataset

[83] Colorectal cancer
Custom dataset of MRI images
of 28 adenocarcinomas and 5

mucinous carcinomas

CNN architecture which is a
combination of three CNN

architectures

Dice score of 0.60, precision of
0.76, and recall of 0.55
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an accuracy of 97:95 ± 1:07% on binary classification tasks.
Bayramoglu et al. [100] used single and multitask CNN
architectures to predict malignancy and image magnification
levels. Cropping and rotation on the BreakHis dataset were
deployed to augment the dataset. They achieved a classifica-
tion rate of 83.72% for the benign/malignant binary classifi-
cation task using a single task and an accuracy of 82.13%
using multitask CNN architecture. The authors in [101] pro-
posed an approach for progressive combining of weak DL
classifiers into a stronger classifier for carcinomas/noncarci-
nomas binary and normal/benign/in situ/invasive carcino-
mas multiclass (4 classes) classification tasks. They used
BreakHis and 2015 bioimaging breast histology classification
challenge datasets. They deployed augmentation methods
such as reflection, random cropping, rotation, and transla-
tion of an image. They achieved a classification accuracy of
99.5% and 96.9% for binary classification tasks using the
2015 bioimaging breast histology classification challenge
database and BreakHis database while for multiclass classifi-
cation, they achieved 96.4% classification accuracy on the
2015 bioimaging breast histology classification challenge
database. Kassani et al. [102] used an ensemble of transfer
learning architectures for binary classification of breast
cancer. They used VGG19, MobileNet, and DenseNet
architectures on four benchmark datasets: BreakHis, Patch-
Camelyon, 2015 Bioimaging challenge, and 2018 ICIAR
datasets. They used flipping, zoom, shear, rotation, etc., as
data augmentation methods. They achieved accuracies of
98.13%, 94.64%, 95%, and 83.1% on these datasets. The
authors in [103] proposed a DL method for multiclass (8
classes) classification of histopathological images on the
BreakHis dataset. Data augmentation methods such as
rotation, flipping, sharing, and their combinations were

deployed to achieve a correct classification rate of 95.48%
on the multiclass classification task. Toğaçar et al. [104]
deployed a DL model for multiclass (8 classes) classification
of breast histopathological images on the BreakHis dataset.
They used convolutional, attention, residual, pooling, and
dense blocks along with hypercolumn technique to build
their architecture. As data augmentation methods, they used
flipping, shifting, change of brightness, and rotation
achieving 98.51% accuracy. The authors in [105] used a com-
bination of DenseNet and Xception transfer learning architec-
tures for benign/malignant binary and magnification-specific
multiclass classification tasks. They used the BreakHis dataset
achieving an accuracy of 99% and 92% on binary and multi-
class classification tasks, respectively, while deploying stain
normalization for preprocessing of images. Spanhol et al.
[106] performed experiments for the binary (benign/malig-
nant tumors) classification task using histology images. They
report an accuracy of 90:0 ± 6:7% on images obtained from
the BreakHis dataset. The authors in [107] proposed a DL
model for the multiclass (8 classes) classification task using
histopathological images. They conducted experiments on
the BreakHis dataset. For data augmentation, the authors
deployed rotation, level/vertical flipping, translation tech-
niques, etc., and their combinations achieving a patient-level
accuracy of 94:7 ± 3:6%. Bardou et al. [108] compared CNNs
and traditional machine learning techniques such as bag of
words and linear coding using SVMs. They deployed BreakHis
datasets for both binary and multiclass (8 classes) classification
tasks to categorize images into benign/malignant classes and
their subclasses. The authors achieved accuracies of 98.33%
and 88.23% for binary and multiclass classifications, respec-
tively, using the deployed approaches. The authors in [109]
combined four residual networks for binary (benign/malignant)

Table 3: Continued.

Publication Type(s) of cancer Type of data Methods Performance

[84] Ovarian cancer
Custom dataset of 127 patients

and a total of 469 images
U-Net models

Dice score of 0.87, an average
Pearson correlation of 0.90, and an
average intraclass correlation of

0.89

[85] Gastric cancer
Custom dataset of 1208 healthy
and 533 endoscopic images

Mask R-CNN algorithm Average dice index of 71%

[86] Gastric cancer
Custom dataset of 1340

pathological slices
Deeplab v3+ Dice score of 0.9166

[87] Prostate cancer
MRI images from an online

database
DL system combining four U-Net

models
Overall average accuracy of 95.3%

[88] Prostate cancer
Custom dataset of 1200

ultrasound images

DL method integrating mask
R-CNN and Inception version

3 models

Dice score of 0.88, a precision of
76% on malignant and 75% on

benign classes for the classification
task using an Inception v3

architecture

[89] Prostate cancer
Custom dataset of CT images of

556 cases
2D U-Net model

Dice score of 0.85, 0.94, and 0.85
for prostate, bladder, and rectum,

respectively

[90] Pancreatic cancer
Custom dataset of T1w MRI

images of 40 subjects
CNN architecture Dice score of 0.73

[91] Pancreatic cancer
Custom dataset of MRI images

belonging to 73 patients
DL method using spiral

transformation
Dice score of 0:656 ± 0:1021
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and multiclass classification of histology images using the
BreakHis dataset. They achieved an accuracy of 96.25% for
the eight-class classification task. The authors deployed
rotation, flipping, translation, and color variation augmenta-
tion as data enhancing methods while stain normalization as
a preprocessing method. Budak et al. [110] used a DL model
combining FCN and bi-LSTM architectures on the BreakHis
dataset for binary (benign/malignant) classification achieving
an accuracy of 96.32%. The authors in [111] used a DL-
based model for binary (benign/malignant) classification of
histopathological images. They performed experiments on
the BreakHis dataset fusing ResNet-18, ResNet-50, and
AlexNet architectures using belief theory. They achieved an
image-level accuracy of 96.88%. Sudharshan et al. [112]
deployed a weakly supervised scheme for the binary classifica-
tion of benign and malignant tumors using histopathology
images. They deployed the BreakHis dataset achieving an
accuracy of 92.1% at 40x magnification. An important contri-
bution of their approach is the absence of the need for labelling
the images. The authors in [38] deployed CNNs for both
binary (carcinoma/noncarcinoma) and multiclass (normal/-
benign/in situ/invasive) classification tasks. They used the
2015 Bioimaging breast histology classification challenge data-
set in their study. Their architectures were able to retrieve
information at different scales. For the multiclass classification
task, the authors achieved an accuracy of 77.8% while for the
binary classification task, they achieved an accuracy of 83.3%
using rotation and mirroring as data enhancement methods
for both these tasks. Rakhlin et al. [113] deployed different
transfer learning architectures using microscopic histological
images from the ICIAR 2018 Grand Challenge dataset for
binary (carcinomas/noncarcinomas) andmulticlass (four clas-
ses) classification tasks. They used pretrained ResNet-50,
Inception version 3, and VGG16 architectures. They deployed
normalization, downscaling, cropping, and color variation as
augmentation schemes achieving a correct classification rate
of 87.2% for multiclass classification and 93.8% for the binary
classification task. The authors in [114] extracted smaller/lar-
ger patches using a clustering approach and a CNN (ResNet-
50 architecture) at cell and tissue levels deploying the 2015
Bioimaging breast histology classification challenge dataset.
For the multiclass (4 classes) classification task, the authors
reported accuracy of 88.89% using the proposed approach.
The authors deployed stain normalization procedure as a pre-
processing method. Shallu and Mehra [115] demonstrated the
use of three different transfer learning architectures such as
VGG16, VGG19, and ResNet-50 for the classification of
histological images on the BreakHis dataset. They deployed
rotation as the data enhancement scheme. They found the
performance of a fine-tuned VGG16 with logistic regression
classifier to be the best achieving an accuracy of 92.6% with
this classifier. The authors in [116] deployed CNN, K nearest
neighbour (KNN), Inception version 3, SVM, and ANN
algorithms for the binary (benign/malignant) classification
task. They used different schemes for preprocessing and data
enhancement such as gray scaling, channel standardization,
flipping, rotation, and cropping as well as image segmentation
to reach an accuracy of 97% using ANN architecture.
Bevilacqua et al. [117] evaluated two different frameworks

for binary and multiclass classification of irregular/regular/-
stellar/no opacity lesions from segmented high-resolution
images. They used ANN classifiers with hand-crafted and
morphological features for the first framework. For the second
framework, they used different CNNmodels especially a VGG
model. They reported accuracy of 84.19% for the first frame-
work on binary and 74.84% on multiclass classification tasks
while for the second framework, they obtained an accuracy
of 92.02% for binary and multiclass classification tasks. The
authors in [118] make a contrast between two machine learn-
ing approaches for the multiclass (8 classes) classification task
using histopathological images on the BreakHis dataset. The
first approach used handcrafted features while the second
approach used CNN as a feature extractor. They used
VGG16, VGG19, and ResNet-50 as their CNN models. They
used rotation, translation, scaling, and flipping as data
enhancement methods. The VGG16 model reaches an accu-
racy of 93.25% at the patient level for the multiclass classifica-
tion task. Spanhol et al. [119] proposed a DL model that
reused a previously trained CNNmodel on the BreakHis data-
set achieving an F1-score of 90.3 at the subject level. The
authors in [120] exploited global covariance information using
a matrix power normalization procedure into a simple CNN
model. This arrangement can exploit second-order statistical
information producing effective representations from histo-
logical images. On the BreakHis dataset for the binary
(benign/malignant) classification task, they achieved an accu-
racy of 97.92% at the subject level while employing cropping
and flipping operations to enhance the size of the dataset
synthetically. Khan et al. [121] used different transfer learn-
ing (GoogLeNet, VGGNet, and ResNet) architectures for
binary classification of benign/malignant tumor cells while
deploying BreakHis and a custom dataset. For data augmen-
tation, scaling, rotation, translation, and color augmentation
methods were used by them to achieve a correct classifica-
tion rate of 97.67%. The authors in [122] introduced an
information-based architecture that is designed to exploit
clinical information. There are six types of records in their
dataset of 100 subjects, such as encounter notes, operation
records, pathology notes, radiology notes, progress notes,
and discharge summaries. They used fine-tuned transformer
models from pretrained bidirectional encoder representa-
tions achieving a precision of 0.976 for relation recognition.
Naik et al. [123] deployed a DL model to assess estrogen sta-
tus from whole-slide histopathological images. They used the
Australian Breast Cancer Tissue Bank as well as TCGA data-
sets in their study and further deployed flipping, rotation,
color jitter, and cutout regularization as augmentation
methods. Their model achieved an AUC of 0.861 on TCGA
and an AUC of 0.905 on Australian Breast Cancer Tissue
Bank datasets. The authors in [124] compared different DL
techniques for the classification of mammograms. They used
single as well as 4-model averaging to conduct their experi-
ments on INbreast as well as an independent database. They
used different data enhancement techniques such as flipping,
rotation, intensity shifting, and zoom. The single model
achieved an AUC of 0.88 while 4-model averaging achieved
an AUC of 0.91 on the independent database. On the
INbreast dataset, the single model achieved an AUC of
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0.95 while 4-model averaging achieved an AUC of 0.98.
Their study shows the superiority of combining models over
a single model.

Table 4 displays a summary of the studies for the classi-
fication of breast cancer covered in this subsection.

4.4. Classification of Colorectal Cancer, Gastric Cancer,
Bladder Cancer, Lung Cancer, Prostate Cancer, Skin
Cancer, Liver Cancer, Head and Neck Cancer, Pancreatic
Cancer, and Other Types of Cancers. Kather et al. [125]
deployed different transfer learning architectures for multi-
class (9 classes) classification of colorectal cancer subjects.
They used VGG19, AlexNet, SqueezeNet, GoogLeNet, and
ResNet-50 models on two datasets of 86 and 25 subjects
reaching an accuracy of 98.7% and greater than 94% on
them. The authors in [126] deployed a CNN architecture
to extract features from Optical Coherence Tomography
(OCT) images of colorectal cancer subjects. Their network
was trained using 26000 OCT images representing 42 areas
achieving an AUC of 0.998. Dong et al. [127] deployed a
DL method to exploit information in multiphase CT nomo-
grams in gastric cancer subjects. They used three cohorts to
test the effectiveness of their model achieving a discrimina-
tion rate of 0.821, 0.797, and 0.822 in the primary, external
validation, and international validation cohorts. Woerl
et al. [128] deployed a DL method to identify bladder cancer
from histomorphological images. They used 2 datasets of
407 and 16 subjects each from TCGA and custom cohorts,
respectively, achieving accuracies of 69.91% and 75% on
TCGA and custom subsets, respectively. Wang et al. [129]
used the idea of weakly supervised learning exploiting
image-level labels for the classification of lung cancer
images. They used two datasets, one from TCGA and the
other is a custom dataset. To enhance the training set, color
jittering, translation, flipping, and rotation were used.

Their model successfully achieves an accuracy of 97.3%
and an AUC of 85.6% on custom and TCGA datasets.
Karimi et al. [130] used a DL method combining three sep-
arate CNNs that used different patch sizes for the classifica-
tion of histopathological images with limited data. They
used new data enhancement methods such as elastic defor-
mation and augmentation in the space of learned features
for binary classification of cancerous/benign and low-
grade–high-grade patches achieving an accuracy of 92%
and 86%, respectively, on both binary classification tasks.
Dascalu and David [131] used DL architectures for binary
classification of benign/malignant cases of skin cancer sub-
jects. They used a skin magnifier with polarized light and
an advanced dermoscope to construct their datasets. The
authors achieved an F2-score sensitivity of 91.7% and
89.5% respectively for skin magnifier with polarized light
and advanced dermoscope images. The authors in [132]
used DL techniques to build a skin cancer classification
model for binary and multiclass classification of malignant
and benign skin tumors. They used Kaohsiung Chang Gung
Memorial Hospital and HAM10000 datasets in their study.
Their model achieved an accuracy of 85.8% on the
HAM10000 dataset for 7-class classification tasks. On the
Kaohsiung Chang Gung Memorial Hospital dataset, their

model achieved an accuracy of 72.1% for 5-class classifica-
tion and 89.5% for binary classification tasks. Thomas et al.
[133] applied interpretable DL models to classify skin can-
cers in a histopathological setting. They studied three types
of cancers basal cell carcinoma, squamous cell carcinoma,
and intraepidermal carcinoma. They deployed a multiclass
(12 classes) classification model to achieve accuracies
between 93.6% and 97.9%. To solve the class imbalance
problem and to increase the size of the dataset, they used
flipping and rotation as data augmentation methods to
increase the size of the dataset 8 times. The authors in
[134] developed a CNN model for the classification of mel-
anoma and nevi. They used a dataset of 11444 images
belonging to five categories. They deployed novel DL tech-
niques to train a single CNN model. In addition, they also
asked 112 dermatologists to grade the images. Then, they
used a gradient boosting method to develop a new classifier
for binary (benign/malignant) and multiclass (5 classes)
classification tasks achieving accuracies of 86.5% and
82.95% on both these tasks. Sun et al. [135] developed a
DL method to classify liver cancer subjects as abnormal/nor-
mal on publically available TCGA datasets. Transfer learn-
ing and multiple instance learning were combined for the
classification of patch features. The authors used tissue
extraction, color normalization, and patch extraction for
preprocessing of histopathological images. Diao et al. [136]
used a transfer learning-based CNN architecture named
Inception version 3 to classify nasopharyngeal carcinoma
subjects into three classes. They used a total of 1970 images
of 731 subjects. The three classes considered in their study
were chronic nasopharyngeal inflammation, lymphoid
hyperplasia, and nasopharyngeal carcinoma. Their model
achieved a mean AUC of 0.936. Liu et al. [137] used a
CNN classifier to diagnose subjects with pancreatic cancer
using contrast-enhanced CT images. They used three differ-
ent datasets to test the effectiveness of their approach. The
first dataset named local test set 1 has 295 patients with pan-
creatic cancer and 256 controls for training and 75 patients
with pancreatic cancer and 64 controls for validation. The
second dataset named local test set 2 has 101 patients with
pancreatic cancers and 88 controls while the third dataset
named the US dataset has 281 pancreatic cancer subjects
and 82 controls. In local test set 1, local test set 2, and US
datasets, their model achieved an accuracy of 98.6%,
98.9%, and 83.2%, respectively. To augment the datasets,
the authors used moving window and flipping operations.
Korfiatis et al. [138] compared the performances of
ResNet-18, ResNet-34, and ResNet-50 architectures for the
classification of MRI scans of 155 subjects for multiclass (3
classes) classification of no tumor, methylated methylgua-
nine methyltransferase methylation, or nonmethylated clas-
ses. ResNet-50 architecture achieved the best performance
with an accuracy of 94.9%; ResNet-34 architecture achieved
an accuracy of 80.72% while ResNet-18 architecture
achieved an accuracy of 76.75%. The authors in [139] used
a two-phase training to study and mitigate class biasedness
using a DL-based CNN model for the classification of breast
cancer histological images. They conducted their experi-
ments using MITOS12 and 2016 Tumor Proliferation
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Table 4: Summary of the studies for the classification of breast cancer.

Publication Type of data Methods Performance

[92] Custom dataset of ultrasound images Pretrained CNNs
AUC of 0.90 (nonmalignant vs. malignant),

AUC of 0.88 (benign vs. malignant)

[93]
1 custom+2 publically available

datasets
DL-based approach using

a matching layer
AUC = 0:936 (custom dataset), AUCs around

0.89 (publically available datasets)

[94] Custom dataset of ultrasound images Inception v3, VGG19 Robust and efficient classification performances

[95] Custom dataset of ultrasound images
Training from scratch,
pretrained VGG16, fine-

tuning approach
0.97 accuracy, 0.98 AUC using fine-tuning approach

[96] Custom dataset of breast MRI images
Cross-modal transfer
learning approach

Overall accuracy of 0.93 using cross-modal approach

[97] Custom dataset of breast MRI images DL-based method High sensitivity in the range of 93-100%

[98]
Custom dataset of multiparametric

MRI images
Pretrained CNN
architectures

AUCfeature fusion = 0:87

[99]
BreakHis, Breast Cancer Classification

Challenge 2015
Inception recurrent
residual CNN model

100% for the binary and multiclass (Breast Cancer
Classification Challenge 2015 dataset)

[100] BreakHis
Single-task CNN,
multitask CNN

Patient score of 83.72% for binary classification using
single-task CNN

[101]
2015 bioimaging breast histology
classification challenge, BreakHis

dataset

Progressive DL-based
models

Recognition rate of 96.4% and 99.5% on multiclass and
binary classification tasks on 2015 bioimaging breast

histology classification challenge

[102]
BreakHis dataset, PatchCamelyon
dataset, 2015 Bioimaging challenge

dataset, 2018 ICIAR dataset

VGG19, MobileNet,
DenseNet

Accuracy of 98.13% on BreakHis dataset

[103] BreakHis dataset
DL and hierarchical

classification approach
Accuracy of 95.48% on the multiclass classification task

[104] BreakHis dataset Integrated DL model
98.51% classification success on the multiclass

classification task

[105] BreakHis dataset
DenseNet and Xception

architectures
99% and 92% accuracy on binary and multiclass

classification tasks

[106] BreakHis dataset DL-based model
Mean recognition rate of 90:0 ± 6:7 for binary

classification

[107] BreakHis dataset DL-based model Accuracy of 94:7 ± 3:6 for multiclass classification

[108] BreakHis dataset
Bag of words, locality-

constrained linear coding,
CNNs

For CNN model accuracies between 96.15% and
98.33% for the binary classification and 83.31% and

88.23% for the multiclass classification

[109] BreakHis dataset
Combination of 4 residual

networks
Correct classification rate of 96.25% for 8-class

categorization

[110] BreakHis dataset
End-to-end model based
on FCN and bidirectional

LSTM
Accuracy of 96:32 ± 0:51 on binary classification task

[111] BreakHis dataset
ResNet-18, ResNet-50,

and AlexNet
Image-level accuracy of 96.88% for binary classification

[112] BreakHis dataset
Weakly supervised
learning framework

Classification rate of up to 92.1% for binary
classification

[38] 2015 Bioimaging challenge dataset CNN models
Accuracies of 77.8% for four classes and 83.3% for

carcinoma/noncarcinoma were achieved

[113] ICIAR 2018 Grand Challenge
Pretrained ResNet-50,

Inception v3, and VGG16
architectures

Accuracies of 87.2% for multiclass, 93.8% for binary
classification tasks

[114] 2015 Bioimaging challenge database
Clustering algorithm and
ResNet-50 architecture

88.89% accuracy on the overall test set for multiclass
classification

[115] BreakHis dataset 92.60% accuracy
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Assessment Challenge datasets. Prior to phase 1 of training,
segmentation using the global binary thresholding method
was applied. In phase 1, a CNN was trained on the
segmented patches using rotation and flipping data augmen-
tation methods as well as the blue ratio histogram-based
k-means clustering approach. In phase 2, the dataset was
again modified to reduce the effects of class imbalance
yielding an F-measure of 0.79. Campanella et al. [140] pro-
posed a DL-based system utilizing information frommultiple
instances in order to help the pathologists exclude informa-
tion without compromising performance metrics. They used
44732 whole-slide images belonging to 15187 patients. They
achieved AUC above 0.98 and 100% sensitivity for prostate
cancer, basal cell carcinoma, and breast cancer metastases
to axillary lymph nodes. The authors in [141] proposed two
DL-based systems to detect myeloid leukemia from the leu-
kemia microarray genetic dataset. The first DL system is a
single-layered neural network while the second one has 3
hidden layers. They used information of 22283 genes
extracted from the Gene Expression Omnibus repository.
Their models achieved accuracies of 63.33% and 96.67% for
single and multilayered DL architectures with a significant
normalization test (p > 0:05). Jeyaraj and Samuel Nadar
[142] used a regression-based DL algorithm to investigate
hyperspectral images to diagnose oral cancer. Their system
extracted patches for classification into normal, benign, and
malignant classes using BioGPS, TCIA, and GDC datasets.
For 100 malignant image patch training, they achieved an
accuracy of 91.4% while for 500 malignant image patch train-
ing, they achieved an accuracy of 94.5%. The authors in [143]
proposed a DL method to study the relationship between
genomic variations and traits. They analyzed 6083 sample
exon sequencing files belonging to 12 cancer types. They used
TCGA and 1000 Genomes Project. They performed both
binary (cancer/healthy) and multiclass (12 classes) classifica-

tion tasks using specific, total, and mixture models to achieve
an accuracy of 97.47%, 70.08%, and 94.7% for specific, mix-
ture, and total specific models for the identification of cancer.
Owais et al. [144] deployed a DL-based classification frame-
work for the diagnosis of gastrointestinal diseases from endo-
scopic images. They deployed two datasets that are publicly
available: Kvasir dataset and Gastrolab dataset. They
followed a 2-step process. The classification network predicts
the disease type in the first step, and then in the second step,
the retrieval part shows the relevant cases. They performed
multiclass (37 classes) classification using DenseNet transfer
learning architecture, LSTM architecture, PCA, and KNN
methods to achieve a correct recognition rate of 96.19% on
this task. The authors in [145] proposed a CNN-based DL
architecture for the multiclass (4 classes) classification of
acute lymphoblastic leukemia. They used stained bone mar-
row images achieving an accuracy of 97.78%. Kann et al.
[146] deployed a 3D CNNmodel to identify nodal metastasis
and tumor extranodal extension. Their dataset has 2875 CT
samples, 124 samples for validation and 131 samples for test-
ing. They used a series of rotations and flipping technique to
augment the datasets while achieving an AUC of 0.91. The
authors in [147] proposed a DL approach to study the limited
sample training problem from holographic images. They
studied the classification of healthy and cancer cell lines.
They used Generative Adversarial Networks (GANs) as the
data augmentation method to train a large number of unclas-
sified samples from sperm cells. Their model achieved an
accuracy of 99% for healthy/primary cancer/metastatic can-
cer multiclass classification problems.

Table 5 displays a summary of the studies for the task of
classification of cancers covered in this subsection.

4.5. Classification, Segmentation, Prediction, and Detection of
Brain Tumors. Sun et al. [148] proposed a 3D fully

Table 4: Continued.

Publication Type of data Methods Performance

VGG16, VGG19, and
ResNet-50 architectures

[116] Custom dataset
CNN, KNN, Inception v3,
SVM, and ANN models

Accuracy of 97% using ANN algorithm for binary
classification

[117] Custom dataset CNN and ANN models
Accuracy of 92:02 ± 0:51% for the binary classification
task using a VGG model, accuracy of 92:02 ± 0:48% for

the multiclass classification task

[118] BreakHis dataset
VGG16, VGG19, ResNet-

50 architectures
Accuracy of 93.25% for multiclass classification task

[119] BreakHis dataset DL-based model F1-score of 90.3

[120] BreakHis dataset
Deep second-order
pooling network

Accuracy of 97.92% for binary classification

[121] BreakHis+custom datasets
Pretrained CNN

architectures (GoogLeNet,
VGGNet, and ResNet)

Accuracy of 97.67% for binary classification

[122] Custom dataset Transformer models Precision of 0.976 for relation recognition

[123]
Australian Breast Cancer Tissue Bank,

TCGA dataset
Deep neural network

AUC on TCGA of 0.861, AUC on Australian Breast
Cancer Tissue Bank was 0.905

[124] INbreast database DL models AUC = 0:98
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convolutional network-based multipathway architecture to
extract features from MRI images from the BRATS 2019
challenge for the segmentation of brain tumor regions. They
used the concept of dilated convolutions in each pathway to
achieve a dice score of 0.89, 0.78, and 0.76 for whole tumor
(WT), tumor core (TC), and enhancing tumor (ET) on the
BRATS 2019 challenge, respectively. They used cropping,
random slicing, and z-score normalization as the prepro-
cessing methods. The authors in [149] proposed a novel
architecture combining U-Net encoding and decoding sub-

architecture, dilated convolutional feature extracting layers,
and a residual module. Their proposed architecture achieved
a dice score of 0.843, 0.897, and 0.906 and 0.798, 0.902, and
0.845 on ET, WT, and TC brain tumor subregions on
BRATS 2018 and BRATS 2019 challenges, respectively. They
used normalization and cropping techniques to preprocess
the images. Khan et al. [150] utilized VGG16 and VGG19
transfer learning-based CNN models, partial least square
covariance matrix, discrete cosine transform, and extreme
learning machine to extract and classify features on BRATS

Table 5: Summary of the studies for the classification of other types of cancer.

Publication Type(s) of cancer Type of data Methods Performance

[125] Colorectal cancer Custom dataset
VGG19, AlexNet, SqueezeNet

version 1.1, GoogLeNet,
ResNet-50

98.7% accuracy using VGG19
model

[126] Colon cancer Custom dataset CNN model
AUC = 0:998, specificity =
99:7%, sensitivity = 100%

[127] Gastric cancer Custom datasets DL models
Accuracy of 0.822 in the

international validation cohort

[128] Bladder cancer TCGA+custom dataset DL models Accuracy customð Þ = 75%

[129] Lung cancer TCGA+custom dataset
Weakly supervised DL

algorithm
Accuracy of 97.3% on the

custom dataset

[130] Prostate cancer Custom dataset DL methods
Accuracy of 92% in cancerous/

benign classification

[131] Skin cancer Custom dataset DL algorithms
Positive predictive value of

59.9%

[132] Skin cancer
HAM10000, Kaohsiung Chang Gung

Memorial Hospital
Lightweight DL algorithm

Accuracy = 85:8%
(HAM10000, multiclass

classification)

[133] Skin cancer Custom dataset Interpretable DL methods
Accuracies between 93.6% and

97.9%

[134] Skin cancer Custom dataset CNN model
Accuracy of 82.95% for
multiclass classification

[135] Liver cancer TCGA dataset DL model
High accuracy (abnormal/
normal classification)

[136]
Head and neck

cancer
Custom dataset Inception version 3

Mean AUC was 0.936 based on
the testing set

[137] Pancreatic cancer Three custom datasets CNN architectures Accuracy of 0.986 for test set 2

[138] Multiple Custom datasets
ResNet-18, ResNet-34,

ResNet-50
Accuracy of 94.90% for
ResNet-50 architecture

[139] Breast cancer
MITOS12, 2016 Tumor Proliferation

Assessment Challenge
CNN architecture F-measure of 0.79

[140] Multiple Custom dataset
Multiple instance learning-

based DL system
Sensitivity = 100%

[141]
Blood and bone
marrow cancer

Leukemia microarray gene data, Gene
Expression Omnibus repository

Single-layer neural network,
3-layered deep network

96.67% for 3 layered model

[142] Multiple BioGPS data portal, TCIA, GDC dataset
Regression-based partitioned

DL algorithm
Accuracy = 94:5%

[143] Multiple TCGA, 1000 Genomes Project DL algorithms Accuracy = 97:47%

[144] Multiple Kvasir dataset, Gastrolab
DL-based classification

network
Accuracy = 96:19%

[145] Multiple Custom datasets CNN model Accuracy = 97:78%
[146] Multiple Custom dataset 3D CNN model AUC = 0:91
[147] Multiple Custom dataset GAN-based model 90–99% accuracies
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2015, BRATS 2017, and BRATS 2018 challenge datasets to
achieve an accuracy of 97.8%, 96.9%, and 92.5% for BRATS
2015, BRATS 2017, and BRATS 2018 datasets, respectively.
To preprocess the images before feeding them to the classi-
fication model, the authors used the histogram equalization
approach. Pei et al. [151] proposed a joint deep and machine
learning-based model for classification, segmentation, and
prediction of brain tumors. Using a context-aware CNN
architecture for segmentation, 3D CNN architecture for
classification, and LASSO for prediction, the authors
achieved a dice score of 0.821, 0.895, and 0.835 for ET,
WT, and TC regions, respectively, on BRATS 2019 for the
segmentation task, an accuracy of 58.6% for the survival pre-
diction task on the BRATS 2019 dataset, and balanced accu-
racy of 63.9% on the test set for the 2019 Computational
Precision Medicine Radiology-Pathology (2019 CPM-Rad-
Path) challenge. The authors in [152] proposed a resource-
efficient CNN model integrating memory connections and
an adaptive dense block for the segmentation of brain
tumors. They used the BRATS 2015 challenge dataset for
the validation of their model and z-score normalization as
a preprocessing method achieving a dice coefficient score
of 0.858, 0.816, and 0.818 for WT, TC, and ET subregions.
Badža and Barjaktarović [153] present a 22-layered CNN
architecture for brain tumor classification of T1-weighted
MRI images belonging to three categories: meningioma, gli-
oma, and pituitary tumor. They normalize and resize the
scans to 256 × 256 pixels followed by 90° rotation and verti-
cal flipping augmentation methods to synthetically increase
the size of the dataset. The authors achieved an accuracy of
96.56% for the multiclass classification task on a custom
dataset. The authors in [154] proposed a transfer learning-
based approach for segmentation and classification of brain
tumors using Inception version 3-based features. They
concatenated the CNN-based features with local binary pat-
tern- (LBP-) based features. Contrast improvement is used
as a preprocessing method. The authors achieved a dice
score of 0.8373, 0.937, and 0.7994 for TC, WT, and ET sub-
regions on the BRATS 2017 dataset and a dice score of
0.8834, 0.912, and 0.8184 for TC, WT, and ET subregions
on the BRATS 2018 dataset. For the classification task, the
authors achieved an average accuracy upward of 92% on
BRATS 2013, BRATS 2014, BRATS 2017, and BRATS
2018 datasets. Rai et al. [155] proposed a U-Net-based DL
model using skip connections for the classification, segmen-
tation, and detection of tumors in brain MRI scans. They
conducted their experiments on 120 patients of lower-
grade glioma in TCGA database with 1373 scans for patients
and 2556 scans for normal controls. The authors deployed
cropping, resizing, global pixel normalization, horizontal
flipping, flipping and rotation, random rotation, shift scale
rotate, transposition, blurring, Gaussian blurring, random
gamma, random brightness, and normalization as prepro-
cessing and data augmentation methods. Their model
achieved an accuracy of 99.7% on the classification task, a
dice score of 0.9573 on the segmentation task, and a Jaccard
index of 0.86 on the detection task. The authors in [156]
compared and contrasted the performance of different trans-
fer learning architectures for the binary classification of

brain tumors into benign and malignant categories. They
chose AlexNet, GoogLeNet, ResNet-50, ResNet-101, and
SqueezeNet architectures for comparison. They employed a
dataset of 224 benign category and 472 malignant category
T1-weighted MRI images acquired from the TCIA public
access repository. They used resizing, flipping, mirroring, salt
noise addition, and rotation as preprocessing and data aug-
mentation methods to achieve an accuracy of 99.04% using
an AlexNet-type architecture. Feng et al. [157] developed a
3D U-Net model for brain tumor segmentation. They picked
up an ensemble of models to extract features from brain
MRI images on the BRATS 2018 challenge for segmentation
and survival prediction. The authors achieved a dice score of
(0.7946, 0.9114, and 0.8304) on (ET, WT, and TC) subregions
for the segmentation task and an accuracy of 32.1% on the
survival prediction task. The authors in [158] proposed an
ensemble of deep CNN architectures integrating two and three
paths of parallel models in a single model. They used 2D slices
of brainMRI images from the BRATS 2013 dataset achieving a
dice score of (0.86, 0.86, and 0.88) on (WT, TC, and ET) sub-
regions. As a preprocessing step, they standardized the slices
using the zero mean and unit variance normalization proce-
dure. Naser and Deen [159] proposed a DL approach combin-
ing U-Net architecture, VGG16 transfer learning architecture,
and a fully connected architecture for classification and seg-
mentation of brain MRI images into lower-grade gliomas
belonging to 110 patients. They used normalization, cropping,
resizing, padding, rescaling, rotation, zooming, shifting, shear-
ing, and flipping as preprocessing and data augmentation
methods. Their approach achieved a dice score of 0.84 on
the segmentation task and accuracy, sensitivity, and specificity
of 92% on the binary classification (grade II/grade III) task.
The authors in [160] proposed a multiscale 3D CNN architec-
ture for the recognition and segmentation of 220 high- and 54
low-grade glioma MRI scans from the BRATS 2015 challenge
dataset. As a preprocessing method, the authors used histo-
grammatching to ensure consistency among gray levels. Their
model achieved a dice score of 0.89 on the segmentation task, a
sensitivity of 0.89, and a specificity of 0.90 on the recognition
task. Chang et al. [161] proposed a DLmodel combining aver-
age pooling and max pooling layers along with 1 × 1 kernels.
They further combined this model with conditional random
fields to optimize prediction results. The authors used the
BRATS 2013 dataset to achieve a dice score of (0.80, 0.75,
and 0.71) on (WT, TC, and ET) subregions. As a preprocess-
ing method, the authors used an intensity normalization
method. The authors in [162] proposed a multiscale CNN
model for the categorization of an MRI scan into healthy,
meningioma, glioma, and pituitary tumor categories. The
authors used 2D MRI images acquired from local hospitals
in China to conduct their experiments. They achieved a dice
score of (0.894, 0.779, 0.813, and 0.828) on (meningioma, gli-
oma, pituitary tumor, and average), respectively, and accuracy
of 97.3% on the classification task. As preprocessing and data
augmentationmethods, the authors used pixel standardization
and elastic transformation methods.

Table 6 displays a summary of the studies for the classi-
fication, segmentation, prediction, and detection of brain
tumors covered in this subsection.
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5. Discussion

The dynamics of cancer growth with respect to time are
difficult to estimate. Precise measures can be made largely

at the end of the cycle in cancer’s evolution, when it is
detached from the body. Ongoing mutations provide a rich
history of clonal lineages which lead to changes in both
genotype and phenotype.

Table 6: Summary of the studies for the classification, segmentation, prediction, and detection of brain tumors.

Publication Dataset(s) Task(s) Method Performance

[148] BRATS 2019 Segmentation
3D fully convolutional network-based

multipathway architecture
Dice score of 0.89, 0.78, and 0.76 for WT,

TC, and ET subregions, respectively

[149]
BRATS 2018 and
BRATS 2019

Segmentation

Combination of U-Net encoding and
decoding subarchitecture, dilated

convolutional feature extracting layers,
and a residual module

Dice score of 0.843, 0.897, and 0.906 and
0.798, 0.902, and 0.845 on ET, WT, and
TC brain tumor subregions on BRATS
2018 and BRATS 2019 challenges,

respectively

[150]
BRATS 2015,

BRATS 2017, and
BRATS 2018

Classification

VGG16 and VGG19 transfer learning-
based CNN models, partial least square

covariance matrix, discrete cosine
transform, and extreme learning machine

Accuracy of 97.8%, 96.9%, and 92.5% for
BRATS 2015, BRATS 2017, and BRATS

2018 datasets, respectively

[151]
BRATS 2019 and

2019 CPM-
RadPath

Classification,
segmentation, and

prediction

Context-aware CNN architecture for
segmentation, 3D CNN architecture for
classification, and LASSO for prediction

Dice score of 0.821, 0.895, and 0.835 for
ET, WT, and TC regions, respectively, on

BRATS 2019 for segmentation task,
accuracy of 58.6% for survival prediction

task on BRATS 2019 dataset, and
balanced accuracy of 63.9% on 2019

CPM-RadPath challenge

[152] BRATS 2015 Segmentation
Resource-efficient CNN model with
memory connections and an adaptive

dense block

Dice coefficient score of 0.858, 0.816, and
0.818 for WT, TC, and ET subregions

[153] Custom Classification 22-layered CNN architecture Accuracy of 96.56%

[154]

BRATS 2013,
BRATS 2014,

BRATS 2017, and
BRATS 2018

Segmentation and
classification

Inception version 3+LBP

Dice score of 0.8373, 0.937, and 0.7994
for TC, WT, and ET subregions on

BRATS 2017; dice score of 0.8834, 0.912,
and 0.8184 for TC, WT, and ET on

BRATS 2018; average accuracy upward of
92% on BRATS 2013, BRATS 2014,

BRATS 2017, and BRATS 2018 datasets

[155] TCGA database
Classification,

segmentation, and
detection

U-Net-based DL model using
skip connections

Accuracy of 99.7% on the classification
task, dice score of 0.9573 on the

segmentation task, and Jaccard index of
0.86 on the detection task

[156]
TCIA public

access repository
Classification

AlexNet, GoogLeNet, ResNet-50,
ResNet-101, and SqueezeNet

An accuracy of 99.04% using AlexNet-
type architecture

[157] BRATS 2018
Segmentation and

prediction
3D U-Net model

Dice score of 0.7946, 0.9114, and 0.8304
on ET, WT, and TC, accuracy of 32.1%

[158] BRATS 2013 Segmentation Ensemble of deep CNN architectures
Dice score of 0.86, 0.86, and 0.88 on WT,

TC, and ET

[159] Custom
Segmentation and

classification

U-Net architecture, VGG16 transfer
learning architecture, and a fully

connected architecture

Dice score of 0.84; accuracy, sensitivity,
and specificity of 92% on the binary

classification task

[160] BRATS 2015
Segmentation and

classification
Multiscale 3D CNN architecture

Dice score of 0.89, sensitivity of 0.89, and
a specificity of 0.90

[161] BRATS 2013 Segmentation
DL model combining average
pooling and max pooling layers

along with 1 × 1 kernels

Dice score of 0.80, 0.75, and 0.71 on WT,
TC, and ET

[162] Custom
Segmentation and

classification
Multiscale Convolutional Neural

Network

Dice score of 0.894, 0.779, 0.813, and
0.828 on meningioma, glioma, pituitary
tumor, and average and an accuracy of

97.3%
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Psycho-oncology is a branch of oncology that deals
directly with psychological and social issues. It deals with
both emotional and psychobiological dimensions of cancer.
However, there are still a number of obstacles in its wide
adoption such as the dearth of medical practitioners as well
as assessment tools and supporting instruments. It is impor-
tant that both psychological and psychobiological factors
influence the way cancers are treated. This domain must ful-
fill the demands for the availability of resources, support for
caregivers and patients, and carving out new research direc-
tions for enthusiastic researchers [163, 164].

Research in AI has proven its worth in the support of
medical decision-making. Due to the unknown nature of
these algorithms, their widespread adoption is still limited.
Explanatory AI algorithms provide a solution to this prob-
lem. However, performance issues might hinder their adop-
tion as well. Robustness, local attribution, and completeness
are three key properties of an explainable AI system. One
way to get around this problem is to find strategies that opti-
mally merge explainable and nonexplainable AI models.
Some solutions that point in this direction are winning the
confidence of clinicians by marking the regions in an image
that are involved in AI predictions; another way is to attack
or deceive the DL models through adversarial augmenta-
tions as it could potentially reveal the important features
and discard the unimportant ones. There is a close link
between interpretability and explainability. An explainable
model is interpretable, but the reverse connection may not
hold. A prediction relying on thousands of parameters is
neither interpretable nor explainable [165, 166].

Precise DL model predictions are dependent on the
availability of a large corpus of data (labelled or unlabelled),
and it is a challenge to train it on a relatively small dataset.
One way to look at this problem is through understanding
the genetic evolution process. Gene transfer is the transfer
of genetic information from a parent to its offspring. Genes
encode genetic instructions (knowledge) from ancestors to
descendants. The ancestors do not necessarily have better
knowledge; yet, the evolution of knowledge across genera-
tions promotes a better learning curve for the descendants.
There is a need for methods that can mimic this behaviour
and use a limited number of examples to achieve their
desired performance on different tasks [167]. Catastrophic
forgetting is another problem limiting the performance of
modern networks as they lack the ability to learn from con-
tinuous streams of data. The quality of the feature represen-
tation considerably determines the amount of forgetting.
Boosting secondary information is the key to improving
the transferability of features from old to new tasks without
forgetting and is a promising direction for future work [168]
especially for cancer diagnosis, prognosis, and prediction.

Despite the claims made by researchers, multiclass clas-
sification is an immensely difficult problem requiring a dee-
per understanding of human visual perception that moves
beyond large datasets, and DL is perhaps necessary to solve
many domain problems [169] including cancer diagnosis,
prognosis, and prediction.

Another challenge that is worth mentioning is to find
intricate hierarchical patterns from all forms of data such

as labelled and unlabelled in a way that integrates informa-
tion to perform visual inference. Unsupervised and semisu-
pervised learning can help in this direction by offering
potential solutions that help us in delving deeper into cancer
pathogenesis and prediction tasks [170].

Can we use real-world images from another domain for
calibration? Bridging the gap between cross-domain calibra-
tion and in-domain calibration is required to get optimal
performance from neural networks. Techniques such as
gram matrix similarity can be used as a criterion to select
calibration datasets from a candidate pool to further
improve performance [171]. This process can be used for
effective feature construction in cancer diagnosis, prognosis,
and prediction.

Modern DL object detection networks rely heavily on
region proposal calculating algorithms to identify object
locations. However, region proposal computation is a slow
task. Faster region CNNs solve this problem by sharing con-
volutional layers with object detection subsystems. This
process requires further research, and there is a need for
improved computationally lightweight methods [25, 26].
Cancer lesion detection can be improved by doing thorough
research in this domain.

Modern DL networks rely heavily on global image statis-
tics. This reliance can cause problems for these systems as
shape and texture recognition is often better done at the local
rather than the global level. Research in this domain can lead
to better network generalization [172] holding the potential
to improve cancer diagnosis, prognosis, and prediction.

Mitigating gradient explosion or decay in RNN training
based on pondering over informative inputs to strengthen
their contribution in the hidden state and finding computa-
tionally efficient ways for this purpose by suppressing noise
in inputs or imposing novel constraints is a problem worth
investigating [173].

Image recognition and image generation are two
cornerstones of computer vision. While both are burgeoning
fields, specialized techniques from both subareas can some-
times form a dichotomy. Historically, the field of DL was
widely popularized in discriminative image classification
with AlexNet architecture and image generation through
GANs and Variational Autoencoders (VAEs). Novel data
augmentation methods that force a network to pay attention
to the moments extracted by layers of a deep network are a
need of time [174] and can improve the performance of
models in cancer diagnosis, prognosis, and prediction.

Further research should also target the discovery of novel
objects (such as those having an aberrant organization, rare
tumor, and foreign bodies), interpretable DL models (using
influence functions or an attention mechanism), intraoperative
decision-making, and tumor-infiltrating immune cell analysis.
Some problems such as the appearance of whole-slide image
as orderless texture-like image and color variation and artefacts
are potentially hindering the performance of DL techniques
[175] for cancer diagnosis, prognosis, and prediction.

Different types of imaging modalities like mammogra-
phy, CT, MRI, and ultrasound have helped in the staging
of cancer especially breast cancer. These systems have helped
medical practitioners in the early identification of breast

21Computational and Mathematical Methods in Medicine



cancer [176]. For breast cancer, varying types of breast den-
sities make masses very difficult to detect and classify in
comparison to calcifications providing room for further
research in this domain [177].

Other areas for potential research are scarcity of data,
imbalanced datasets, missing data, and high dimensionality
of patient data. Future work should be focused on testing
and improving methods to achieve better performing DL
models for cancer diagnosis, prognosis, and prediction tasks.

6. Conclusion

DL models have revolutionized the diagnosis and predic-
tions of cancers. Data have been accepted in various forms
and multiple sources. These models are excellent feature
extractors, and their characteristics can improve cancer
prognosis and prediction. Data augmentation is important
for cancer diagnosis and prediction tasks to improve the
final performance of systems. These methods will play a
key role in making predictions about the cancer diagnosis
and prediction tasks. However, further testing and validation
are required on larger datasets for clinical applications. More
research on data augmentation methods, learning in differ-
ent domains such as frequency domain, and deploying novel
architectures such as graph convolutional networks will
likely improve their performance further.
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