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Abstract: A large number of models are now available for the investigation of skin wound healing.
These can be used to study the processes that take place in a phase-specific manner under both
physiological and pathological conditions. Most models focus on wound closure, which is a crucial
parameter for wound healing. However, vascular supply plays an equally important role and
corresponding models for selective or parallel investigation of microcirculation regeneration and
angiogenesis are also described. In this review article, we therefore focus on the different levels of
investigation of skin wound healing (in vivo to in virtuo) and the investigation of angiogenesis and
its parameters.

Keywords: dorsal skin fold chamber; chorion-allantois model; rabbit; mouse; ear; in virtuo; in silico

1. Introduction

Sufficient blood supply plays one of the most important roles in the entire body for the
maintenance of body homeostasis. To guarantee nutrition and metabolism for tissue and
organ function, a vascular system with an appropriate circulation is required. Especially in
the wound healing of the skin, the restoration of the blood supply over the entire period
is an indispensable process. This can be seen impressively in both the acute and chronic
forms of wound healing.

Whereas in acute wound healing, e.g., after a cut, the vascular system already ini-
tiates wound healing from the very beginning by vasoconstriction and activation of the
coagulation cascade, one recognizes the importance of the vascular system in the absence
or limited function in wound healing disorders. The processes of neovascularization and
angiogenesis in skin repair are highly complex and must be subdivided, because each
phase of wound healing requires contradictory processes [1]. To investigate wound heal-
ing, models are needed that can reflect the physiological or pathological conditions in
humans. In this context, in vivo, in vitro/ex vivo, and in virtuo/in silico models can be
distinguished [2,3]. In recent years, many new in vitro and in virtuo models have been
developed, which consider the pathogenesis of wound healing and the identification of
new drugs or biomarkers (because of the goal to reduce animal experiments). Since a wide
variety of wound healing models have been described, this article focuses on the processes
involved in vascularization and microcirculation in the skin and presents new results,
models and methods for their analysis. It is the aim of this review to summarize established
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and new in vivo and in vitro models for wound healing, to illustrate their advantages and
disadvantages and to describe the key points of implementation of the respective models.

2. In Vivo Models

In vivo models still represent the gold standard in the investigation of physiological
and pathological processes. They ensure the analysis of relevant questions in a whole
organism and thus all possible influencing factors and their effects on the expected outcome.

Animal models are widely used in the preclinical phase of the development of new
pharmaceutical agents for both risk assessment and pharmacokinetic studies. In this
context, however, the transferability of results from animals to humans must be questioned
critically, and thus the use of animals as experimental subjects in general. In the case of
in vivo models, various models have been described for large and small animals and for
humans, but over the last 20 years mouse, human, rat and pig models have prevailed [4].
Other species, such as rabbits, goats, hamsters, frogs, or zebrafish are scarcely used as
wound healing models [4]. The transferability of data from animals to humans always
plays an important role in this context. The anatomical differences must be considered and
are summarized in Table 1.

Table 1. Skin characteristics of different species according to wound healing models (modified from [5]).

Parameter Human Mouse Rat Porcine (Domestic)

Skin thickness 2–3 mm Very thin (0.4–1.0 mm) 1.0–2.0 mm 1.5–2.0 mm

Epidermis thickness
Relatively thick
70 (50–120) µm,

2.67 layers

9.4–13.3 µm,1.75 layers
female inc. thickness

21.7 µm,
1.83 layers

Relatively thick
52–100 µm, 3.94 layers

Stratum corneum
thickness 10–12.05 µm 2.9 µm 5 µm 12.28 µm

Dermal thickness 2.28 mm 170–500 µm, male inc.
thickness N/A 1.5–1.8 mm

Fixed skin Yes No No Yes

Hair coat Sparse, 11 hairs/cm2 Thick, 658 hairs/cm2 Thick, 289 hairs/cm2 Sparse, 11–31
hairs/cm2

Substantial Melanin
is Yes Only in darkly

pigmented strains
Only in darkly

pigmented strains No for

Eccrine sweat glands Yes Yes, paws Yes, paws Yes, snout, lips, carpal
gland only

Apocrine sweat
glands Yes N/A N/A Yes

Epithelial cellular
turnover rate 28d N/A N/A 28d

Dermal
vascularization N/A N/A N/A Less than human

Skin blood flow rate
(mL/min/100 g) 3.12 20.6 9.6 3.0

pH of skin 5 N/A N/A 6–7
Primary Wound
Healing Pattern Re-epithelialization Contraction Contraction Re-epithelialization

Wound Healing Time
course 7–14d or longer Closes through

contraction, <7d
Closes through

contraction, <7d 12–14d or longer

Regarding in vivo models of angiogenesis in skin wound healing, it is necessary to
further distinguish between the possible direct studies, such as intravital fluorescence mi-
croscopy (IVM) [5–7], and the indirect methods, (histological or biomechanical analyses of
tissue samples from an in vivo skin wound model) [8]. While direct methods often use the
mouse or hamster dorsal skin fold chamber model to visualize healing processes [5,9–12],
tissue samples from any of the described models can be used in indirect methods. However,
the use of an in vivo model, besides the investigation in an overall system, also offers the
possibility of combining different analytical approaches.
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The investigation possibilities can therefore be divided between the direct in vivo
results, laboratory analyses, preservation of tissue, organ and blood samples for further
in vitro cell assay use or, as mentioned above, specific histological and immunohisto-
chemical analyses [3]. Especially in the analysis’s context of skin wound healing, our
research group could establish a new model. This mouse dorsal skinfold chamber model
enables skin wound healing analysis in the sense of wound closure by epithelialization
and examination of the inflammatory response or angiogenesis [5,8,13]. In this model, it
was found that the restoration of blood vessels in the regenerating skin wound follows a
very specific pattern [5]. Initially, a circle of vessels of irregular diameter and blood flow
velocities develops parallel to the wound edge. The circle contracts towards the center of
the wound, forming radial blood vessels at the edge, with significantly more regular blood
flow and vessel diameters. However, after completion of wound healing with complete
epithelialization, this pattern disappears and the reticular structure of physiological skin
develops [1,5]. The primary mechanism of wound closure in the mouse is wound con-
traction (Table 1). Another advantage of the described method is that this mechanism is
counteracted by the stretching of the skin in the dorsal skin fold chamber and, thus, it is a
real re-epithelialization, like the human mechanism [5].

In this context, the use of human patients or volunteers is also discussed. Micro-
dosing is currently a new research field in which application of active substances in small
quantities is performed. The small dose is supposed to avoid health issues. Highly sensitive
methods are then used to measure active ingredients during absorption, distribution,
metabolism, and excretion. However, positive or curative effects on humans cannot be
determined by micro-dosing. In addition to the ethical problems of human experiments,
the active substances tested in micro-dosing must first be developed. In this respect, micro-
dosing is a first step from animal testing to human application and is primarily used in
pharmacological studies so far [14,15].

This review focusses on four of the most established in vivo models for skin wound
healing and vascular assessment, i.e. the dorsal skinfold chamber model, the splinted full
thickness model, the hairless mouse auricle model and the chorion-allantois membrane
assay (Table 2).

2.1. The Dorsal Skinfold Chamber Model

The chamber model was first described in 1924 by Sandison in the ear of rabbits and
was later converted to the dorsal skin of mice [16–18] (Figure 1). Since then, microcircu-
lation and tissue engineering research have frequently used the mouse dorsal skinfold
chamber [19]. Microcirculatory studies focused on inflammation [20,21], thrombogene-
sis [22,23], thrombolysis [24,25], angiogenesis of tumors [26–28], endometriosis [29,30],
biomaterials [31,32] and flap perfusion [33,34]. The number of studies using the dorsal
skinfold chamber model for different approaches proves the dorsal skinfold chamber to be
one of the most important in vivo models for repetitive microcirculation assessment.
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Table 2. Schematic illustration and overview on important advantages and limitations of established in vivo models for angiogenesis in wound healing.

Advantages Limitations
Exemplary studies

Authors Wound Therapy Materials & Methods Outcome Parameters

dorsal skinfold chamber
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Table 2. Cont.
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Exemplary studies
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2.2. The Splinted Full Thickness Model 
Compared to wound healing in humans, which is primarily based on formation of 

granulation tissue and re-epithelialization, the major mechanism of wound healing in ro-
dents is wound closure by contraction [41]. To overcome this drawback, Galiano et al. 
developed the splinted full thickness model in mice [42].  

Figure 1. The dorsal skinfold chamber. (A) macroscopic image of the dorsal skinfold chamber following preparation of the
subcutaneous vasculature. The chamber is filled with saline and closed by a coverslip. (B) Intravital microscopy showing
the microvascular network including capillaries, venules and arterioles in 100× magnification following iv FITC-dextran
injection. (C) Overview of the dorsal skinfold chamber anatomy in HE staining.

The chamber comprises two titanium frames fixing the extended dorsal skin in the
back’s midline. The skin is sutured to one side of the frame. The microsurgical preparation
comprises the removal of the skin, the subcutaneous tissue and the striated panniculus
carnosus muscle on one side of the dorsal skinfold. This microsurgery reveals the vessels of
the opposite panniculus carnosus muscle. The exposed area can be prepared either in total
or only partially. Partial preparation is performed for analysis of wound healing. Finally,
the second frame of the chamber is connected by screws and the observation window is
filled with saline followed by sealing with a coverslip [35]. The observation window has
a diameter of 12 mm. Wound healing can be studied both under wet and dry conditions
by using a glass coverslip or by leaving the wound uncovered. Since the chamber allows
placement of biomaterials or any kind of solid, gel or liquid wound coverage, this model
can assess the effect of external wound therapies.

The vascular pattern and its changes during the observation period were described
recently. The wound edges show typical circular vascular architecture with outer radial and
inner circular arranged vessels in the re-surfacing skin. As a sign of physiologic maturation,
the density of the circular vessels decreases until day 12 [5].

In skin wound healing, planimetric evaluation of the wound diameter/area is the
primary outcome. Microvascular parameters are studied by IVM, which enables visualiza-
tion of the blood flow in arterioles, venules, and capillaries upon iv injection of fluorescein
isothiocyanate-labeled dextran. In addition, local inflammation can be assessed upon iv in-
jection of rhodamine-6G, which labels leukocytes and enables the study of leukocyte count,
rolling, and transmigration into the wound bed. They allow for real-time visualization of
morphological and dynamic changes of the microvascular network of the wound ground
and edge over the time. As another non-invasive imaging technique, hyperspectral imag-
ing can be performed to visualize and measure vascular hemoglobin saturation without
injection of contrast agents. Repetitive intravital measurements can be performed for up to
21 days [36]. Fixation of the chamber during IVM reduces motion artefacts to facilitate a
smooth microscopy.

The dorsal skinfold chamber is a sophisticated model and allows for angiogenesis
and wound healing studies in different pathological settings without restriction to certain
mouse strains (such as hairless mice). Any transgenic (knockout or chimeric) mice can be
used for dorsal skinfold chamber experiments in a standardized setup. In this context, the
model was used for analysis of wound healing and angiogenesis of diabetic wounds in
mutant diabetic mice (db; BKS.Cg-m+/+Lepr (db)/J) [37].
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Regarding the importance of 3R (replacement, reduction, refinement), repetitive exam-
ination of the same animal reduces the experimental groups. The chamber continuously ex-
poses the wound and the microenvironment to IVM, without further surgery (Refinement).

Different software tools can perform quantification of microcirculatory or inflam-
matory parameters. One common tool is the CapImage® Software (Dr. Zeintl Software,
Heidelberg, Germany) [38]. This allows quantification of vascular diameters, red blood cell
velocity, functional capillary density, area quantification or quantification of microvascular
leakage through intra- and extravascular grey scale values. This software has been used
for several years, but still lacks automated analysis. Sophisticated programs use artificial
intelligence for automated assessment of vascular parameters. In this context, open-source
programs like ImageJ [39] or Matlab [40] are available for assessment of capillary density,
vascular diameter, and other microvascular parameters in a fast, time-efficient and reli-
able way. While automated image analysis is well established, video analysis of dynamic
intravital interactions must be developed.

Although the dorsal skinfold chamber model in mice bears several important advan-
tages, there are considerable limitations. Since the titanium chamber with a weight of 3.8 g
is fixed on the back of the mice, the chamber will tilt laterally over time (day 10+). This
issue is pronounced in obese mice, which are frequently used to study the effect of diabetes
or dyslipidemia on wound healing. Since tilting is associated with distress, pain and
skin ulceration, up to 20% of the experiments need to be stopped between day 12 and 21.
Another problem that comes with tilting of the chamber is compromised microcirculation
by kinking of dorsal skin arteries and veins. Suppressed circulation may be an additional
variable in wound healing and microcirculation.

The tight fixation of the chamber, which prevents wound contraction, may compress
the perfusion of the dorsal skin tissue, and therefore lead to the same complications as
chamber tilting.

Quality and reliability of IVM are directly associated with the quality of the microsur-
gical preparation of the dorsal skin and muscle. Even a perfectly prepared chamber with
optimal conditions for IVM will worsen over time because of healing processes which are
associated with fibrin formation and exudation. These impair the penetration depth of IVM,
reduce the contrast and lead to blurred images, which impede off-line analysis of capillary
perfusion, leukocyte rolling and transmigration, which need high-resolution recording. Re-
opening and cleaning of the chamber should be omitted because it affects the wound bed
and therefore the microcirculatory analysis. Other risk factors for blurred recordings, such
as bleeding, hematoma formation and infections can be avoided by meticulous preparation.

In summary, the dorsal skinfold chamber model proved a valuable tool to study
angiogenesis and microcirculation during wound healing.

2.2. The Splinted Full Thickness Model

Compared to wound healing in humans, which is primarily based on formation of
granulation tissue and re-epithelialization, the major mechanism of wound healing in
rodents is wound closure by contraction [41]. To overcome this drawback, Galiano et al.
developed the splinted full thickness model in mice [42].

Anesthetized mice are first shaved and depilated. Two symmetrical full-thickness
wounds extending through the panniculus carnosus are created on the dorsum of mice
using a skin biopsy punch and microsurgical scissors. To avoid wound contraction, a donut-
shaped, 5 mm-thick silicon splint is fixed on the wound with immediate-bonding adhesive
and interrupted nylon sutures. Afterwards, the wound is covered with an occlusive
dressing [42,43].

The splinted full thickness model enables direct application of topical agents on the
wound bed or assessment of wound healing upon systemically pharmacological treatment.
In parallel to other murine wound healing models, it also allows the study of wound
healing in different pathological conditions, e.g., renal dysfunction [44], using respective
transgenic or knockout mice. The splinted wound model was recently applied in rats to
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study hypertrophic scarring [45] and to study new splint constructions [46]. Since its first
description in 2004 by Galiano et al., several further developments of the splint model were
described, including nitinol splints [46], and plastic ring-shaped splints to assessment the
total length of wound epithelialization, including dermal remodeling and regenerative
epithelialization [47] or glue fixed biological membranes and adhesive dressing application
on the wound to prevent wound skin contraction, without further surgical affection of the
skin by suture fixation [48].

The splinted full thickness model was used study the effects of recombinant myxoma
virus-derived immune modulator M-T7 [49], of Babassu oil [50], of three-dimensional
printed scaffolds and electrospun mats [51], of adult gingival multipotent mensenchymal
stem cells [52], of induced pluripotent stem cells clay [53], of poly(lactic-co-glycolic acid)
and vascular endothelial growth factor [54], and of renal dysfunction [44] on cutaneous
wound healing.

Analysis of wound healing in this model comprises quantification of wound size by
digital photography or stereomicroscopy, histological and immunohistochemical analysis
of the wound bed and bioluminescence imaging (e.g., luciferase transfected cells).

This model is surgically simple to perform and to reproduce. The success rate for
maintenance of the splint is between 80% [55] to 100% [42]. Since two symmetrical wounds
are created on the back of each mouse, one can serve as a paired, internal control. Exclusion
criteria of wounds are wound infections, fracture, and partial or total detachment of splints
from the dorsum.

Compared to the dorsal skinfold chamber model, one benefit of the splinted full
thickness model is its lower burden for the animals: low drop-out, short operation time and
low weight of the splints. Like the chamber model, the skin is fixed to the splints which
avoid contraction and therefore enable translation of the results to human wound healing
by migration. At the same time, the splints provide a chamber frame for application and
fixation of topical therapeutic agents.

However, the microcirculation and vascularization of the wound bed in the splint
full thickness model are primarily studied by post-mortem immunohistochemical staining
of, e.g., CD31 or other vascular markers. Since this model is not suitable for IVM, this
can be attributed as a disadvantage compared to the ear, the chorion allantois and the
skinfold chamber models. Longitudinal analysis of wound healing is only performed by
stereomicroscopy or photometric analysis of the wound size, while longitudinal analysis of
vascularization or angiogenesis at different time points requires euthanasia of animals at
respective intervals, which in turn increases the number of animals and does not comply to
the 3R.

2.3. The Hairless Mouse Auricle Model

Hairless mice (e.g., SKH1-hrhr) enable direct functional imaging of auricle vessels
and wounds [56–59]. The entire microvascular network, comprising venules, arterioles,
and capillaries up to 100 µm in diameter, can be visualized and examined in real time.
This makes the auricle model suitable for studying wound healing [59–63] axial pat-
tern flaps [57,58,64–66] macromolecular leakage [58], and microvascular thrombus forma-
tion [67–69] (Figure 2).

The average thickness of the auricle is 300 µm. It comprises two dermis layers,
separated by cartilage. On the convex dorsal side of the cartilage, three vascular bundles
enter the auricle. The venules have diameters of between 200 µm (basal) and 10 µm (apical).
Tightly meshed capillaries surround the empty hair follicles [57].
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Figure 2. The auricle of the hairless SKH1 -hrhr mouse. (A) Positioning of the mouse auricle for intravital microscopy.
The image shows the auricle fixed using two 6/0 sutures and after placement of a glass cover slip, which enables water
immersion during fluorescence microscopy. (B) Intravital microscopy of the main branching of the neurovascular bundle
in 50× magnification following iv FITC-dextran injection. (C) HE histology of the auricle illustrating the rich vasculature
(A–arteriole; V–venule; D–dermis; E–epidermis; M–muscle; C–Cartilage).

Examination conditions are ideal for young animals at 4–10 weeks of age and with
little keratinization of the epidermis. In older animals, the quality of visualization of the
vessels becomes poor because of the greater distance between the skin surface and the
target vessels.

Full thickness skin wounds are prepared using micro-scissors to excise skin down
to the cartilage layer. Intact cartilage with perichondrium is essential to avoid wound
contraction (cartilage) and cartilage necrosis (perichondrium) [61,62]. After wound prepa-
ration, repetitive IVM can be performed. IVM requires plane positioning of the auricle and
reduction of movement artifacts, which can be achieved by temporary fixation sutures close
to the base of the auricle. After fixation, a coverslip is applied and intravital planimetry
and microcirculation analysis is performed, as described for the dorsal skinfold chamber
model [7].

The primary advantage of the auricle model is the access to the vessels without risk of
tissue damage by surgical dissection. Neither inflammation, vasoconstriction nor activation
of hemostasis in the hairless mouse ear lobe affect the assessed parameters. Although
no surgical dissection is required, image resolution and clarity are comparable to other
angiogenesis models.

In terms of animal welfare, the experimental procedure is minimally invasive for the
animals, and the mice do not need to recover from major surgery or carry an additional
weight, e.g., a titanium chamber, during the experiment.

An important limitation of the auricle model is the restriction to 4–10 weeks old mice.
This is necessary for optimal IVM quality but hinders long-term experiments and the use
of transgenic mice. Another drawback is the susceptibility of the auricle to fluorescent dye
extravasation and vessel compression. Therefore, the auricle must not be touched after
fluorescent dye injection and coverslips must be applied with caution to avoid venous
stasis. Even though little surgical preparation is required, surgery must be performed
meticulously to preserve the vascularized perichondrium. This demand can be a major
reason for non-reproducible results (cartilage necrosis, wound contraction).

However, if the protocol is performed correctly, IVM in the auricle of hairless SKH1
hr/hr mouse is a reliable, simple, and efficient tool for the study of wound healing
and angiogenesis.

2.4. The Chorion-Allantois-Membrane (CAM) Assay

The increasing importance of distress reduction in animal experiments and the
persisting limitations of in vitro systems in angiogenesis research demand complemen-
tary models.
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The chorion allantois membrane (CAM) of the chicken embryo has therefore been
established as a standard angiogenesis model over recent decades [70–81] (Figure 3).
The CAM is an extraembryonic structure with a dense capillary network mediating gas
and nutrient exchange until hatching on day 21. The capillary bed connects arterioles
(10–85 µm) and venules (10–115 µm). During embryonic development, the CAM grows
from 6 cm2 at day 6 to 65 cm2 at day 14 [79]. Capillary angiogenesis is completed until
day 11. Therefore, two phases have to be considered: day 1 to 11 enables experiments on
rapidly developing vessels and day 12 to 20 enables research on mature vessels [82–84].
The extracellular matrix between the vessels comprises fibronectin, laminin, collagen type
IV and glycosaminoglycans. Single-layer epithelium covers the CAM [77,85].
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Figure 3. The Chorion Allantois Membrane Assay. (A) Representative macroscopic image of the CAM vessels after
implantation of squamous cell carcinoma cells. The tumors grow within silicone rings. (B) Intravital microscopy following
iv FITC-dextran injection. The image depicts venules and arterioles surrounded by the dense capillary network. (C) HE
staining of the CAM membrane showing well-vascularized connective tissue between the low epithelial layers.

Plenty of in ovo- and ex ovo-preparations have been described to access the CAM.
In ovo preparations (window in the eggshell) are easy to perform and have high embryo
survival rates. To increase the access to the CAM vasculature, the CAM must be dropped
(by draining albumen or manipulation of the air sac). This procedure enables opening
of the egg in a horizontal position and exposure of extensive areas of the cam. This is
necessary for lens positioning during IVM. Accessibility can further be increased by an ex
ovo-setup. In these preparations, the eggshell is removed (usually on day 3); the chicken
embryo and the CAM are further cultivated in a petri dish or a sterilized cup [76,86–88].
Ex ovo-preparations reveal the entire CAM for experiments. However, lower survival rates
must be considered (in ovo 85–95%, ex ovo-petri dish 15–25%, ex ovo-cylindrical vessels
45–95%) [89]. Immunodeficiency of the chicken embryo and the engraftment of (human) tu-
mor cells made the CAM a standard model in oncology research for years: studies targeted
chemotherapy, irradiation, but also angiogenesis [70,90]. Because of the value in tumor
angiogenesis research, the CAM emerged as an important model for graft vascularization
in tissue engineering [91–94]. Likewise, the CAM has been established in wound healing.
Here, the CAM served [78] as a complement to in vitro- and animal in vivo-studies with
a focus on angiogenesis. Test substances (CO/NO-releasing molecules, growth factors,
nanoparticles or herbal formulations) were administered topically or systemically [95–98].
In tumor angiogenesis, graft placement and CAM wound healing, an increased vessel
density and radially converging vessels occur within 72–96 h. For systemic therapy ap-
plication of large CAM vessels, the albumen and the yolk sac can be punctured [99–103].
Local treatments can be applied to the CAM membrane using silicone rings or loaded
matrices [96,97,104–107]. The application of sterilized coverslips can also be useful in
preventing spatial shifting of implants because of embryo movement.

The main outcome parameters in CAM angiogenesis assays in wound healing are
blood vessel density, vessel length and number of branches [95–97]. Most studies performed
static analysis of camera pictures at multiple time points during the experiment. CAM
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tumors have been assessed by MRI, CT, PET-CT and ultrasound. However, visualization
of angiogenesis requires more distinct methods, such as IVM following intravascular
injection of fluorescent dyes (FITC-dextran, Rhodamin-6G). Intravascular injections may
cause severe bleeding and fluorescent dye leakage. We recommend using small needles
(30G+). Fluorescent dye injection into the albumen is a less invasive alternative and enables
high-quality recording by vessel transillumination.

Compared to most animal studies, the CAM model is easy to perform, does not
require surgical skills and enables a high throughput with low costs (€1.50/egg). The
CAM assay also enables repetitive intravital analysis and multiple tests on a single CAM.
Another advantage is that most countries do not classify the CAM model as an animal
experiment, if the experiment is ended before hatching. Many legislative barriers for
animal experiments are not applied and experiments can be performed faster with less
administrative expenditure.

However, the chicken embryo reacts to external influences and suffers from blood
loss or pain if the embryo is the target of invasive procedures (from day 15) [85]. The
CAM itself has no innervation and can be manipulated without harming the embryo. To
reduce animal distress, anesthesia should be performed during procedures which target
the embryo). IVM during the second and third week of embryo development also requires
anesthesia to reduce spontaneous animal movement. Five drops of Ketamin/Xylazin 4:1
administered topically onto the cam were effective in temporary immobilization.

Angiogenesis research must also consider the CAM as a specialized vascular bed;
vessels for gas exchange differ from systemic vessels in regulation (lack of innervation and
endocrine receptors) and structure (lack of basement membrane). These features are typical
for tumor vessels but may be a limitation in wound healing assays [98].

Another limitation for CAM wound healing and angiogenesis assays is the lack of
a functional immune system until day 14 to 18 [85]. The unspecific immune reaction in
late phase cam experiments may confuse real angiogenesis with rearrangement of existing
vessels [108–110]. Hatching follows the development of a functional immune system and
limits the CAM assay to a maximum of 21 days. Some local guidelines consider CAM
experiments before hatching but beyond day 14 (UK) or day 18 (Germany, Mecklenburg
Vorpommern) as animal experiments [85]. The observation time is comparable to the
mouse dorsal skinfold chamber, but angiogenesis, wound healing, and tumor growth is
faster in the anabolic CAM model.

3. In Vitro/Ex Vivo Models

There are several in vitro/ex vivo models of tissue repair that can help answer specific
mechanistic questions related to skin wound repair. Many in vitro/ex vivo models are used
to answer fundamental questions related to cell–cell interaction, cell signaling in response
to cell stress or injury, or cell behavior as a function of various signaling molecules [2]
(Figure 4).

In the discussion of in vitro/ex vivo models for the analysis of processes of wound
healing the origin of cells or tissues must be critically questioned, especially with a focus on
the 3R strategy for the complete avoidance of animal experiments and thus the differentia-
tion from the designation as ex vivo models. However, although many alternative methods
are already in use, they cannot yet replace all animal experiments in basic research. Most
alternative methods are based on previous animal experiments. In addition, alternative
methods can often simulate partial aspects of the extremely complex processes in the
human body, as described above. For this reason, it will not be possible to completely
dispense with studies on living animals in the foreseeable future. Especially in topical
dermatological or cosmetic drug testing, there has long been a call to reduce the use of
animal skin models.
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However, simple in vitro models are also justified if the overall process is too com-
plex to understand individual steps or to make very specific statements about cell–cell or
cell–factor interactions. Just like the extrapolation of results from animal experiments to
humans, in vitro models are also under discussion. For a long time, a major disadvantage
of in vitro models has been the restriction to two-dimensional models. Therefore, the
three-dimensional anatomical structure of the skin has not been simulated and important
interactions have been ignored. Especially, the significance of single cell assays must be
queried (because of the lack of endothelial and immune cells). In this context, attempts
have therefore been made for some time to construct the in vitro/ex vivo skin models in
such a way that they resemble the 3D structure. Of course, the various functions of the skin
must also be considered in their entirety. To increase the reliability of the results, different
components such as blood vessels [111], immune functions [112], pigmentation [113,114],
innervation [115] and appendages [116] are integrated into these 3D models [117,118]. Here,
blood vessel supply and new vessel formation are of special research interest. Vasculariza-
tion of skin constructs within the dermal compartment has been repeatedly investigated
by co-culturing with endothelial cells [113]. Since vascularization is of great importance,
different pre-seeded scaffolds or 3D printing techniques have also been applied for this
purpose to mimic the subcutaneous circulation [118–120]. However, morphological studies
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have shown that although endothelialization occurs, it alters the skin morphology towards
an increased maturation process and thus appears more unbalanced [119].

Here, 3D-printing and skin- or wound-on-a chip platforms have been established in
recent years. While initially only two-dimensional patterns were possible at the beginning
of cell printing, the additional use of various gels or dermal substitute materials soon
allowed three-dimensional constructs to be printed and investigated [121–123]. However,
vascularization presented itself as a consecutive problem to deliver the engineered tissue,
or even organ, to a nutritive perfusion. Direct and indirect vasculature printing techniques
were developed to place cells in their specified locations [94]. With these techniques,
it is even possible to create complex vascular geometries. However, the cell behavior
after printing is considered a challenge, and thus, e.g., porosity, stiffness, cytotoxicity,
gelation mechanisms, and interactions with the other polymers or hydrogels must be
considered [124].

Recently, skin- or wound-on-a-chip platforms are described as microfluidic technolo-
gies [125]. Microfluidic technology offers the possibility to precisely control the fluidic
connections and thus the communication between different tissue chambers on the smallest
scale [117,125]. Micronization of these assays can significantly reduce the cost of experimen-
tal setups and general cell or tissue consumption. This experimental model is used to study
and validate the physiological relevance of pharmaceuticals or, for example, cell migration
in the inflammatory phase [126]. By producing a two-layer skin chip, which contains the
epidermal and dermal structures in the upper part, separated by a poly-dimethyl-siloxane
(PDMS) membrane, and the fluidic channels and vascular endothelial cells in the lower part,
the three-dimensional structure of the skin is now represented [127]. Thus, this micromodel
is suitable for a wide range of applications to study physiological but also pathological
wound healing, as well as the influence of certain drugs or signal substances on the wound
healing process itself.

4. In Virtuo/In Silico Models

One of the aims of medical research is to be able to simulate the functions of the
organism in a computer model. Therefore, the models to be developed must consider
not only the pure structure of the skin, but also biological, bio-chemical, and mechanical
factors that influence the healing process or the external influences upon it. This seems of
particular interest in the field of wound healing, as there were already several approaches
around the turn of the millennium to calculating the processes of epidermal wound healing,
remodeling of the dermal extracellular matrix, wound contraction, and angiogenesis
with appropriate computer models [128]. Animal experiments would thus no longer
be necessary.

However, digitization does not cease in science, and for some time now digital, in
virtuo or in silico wound healing models have been described that can reproduce isolated
organ and cell functions on the computer [2]. Computer modeling of biochemical processes
can be a powerful tool that provides a better understanding of biological systems.

The first step in simulating a biological process is to create a mathematical model (set
of equations) that is appropriate for the biological features being studied. The method,
known as discretization, allows biological phenomena to be simulated at different levels
of complexity. Angiogenesis is precisely regulated by genetic programs and strongly
modulated by various chemical factors that enable the activation of cellular signaling
pathways. Continuum models [129–131] and cell-based models [132,133] are available
mathematical approaches for simulating angiogenesis in wound healing [134]. While
cell-based models are used to modulate cell populations and thus allow the behavior
of single cells to be studied, continuum models are used to modulate concentrations of
chemical mediators. However, for an accurate simulation, which phase of angiogenesis is
studied is crucial to create an adequate model and thus reduce the influencing factors on
the mathematical model. This is considered a clear disadvantage when investigating the
use of these models.
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Recently, hybrid models have been used to combine the cellular level (microscale
analysis) with the tissue level (macroscale analysis) [134]. Thus, in angiogenesis analysis,
continuum models are often used to describe the behavior of cell populations and chemical
concentrations at the tissue scale, using a system of partial differential equations. In studies
of, for example, oxygenation in wound healing, the computer-simulated results were in
accordance with published experimental literature data [134]. However, there are also
disadvantages to be considered here, and so a very close communication and cooperation
between life science researchers and mathematicians is required, on the one hand to name
the possible biological influences in the context of wound healing, and on the other hand
to transfer these influences into correct and adequate computational models.

5. Conclusions

Recently, in vitro wound healing models have been substantially improved. In virtuo
models have been developed and enable the calculation of different phases of wound
healing of the skin. Therefore, safety and efficacy of novel approaches in skin wound
healing should first be evaluated in vitro or even in virtuo. However, transferability of
the results is often limited because of the complex processes involved in wound healing,
and animal models cannot yet be replaced regarding angiogenesis and wound healing
research. In addition, in vivo or on vitro models also provide the basis of calculations for
all in virtuo models. Multiple animal models have been developed in recent decades with
individual strengths and limitations. Both must be addressed to limit animal numbers
and increase validity of in vivo experiments. In the proposed selection of in vivo models,
the CAM assay is closest to the in vitro models, allowing for high throughput screening
of multiple substances with unique access to the vascular bed. On the other hand, the
chicken embryo is no mammal, and the model lacks skin; both limit the impact of the
model. The most elaborate model for skin wound healing is the dorsal skinfold chamber:
multiple microvascular parameters can be assessed in well-standardized wounds. However,
animal distress, drop-outs and the limited observation time have to be considered as
main disadvantages.

In summary, all the models highlighted in this review bear advantages and disad-
vantages that must be considered when planning experimental studies on skin wound
healing. We hope that this review will help the reader find the most suitable model for the
planned approach, and that it might reduce unrewarding experiments because of unknown
limitations of respective models.
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