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Abstract: Analysis of the genetic control of small metabolites provides powerful information on the
regulation of the endpoints of genome expression. We carried out untargeted liquid chromatography–
high-resolution mass spectrometry in 273 individuals characterized for pathophysiological elements
of the cardiometabolic syndrome. We quantified 3013 serum lipidomic features, which we used in
both genome-wide association studies (GWAS), using a panel of over 2.5 M imputed single-nucleotide
polymorphisms (SNPs), and metabolome-wide association studies (MWAS) with phenotypes. Ge-
netic analyses showed that 926 SNPs at 551 genetic loci significantly (q-value < 10−8) regulate the
abundance of 74 lipidomic features in the group, with evidence of monogenic control for only 22 of
these. In addition to this strong polygenic control of serum lipids, our results underscore instances of
pleiotropy, when a single genetic locus controls the abundance of several distinct lipid features. Using
the LIPID MAPS database, we assigned putative lipids, predominantly fatty acyls and sterol lipids,
to 77% of the lipidome signals mapped to the genome. We identified significant correlations between
lipids and clinical and biochemical phenotypes. These results demonstrate the power of untargeted
lipidomic profiling for high-density quantitative molecular phenotyping in human-genetic studies
and illustrate the complex genetic control of lipid metabolism.

Keywords: lipidomics; coronary artery disease; genetics; metabotypes; molecular phenotyping;
GWAS; MWAS; SNP

1. Introduction

Molecular-phenotyping tools based on transcriptome, proteome and metabolome
technologies provide detailed information on the molecular pathways and biomarkers
relevant to disease etiopathogenesis. Their application in the context of genome-wide
association studies (GWAS) of complex disorders can enhance our understanding of the
genetic control of genome expression and to dissect out disease variables into multiple,
intermediate disease traits and molecular phenotypes [1,2]. Metabolomics, which analyses
the multivariate data representing a range of small metabolites in a biological sample, has
already been used in humans to map the genetic determinants of the quantitative variations
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of metabolites [3]. Owing to the role of altered plasma-lipid profiles in many chronic-
disease manifestations, including chronic kidney disease, cardiovascular risk, dyslipidemia
and neurological disorders, the detection and quantification of lipids in a biospecimen
through lipidomics has emerged as a promising approach to correlate variations in blood
lipids with these diseases [4–6].

Even though elevated blood LDL cholesterol is known to be a major risk factor for
coronary heart disease and stroke, lipidomics enables a hypothesis-free strategy for broad-
ening the search for the biomarkers associated with these diseases to a wide range of lipid
species and to uncover novel targets beyond traditional lipids that can predict or reduce the
risk of cardiovascular diseases [7,8]. Among examples of lipid classes that can be detected
and quantified through lipidomic technologies, ceramides are involved in vascular inflam-
mation and apoptosis and may have a higher potential to predict coronary heart disease
than LDL cholesterol [9]. Ceramides, but more prominently the phospholipid species, alter
the progression to ischemic cardiomyopathy [10]). Beyond associations between lipids and
disease, combining genetics and lipidomics allows the identification of the genetic factors
involved in the coordinated regulation of lipid species, thus inferring functional connec-
tions between different lipid species and causal relationships between lipid species and
disease status or disease endophenotypes. The most robust GWAS studies of blood-lipid
metabolism have focused on circulating total, LDL and HDL cholesterol and triglycerides,
which are easily quantified using standard, clinical chemistry assays [11,12]. The extension
of GWAS to deeper analyses of lipid species requires mass-spectrometry (MS) technologies
and analytical methods that allow for the enhanced efficiency and coverage of lipidome
profiling [13]. The application of MS-based lipidomics to GWAS was initially based on
targeted analysis of blood sphingomyelins and ceramides [14] and was recently extended
to increasing numbers of known lipids [15,16].

Here, we applied liquid chromatography–mass spectrometry (LC–MS) to a group
of 273 individuals well-characterized for clinical and biochemical phenotypes relevant
to cardiometabolic diseases, to analyse the genetic architecture of lipid metabolism in
humans. We were able to identify evidence of the pleiotropy and strong polygenic control
of lipids and proposed annotations for lipidomic signals mapped to the human genome.
This study demonstrates the power of untargeted lipidomics for high-density quantitative
molecular phenotyping in humans and illustrates the complex genetic control of blood-
lipid metabolism.

2. Results
2.1. Clinical-Data Analysis

The study group has a mean age of 57.4 ± 0.7 years and 56.4% (n = 154) of the individ-
uals were males (Table 1). All individuals in the cohort were devoid of evidence of coronary
artery stenosis, as assessed by an angiogram analysis. Analyses of the pathophysiological
components of the cardiometabolic syndrome revealed that 132 individuals (49%) were
obese (BMI > 30 kg/m2), 46 had type 2 diabetes (17%), 147 were hypertensive (54%) and
119 were hyperlipidemic (44%), with a similar proportion of affected males and females
(Table 2).
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Table 1. Clinical and biochemical features of individuals in the study group used for metabolomic
profiling. Individuals were selected for absence of coronary stenosis. Data are given as means ± SEM.
Number of cases are reported in parentheses. Gender differences were tested using two-way ANOVA.

All Females Males

Mean Range Mean Range Mean Range

Age 57.4 ± 0.7 (273) 30–83 61.4 ± 0.9 (119) 38–83 54.4 ± 0.9 (154) 30–81
Body weight

(kg)
83.13 ± 0.99

(269) 50–150 77.69 ± 1.44
(118) 52–150 87.39 ± 1.26

(151) 50–130

BMI (kg/m2)
30.37 ± 0.33

(268) 18.96–55.77 31.36 ± 0.56
(118) 20.34–55.77 29.59 ± 0.37

(150) 18.96–44.29

Glucose
(mg/dL)

107.95 ± 2.19
(219) 60–299 111.41 ± 3.98

(98) 62–299 105.14 ± 2.29
(121) 60–255

Total
cholesterol
(mg/dL)

187.89 ± 2.83
(266) 71–357 196.35 ± 4.12

(114) 71–345 181.55 ± 3.81
(152) 76–357

HDL
cholesterol
(mg/dL)

41.87 ± 0.80
(266) 18–90 46.10 ± 1.22

(115) 18–85 38.65 ± 0.98
(151) 18–90

LDL cholesterol
(mg/dL)

113.90 ± 2.29
(261) 24–254 117.21 ± 3.22

(115) 34–240 111.29 ± 3.21
(146) 24–254

Triglycerides
(mg/dL)

176.58 ± 7.03
(273) 9–1215 167.87 ± 8.12

(119) 9–580 183.30 ± 10.77
(154) 9–1215

Table 2. Pathophysiological components and risk factors of the cardiometabolic syndrome in individ-
uals of the study group. Number of cases is reported and percentages are given in parentheses.

All Males Females

Body mass index > 30 (kg/m2) 132 (49%) 66 (44%) 66 (56%)
HDL cholesterol < 40 (mg/dl) 128 (48%) 94 (62%) 34 (30%)
Fasting glycemia > 125 mg/dl 36 (16%) 16 (13%) 20 (20%)

Type 2 diabetes 46 (17%) 23 (15%) 23 (19%)
Hypertension 147 (54%) 73 (47%) 74 (62%)

Hyperlipidemia 119 (44%) 67 (44%) 52 (44%)

Family history of hypertension 187 (69%) 99 (64%) 88 (74%)
Family history of type 2 diabetes 155 (57%) 83 (54%) 72 (61%)

2.2. General Features of Untargeted-Lipidome Data

Untargeted-lipidome profiling retrieved 3013 spectral features characterized by a
specific mass-to-charge ratio (m/z) and retention time (RT) (1529 in the negative-ionization
mode and 1484 in the positive-ionization mode) that met the acceptance criterion (i.e.,
Relative Standard Deviation (RSD) < 30%, also referred to as Coefficient of Variation CV)
(Supplementary Table S1). Multivariate Principal Component Analysis (PCA) analysis
showed the absence of strong technical drift during spectral-data acquisition in the cohort,
as illustrated by the PCA scores’ 2D plot representation of the QC samples in the two
ionization modes (Supplementary Figure S1). The QC samples were tightly clustered,
which indicates an acceptable reproducibility of the retained set of metabolic features as
well as a good stability of the LC–MS-profiling experiments.

2.3. General Features of Untargeted-Lipidome Data

Genome-wide association of untargeted-lipidome-profiling data identified 5501 statis-
tically significant associations (FDR-adjusted p-value; q-value < 10−8) between SNPs and
spectral features (1905 in the negative ionization mode and 3596 in the positive ionization
mode). Further analyses of lipid features and their isotopes reduced the analyses to 926 sig-
nificant associations, between 551 distinct SNP loci and apparently independent lipidome
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features (Figure 1) (Supplementary Table S2). Eventually, only 74 lipidome features showed
evidence of statistical association (q-value < 10−8) to a genetic locus in the cohort (25 in the
negative ionization mode and 49 in the positive ionization mode) (Table 3).
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Figure 1. Genome-wide association study of metabolomic features (mGWAS) in the study group.
Data are shown for metabolic features acquired in positive (A) and negative (B) ionization modes,
showing evidence of significant association (LOD > 8) with an SNP locus. Chromosomes are color-
coded on the circle. The colors of the lines indicate the chromosomal location of SNP loci showing
evidence of significant association with metabolic features, characterized by a mass-to-charge ratio
(horizontal axes). Details of genetic results are given in Supplementary Table S2.

Table 3. Genetic control of lipidomic signals mapped to the genome and proposed lipid assignments.
Lipidome data, acquired with a Q Exactive Hybrid Quadrupole-Orbitrap mass spectrometer fitted
with a Waters Acquity CSH C18 column, were tested for genetic association with genotyped SNPs
in the study group (n = 273). Features were characterized by their retention time (RT) and their
mass-to-charge ratio (m/z). Details of SNPs and statistical significance of lipidome features under
monogenic control are reported. Full list of genetically mapped LC–MS lipidomic features and
details and distinct SNP markers associated with lipid features under polygenic control are given in
Supplementary Table 2. Candidate lipids proposed for lipidome features were identified through the
LIPID MAPS Structure Database (https://www.lipidmaps.org, accessed on 4 June 2022). CAR, Acyl
carnitine; DG, Diacylglycerol; FA, Fatty acyl; FOH, Fatty alcohol; LPA, Lipophosphatydicacid; LPC,
Lysophosphatidylcholine; MG, Monoradylglycerol; NAE, N-acyl ethanolamine; PA, Phosphatidic
acid; PC, Phosphatidylcholine; PE, Phosphatidylethanolamine; PS, Phosphatidylserine; ST, Sterol
lipid; TG, Triacylgycerol; WE, Wax ester.

Positive-Ionization Mode
m/z RT Genetic Control Closest Marker Closest Gene Putative Lipid

204.123 37.098 Monogenic rs6992234 (c8) PSD3 CAR 2:0 (C9H17NO4)

277.216 67.495 Polygenic - FA 18:4 (C18H28O2), ST 18:1;O2
(C18H28O2), FA 18:3;O (C18H30O3)

279.232 66.953 Monogenic rs7759479 (c6) DST FA 17:4 (C17H26O2)

295.227 67.515 Polygenic - FA 18:3;O (C18H30O3), FA 18:2;O2
(C18H32O4)

303.232 72.294 Polygenic - FA 20:5 (C20H30O2), ST 20:2;O2
(C20H30O2), FA 20:4;O (C20H32O3)

305.247 74.887 Polygenic - FA 20:4 (C20H32O2), ST 20:1;O2
(C20H32O2),FA 20:3;O (C20H34O3)

319.226 66.276 Polygenic - FA 20:5;O (C20H30O3), FA 20:4;O2
(C20H32O4)

https://www.lipidmaps.org
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Table 3. Cont.

Positive-Ionization Mode
m/z RT Genetic Control Closest Marker Closest Gene Putative Lipid

343.224 71.225 Polygenic - FA 20:4;O (C20H32O3Na)

344.279 52.103 Monogenic rs6928180 (c6) GRIK2
CAR 12:0 (C19H37NO4), FA 19:2;O2

(C19H34O4), FOH 19:3;O3
(C19H34O4)

356.388 76.354 Polygenic - -

370.295 56.145 Monogenic rs6928180 (c6) GRIK2
CAR 14:1 (C21H39NO4), CAR 14:0;O

(C21H41NO5), FA 21:3;O2
(C21H36O4)

377.266 110.856 Monogenic rs1009439 (c6) RCAN2 FA 21:2;O2 (C21H38O4Na), MG 18:2
(C21H38O4Na)

379.282 145.907 Monogenic rs1009439 (c6) RCAN2
FA 21:1;O2 (C21H40O4Na), MG 18:1

(C21H40O4Na), WE 21:1;O2
(C21H40O4Na)

398.326 67.497 Monogenic rs6928180 (c6) GRIK2 -

400.342 82.533 Monogenic rs6928180 (c6) GRIK2 CAR 16:0 (C23H45NO4), FA 23:2;O2
(C23H42O4)

426.357 88.672 Monogenic rs6928180 (c6) GRIK2 CAR 18:1 (C25H47NO4), CAR 18:0;O
(C25H49NO5)

429.373 309.265 Polygenic - ST 29:2;O2 (C29H48O2), ST 29:1;O3
(C29H50O3)

431.352 314.575 Polygenic - ST 28:2;O3 (C28H46O3), ST 28:1;O4
(C28H48O4)

447.347 365.330 Polygenic - ST 28:2;O4 (C28H46O4), ST 28:1;O5
(C28H48O5)

448.391 309.387 Polygenic - -
469.365 309.438 Polygenic - ST 29:1;O3 (C29H50O3Na)

518.324 63.675 Polygenic - LPC 18:3 (C26H48NO7P), PC 18:1
(C26H50NO8P)

563.551 133.091 Polygenic - -
568.340 67.238 Monogenic rs12997234 (c2) DPP10 LPC 22:6 (C30H50NO7P)
590.321 67.252 Monogenic rs12997234 (c2) DPP10 LPC 22:6 (C30H50NO7PNa)

612.556 808.044 Monogenic rs11855528 (c15) CEMIP DG 34:1 (C37H70O5), DG 35:2
(C37H70O5)

646.031 58.383 Polygenic - -
662.025 62.334 Polygenic - -
712.645 897.105 Monogenic rs2002218 (c3) IQSEC1 TG 40:0 (C43H82O6)
738.660 898.395 Polygenic - TG 42:1 (C45H84O6)

756.553 408.519 Polygenic -

PC 34:3 (C42H78NO8P),PE 37:3
(C42H78NO8P), PS O-36:2
(C42H80NO9P), PA 39:4

(C42H75O8P)
758.560 408.446 Polygenic - -

758.569 457.168 Polygenic -

PC 34:2 (C42H80NO8P), PC 37:2
(C42H80NO8P), PS O-36:1
(C42H82NO9P), PA 39:3

(C42H77O8P)

766.574 442.363 Monogenic rs13362253 (c5) MSX2
PC O-36:5 (C44H80NO7P), PC 36:3

(C44H82NO8P), PE 39:3
(C44H82NO8P)

780.553 373.605 Monogenic rs2260930 (c20) SEL1L2

PC 36:5 (C44H78NO8P), PE 39:5
(C44H78NO8P), PC 36:4;O
(C44H80NO9P), PS O-38:4
(C44H80NO9P), PA 41:6

(C44H75O8P)
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Table 3. Cont.

Positive-Ionization Mode
m/z RT Genetic Control Closest Marker Closest Gene Putative Lipid

784.584 560.683 Polygenic -
PC 36:3 (C44H82NO8P), PE 39:3

(C44H82NO8P), PA 41:4
(C44H79O8P)

792.707 921.958 Polygenic - TG 46:2 (C49H90O6)
864.764 887.193 Polygenic - -
876.728 841.945 Polygenic - -
886.749 911.605 Polygenic - -
888.764 928.842 Polygenic - -
890.771 929.103 Polygenic - -
894.754 922.854 Polygenic - TG 54:7 (C57H96O6)
912.764 912.510 Polygenic - -
914.779 929.523 Polygenic - -
922.785 939.142 Monogenic rs2292329 (c16) NECAB2 TG 56:7 (C59H100O6)
932.864 1004.391 Monogenic rs11071737 (c15) RAB8B TG 56:2 (C59H110O6)
946.785 930.853 Polygenic - TG 58:9 (C61H100O6)
948.800 946.043 Polygenic - TG 58:8 (C61H102O6)

Negative-Ionization Mode
187.006 36.489 Polygenic - -
271.228 113.649 Polygenic - FA 16:0;O (C16H32O3)
293.213 64.408 Polygenic - FA 18:3;O (C18H30O3)
295.228 64.394 Monogenic rs7760515 (c6) DST FA 18:2;O (C18H32O3)
303.233 129.783 Polygenic - ST 20:1;O2 (C20H32O2)

311.223 64.059 Polygenic -

FA 18:2;O2 (C18H32O4), FA 17:2
(C17H30O2), WE 17:2 (C17H30O2),

WE 16:2 (C16H28O2), FA 16:2
(C16H28O2)

317.212 62.651 Monogenic rs7193436 (c16) MVD FA 20:5;O (C20H30O3), ST 19:2;O
(C19H28O)

319.228 70.158 Polygenic - FA 20:4;O (C20H32O3), ST 19:1;O
(C19H30O)

321.243 71.306 Polygenic - FA 20:3;O (C20H34O3), ST 19:0;O
(C19H32O)

327.233 118.705 Polygenic - FA 22:6 (C22H32O2)

343.228 65.947 Polygenic - FA 22:6;O (C22H32O3), ST 22:3;O3
(C22H32O3), ST 20:3;O (C20H28O)

345.244 68.352 Polygenic - ST 21:2;O (C21H32O), ST 20:2;O
(C20H30O)

409.236 80.634 Polygenic - LPA 16:0 (C19H39O7P)
433.236 68.781 Polygenic - LPA 18:2 (C21H39O7P)

437.291 60.227 Polygenic -

ST 24:1;O4 (C24H40O4),FA 23:4;O2
(C23H38O4),FOH 23:5;O3

(C23H38O4),MG 20:4 (C23H38O4),ST
23:1;O4 (C23H38O4)

446.377 287.415 Polygenic - NAE 24:0 (C26H53NO2), TG 55:5
(C58H102O6)

448.307 47.807 Polygenic - ST 24:1;O4;G (C26H43NO5)
457.236 66.170 Polygenic - ST 24:2;O6 (C24H38O6)
591.391 200.190 Polygenic - ST 27:2;O;Hex (C33H54O6)
605.406 223.252 Monogenic rs1487842 (c11) SYT9 ST 27:2;O;Hex (C33H54O6)

612.331 64.327 Monogenic rs12997234 (c2) DPP10 LPC 22:6 (C30H50NO7P),LPE 24:6
(C29H48NO7P)

804.567 435.379 Monogenic rs2655474 (c9) ELAVL2 PC O-36:3 (C44H84NO7P)

812.582 530.577 Polygenic -
PC O-36:4 (C44H82NO7P), PC O-35:4

(C43H80NO7P), PE O-38:4
(C43H80NO7P)

828.577 487.561 Polygenic - -
828.577 514.160 Polygenic - -
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Evidence of polygenic control was observed for 52 lipidome features (Table 3), as illustrated
with the compound detected, m/z: 277.22 (negative-ionization mode), which was controlled
by genetic loci in chromosomes 6 (rs7749100 in DST, q-value = 1.903 × 10−13), 13 (rs1410818,
q-value = 4.31 × 10−10) and 20 (rs11699738 in SOGA1, q-value = 4.75 × 10−9) (Figure 2,
Supplementary Table S2). Such strong polygenic regulations of lipid metabolism are further
illustrated in Figure 3A, with the associations of m/z 271.23, 345.24 and 828.58 (negative-
ionization mode), with multiple distinct genetic loci. The compound characterized by an
m/z of 345.24 was significantly associated with eight distinct genetic loci on chromosomes
2 (rs2005181 in BABAM2, q-value = 5.68 × 10−10), 4 (rs292037, q-value = 1.93 × 10−13 and
rs12500579 in ANK2, q-value = 4.24 × 10−9), 5 (rs10076673 in PITX1, q-value = 7.40 × 10−12), 6
(rs7749100 in DST, q-value = 3.11 × 10−10), 7 (rs2069827 in STEAP1B, q-value = 1.23 × 10−11), 9
(rs7037093, q-value = 2.59 × 10−12) and 13 (rs1410818, q-value = 1.38 × 10−14) (Figure 3A,
Supplementary Table S2).
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Figure 2. Manhattan plot illustrating the polygenic control of metabolic features. Genome-wide
association study was carried out with over 2.5 M imputed SNPs, for the metabolomic feature
characterized by a mass-to-charge ratio of 227.216 and a retention time of 67.49. Chromosomes are
color-coded. Evidence of significant associations (LOD >8) with this metabolic feature were found on
chromosomes 1, 5, 6, 13 and 20. The Y-axis corresponds to the significance of the association (−Log10
p-values). The X-axis represents the physical location of the variant colored by chromosome.

The remaining 22 lipidomic features exhibited evidence of monogenic control. For
example, several lipidomic signals acquired by the positive-ionization mode were con-
trolled by a single marker locus on chromosomes 2 (rs12997234 in DPP10 with m/z 568.340
and 590.3213), 3 (rs2002218 in IQSEC1 with m/z 712.645), 5 (rs13362253 in MSX2 with m/z
766.574), 6 (rs7759479 in DST with m/z 279.232, rs6928180 in GRIK2 with m/z 344.279,
370.295, 398.326, 400.342 and 426.357, rs1009439 in RCAN2 with m/z 377.266 and m/z
379.282), 8 (rs6992234 with m/z 204.123), 15 (rs11855528 in CMIP with m/z 612.556 and
rs11071737 in RAB8B with m/z 932.864), 16 (rs2292329 in NECAB2 with m/z 922.785) and
20 (rs2260930 in SEL1L2 with m/z 780.553) (Table 3).
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Figure 3. Architectural characteristics of genetic associations to metabolic features. Evidence of
polygenic control of metabolites (A) and potential pleiotropic effects of genetic loci on metabolite
abundance (B) were identified, following metabolomic analysis of serum samples of 273 individuals.
The colours of the lines indicate the chromosomal location of SNP loci showing evidence of significant
association (LOD > 8), with the abundance of a specific metabolic feature. Evidence of polygenic
control of the abundance of metabolic features was found for compounds characterized by mass-
to-charge ratios (horizontal axis) of 271.23 (red), 345.24 (blue) and 828.58 (purple) (A). Potential
pleiotropic effects were detected for SNP loci on chromosomes 6 (red lines) and 13 (blue lines),
significantly associated with metabolic features characterized by distinct mass-to-charge ratios on the
horizontal axis (B). Details of genetic results are given in Supplementary Table S2.

2.4. Genetic Analysis of Lipid Metabolism Uncovers Evidence of Pleiotropy

We identified 44 SNP loci that control two or more metabolic features, indicating
potential pleiotropic effects of genetic variants, as illustrated in Figure 3B, where closely
linked SNPs on chromosomes 6 and 13 are associated with a different m/z. For exam-
ple, the above-mentioned SNP rs6928180 in GRIK2 was associated with several lipidome
features under monogenic control (m/z 344.279, q-value = 1.89 × 10−23; m/z 370.295,
q-value = 1.14 × 10−32; m/z 398.326, q-value = 4.96 × 10−34; m/z 400.342,
q-value = 3.68 × 10−28; m/z 426.357, q-value = 7.38 × 10−18) suggesting a pleiotropic
effect of variants in GRIK2 on distinct but coordinately regulated lipids (Table 3). Along
the same line, marker rs12997234 on chromosome 2 in an intron of DPP10 was exclu-
sively associated with the monogenic control of m/z 568.34 (q-value = 1.73 × 10−11)
and m/z 590.32 (q-value = 2.93 × 10−17) in the positive-ionization mode and with m/z
612.33 (q-value = 1.46 × 10−9) in the negative-ionization mode (Table 3). The most strik-
ing example of pleiotropy was detected on chromosome 13 at the locus rs1410818 and
11 distinct m/z values (Supplementary Table S2).

2.5. Assignment of Lipids to Lipidomic Features Mapped to the Human Genome

We next carried out the identification of candidate lipids for each of the 74 features
showing evidence of genetic control. Using the LIPID MAPS database, we were able to
annotate 26 lipidome signals with a single lipid, including 10 which were controlled by a
single genetic locus (Table 3). Several lipid candidates could be proposed for the remaining
48 lipidome features, which prevented the unambiguous assignment of lipids. The vast
majority of assigned lipids were fatty acyls (27), sterol lipids (23), triacylgycerols (9) and,
to a lesser extent, a combination of phosphatidylcholines, phosphatidylethanolamine and
phosphatidylserines (20).
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2.6. Metabolome-Wide Association Studies Identify Metabolites Associated with Clinical and
Biochemical Phenotypes

To test for evidence of association between clinical and variations in biochemical
phenotypes and compounds from the lipidome dataset mapped to the human genome,
linear regression was performed. Results from associations with a nominal p < 0.05 are
given in Supplementary Table 3. Significant associations (q-value < 0.05) with multiple
metabolic features were detected for cardiometabolic disease (Table 4). Fewer significant
associations were identified for family history of hypertension (m/z 695.511 and 938.536)
and for variations in body-mass index (m/z 774.543, 833.588, 834.591 and 832.584), total
cholesterol (m/z 758.569 and 759.572) and HDL cholesterol (m/z 367.228 and 213.146)
(Figure 4, Table 4). Family history of diabetes also showed evidence of marginal association
to the feature m/z 695.511 (nominal p-value = 0.036) (Supplementary Table S3). Associations
to family history of hypertension and diabetes independent to association to the diseases
suggest that the underlying lipidomic feature may be a predictive marker of both diseases.
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Figure 4. Metabolome-wide association studies (MWAS) in patients with cardiometabolic syndrome.
Correlations were tested between clinical and biochemical phenotypes and serum metabolic features
characterized by a mass-to-charge ratio (m/z) shown on the x-axes. Data are shown for body-mass
index (A), family history of hypertension (B), total cholesterol (C) and HDL cholesterol (D,E). The
Y-axis corresponds to the adjusted false-discovery rate (FDR). Regression analysis was adjusted for
age and sex effects by including them as covariates in the model. pos, positive ionization mode; neg,
negative ionization mode.

We did not identify statistically significant associations to LDL cholesterol or triacyl-
glycerols. However, over 60 lipidomic features showed marginal evidence of co-association
(nominal p-value < 0.05) to both LDL and HDL cholesterol (e.g., m/z 129.98 and 171.99)
and five features (m/z 213.15, 367.23, 367.26, 369.27 and 722.50) were marginally associated
to triacylglycerols and total, HDL and LDL cholesterol (Supplementary Table S3). No
significant associations were found between spectral data and other phenotypes. We were
able to assign one or several putative lipids to 14 lipidome signals, including ST 27:2;O;Hex
and ST 28:1;O5, which were found to be regulated by multiple genetic loci (Table 4).
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Table 4. Significant associations between lipidomic features and clinical and biochemical phenotypes
in the study group. Lipidomic features were independently acquired in negative- and positive-
ionization modes in serum samples from a study group of 273 individuals. Linear regression was
used to compute a P-value statistic for each metabolic feature, which was corrected for multiple
testing using the Benjamini-Hochberg method to calculate adjusted p-values. Significant evidence of
association was obtained for cardiometabolic disease (CMD), family history (FH) of hypertension,
body-mass index (BMI) and total and HDL cholesterol. CMD was assessed by presence of at
least three anomalies (diabetes, hypertension, BMI > 30kg/m2, HDL < 40mg/dl). Results from
association analysis for all phenotypes that did not reach statistical significance following correction
for multiple testing (nominal p-value < 0.05) are shown in Supplementary Table S3. Mass-to-charge
ratio (m/z) and retention time (RT) are reported for each lipidome feature. Assignment of lipid
candidates for lipidome features was performed using LIPID MAPS (https://www.lipidmaps.org,
accessed 1 May 2022). CAR, Acyl carnitine; FA, Fatty acyl; CL, Cardiolipin; NAT, N-acyl amide; PE,
Phosphatidylethanolamine; PG, Phosphatidylglycerol; ST, Sterol lipid.

Ionization
Mode m/z RT P Adjusted P Correlation R

Squared
Adjusted R

Squared Putative Lipid

CMD Negative 317.059 48.745 6.19 × 10−9 6.09 × 10−6 0.105 0.125 0.115 -
Negative 319.056 48.759 7.97 × 10−9 6.09 × 10−6 0.061 0.123 0.113 -

Negative 386.237 59.845 6.06 × 10−8 3.09 × 10−5 0.058 0.112 0.102 NAT 18:2
(C20H37NO4S)

Negative 466.308 161.781 8.74 × 10−7 2.74 × 10−4 0.059 0.102 0.092 CAR 18:3
(C25H43NO4)

Negative 465.305 162.010 1.02 × 10−6 2.74 × 10−4 0.053 0.103 0.093 ST 27:1;O;S
(C27H46O4S)

Negative 497.122 48.707 1.07 × 10−6 2.74 × 10−4 0.133 0.093 0.083 -
Negative 231.021 48.730 7.22 × 10−6 0.002 0.015 0.080 0.070 FA 7:4;O4 (C7H6O6)
Negative 233.018 48.759 8.94 × 10−6 0.002 0.150 0.079 0.068 -
Negative 313.239 115.077 1.44 × 10−5 0.002 0.127 0.084 0.073 -

Negative 463.344 138.712 9.16 × 10−5 0.014 0.016 0.057 0.046

ST 28:1;O5
(C28H48O5),ST

27:1;O3
(C27H46O3),ST

26:1;O3 (C26H44O3)
Negative 551.359 180.907 2.40 × 10−4 0.033 0.140 0.071 0.061 -

Negative 591.391 200.190 2.85 × 10−4 0.036 0.127 0.056 0.046 ST 27:2;O;He ×
(C33H54O6)

Negative 592.394 200.009 3.79 × 10−4 0.043 0.124 0.055 0.045 PE 25:0
(C30H60NO8P)

Negative 607.386 200.303 3.91 × 10−4 0.043 0.114 0.047 0.036 ST 27:1;O;GlcA
(C33H54O7)

FH
Hypertension Negative 695.511 336.990 7.62 × 10−6 0.012 0.029 0.093 0.083 -

Negative 938.536 440.693 3.61 × 10−5 0.028 0.104 0.068 0.058 -
BMI Positive 774.543 527.985 1.80 × 10−5 0.027 0.182 0.091 0.081 -

Positive 833.588 430.188 5.81 × 10−5 0.037 0.174 0.070 0.060 PG 40:4
(C46H83O10PLi)

Positive 834.591 429.747 9.24 × 10−5 0.037 0.169 0.068 0.057 Hex 2Cer 32:1;O2
(C44H83NO13)

Positive 832.584 429.512 9.85 × 10−5 0.037 0.161 0.064 0.053

PC 40:7
(C48H82NO8P), PS

O-42:6
(C48H84NO9P)

Total
Cholesterol Positive 758.569 457.168 1.26 × 10−6 0.002 −0.012 0.085 0.075 -

Positive 759.572 457.370 2.35 × 10−6 0.002 0.022 0.084 0.074 CL 76:2
(C85H162O17P2)

HDL
Cholesterol Negative 367.228 84.969 2.44 × 10−5 0.037 0.010 0.078 0.068 ST 24:5;O3

(C24H32O3)

Positive 213.146 49.562 5.72 × 10−6 0.008 0.013 0.091 0.081
FA 13:4

(C13H18O2Li),WE
13:4 (C13H18O2Li)

3. Discussion

We report results from the genome mapping of untargeted serum lipidomics in a
group of individuals characterized for pathophysiological features of the cardiometabolic
syndrome. We identified evidence of strong polygenic control of lipid features and instances
of mechanisms of pleiotropy in the regulation of lipid metabolism. These observations
illustrate the complex genetic architecture of serum lipid regulation and provide novel
information beyond the genetic control of cholesterol metabolism.

https://www.lipidmaps.org
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Both proton nuclear magnetic resonance (1H NMR) and mass spectrometry (MS)
have been successfully used to map the genetic control of predominantly serum metabo-
lites in genome-wide association studies (GWAS) in humans [17]. Collectively, over
1800 metabolomic data (i.e., known and unknown metabolites and ratios) have been
associated with over 40,000 unique SNPs [18]. Among these, MS-lipidomic data provide
significant advances in our understanding of the etiopathogenesis of diseases characterized
by anomalies in lipid metabolism [19]. Untargeted lipidomics, a hypothesis-free strategy
that has the power of deepening quantitative lipid analyses to unassigned lipids, remains
challenging due to the breadth and intrinsic complexity of known lipids, which differ in
terms of physicochemical properties [13,20]. As a consequence, harmonization of sample
preparation for such a heterogeneous group of molecules is a problematic issue that lim-
its detection and quantification of the broad diversity of lipid species [21]. In addition,
variations in MS-instrument stability affect repeatability within and between experiments.
Finally, the unambiguous assignment of putative lipids to MS-spectral signals remains an
important methodological consideration in the application of untargeted MS lipidomics
in GWAS.

Polygenic control is a hallmark of GWAS of human chronic diseases and complex
phenotypes, and the genetic regulation of metabolomic profiling data does not make any
exceptions [22–24]. We show that serum-lipid abundance exhibits predominant polygenic
control, when a single metabolite is associated with several unlinked SNPs. Results from
lipidomic GWAS have shown that about 30% of lipids are associated with several genetic
loci [16]. Specifically, loci on chromosomes 2 and 4 control triglyceride TAG(50:1;0), loci
on chromosomes 8 and 11 are associated with triglyceride TAG(52:3;0) and loci on chro-
mosomes 12 and 18 control lysophosphatidylcholine LPC(14:0;0) [15]. This pattern of
polygenic control suggests either functional redundancy of proteins in the regulation of
lipid metabolic pathways, or the involvement of distinct proteins each contributing in
parallel or in concert to interconnected mechanisms of lipid sensing, synthesis, transport
and degradation.

Our association results also suggest apparent pleiotropy when a single genetic locus
controls multiple, different lipidomic features. It is expected to occur in metabolic pro-
cesses, since altered regulation of an individual protein involved in an enzymatic reaction
or metabolite binding or transport may result in changes in interconnected biological
pathways affecting multiple metabolites. An excess of distinct lipid species associated
with genomic regions in lipidomic GWAS suggests the widespread occurrence of this
phenomenon in the regulation of lipid metabolism [15,23,24]. Harshfield et al. reported
the genetic mapping of 181 lipids to only 24 genomic regions [16], and Tabassum et al.
identified associations to 42 lipid species in 11 genomic regions [15], thus implying that
one genomic region is associated with several lipids. One of the most striking examples of
pleiotropy in lipidomic GWAS is the GCKR locus, which is associated with over 30 lipid
species [25]. The eicosanoid metabolic network, which involves 28 proteins for the pro-
duction of over 150 lipids, provides a further example of pleiotropy in the regulation of
lipid biology [26]. These coordinately regulated lipid clusters suggest the existence of
genetically-determined “lipidotypes”.

Combined with clinical data, lipidomic-based phenotyping allows the definition of
disease-associated biomarkers as well as druggable-metabolite targets. Integrating geno-
typing data can identify instances of co-localization of disease-risk SNPs and loci associated
with metabolomic features, which may represent disease-causative molecular biomark-
ers [15,16,27]. With the exception of SEL1L2 and SYT9, gene loci showing evidence of
monogenic control of lipids in our study have been associated with disease-relevant pheno-
types (e.g., body mass index), biochemical variables (e.g., creatinine) and behavioral traits
in the GWAS repository (www.ebi.ac.uk/gwas/, accessed on 1 May 2022). Interestingly,
multiple SNPs, the locus of the gene encoding pleckstrin and the Sec7 domain containing
3 (PSD3), which controls the level of a carnitine in our study, have been consistently associ-
ated with triglycerides and cholesterol levels as well as type 2 diabetes and obesity [28],

www.ebi.ac.uk/gwas/


Metabolites 2022, 12, 596 12 of 16

and their downregulation results in reduced hepatic lipids in vitro and protects against
fatty liver in vivo in mice [29].

Considering the breadth of circulating lipid species [7,21] and their roles in cardio-
vascular diseases [19], we were able to map the genetic control of several lipid species,
mostly fatty acyls, phospholipids and triglycerides. On the other hand, we were unable to
identify genetic loci associated with several important lipid species, including, for example,
sphingomyelins and ceramides, which are involved in cardiovascular risk [9,30]. This may
be caused by technical issues with data acquisition and the relatively modest sample size
of the study but may also be accounted for by specific clinical features of the individuals
selected in our study. Absence of coronary-artery stenosis in these individuals suggests
reduced cardiovascular risk and, therefore, potentially limited quantitative variations in
blood ceramides in cases and controls that may prevent genetic mapping. In support of
this hypothesis, we did not identify statistically significant associations between lipidomic
features and hypertension, which might nevertheless be improved with the use of inter-
mediate, quantitative phenotypes, including measures of blood pressure. In addition, the
fact that CMD patients may be under various medications, including lipid-lowering drugs
(statins) or anti-diabetic treatments that result in improved control of blood pressure [31],
may explain the absence of statistically significant associations between lipidomic features
and hypertension in our study. However, our results suggest a role of lipids in the family
history of hypertension, which may represent disease-predictive markers.

4. Materials and Methods
4.1. Study Subjects

The study group consisted of 273 subjects selected from a larger study recruited
between 2006 and 2009 for inclusion in the FGENTCARD patient collection, primarily
designed to map the genetic determinants of coronary artery stenosis [32]. Individuals
from the FGENTCARD cohort were originally referred to a catheterization care unit for
clinical evaluation. A 20 mL blood sample was collected in overnight fasted individuals
from the peripheral femoral artery during the coronary angiography for serum preparation.
Patients provided a written consent for the whole study including genomic analyses.
The Institutional Review Board (IRB) at the Lebanese American University approved the
study protocol.

Body weight, body-mass index (BMI) and blood chemistry (total, HDL and LDL choles-
terol, triglycerides) were determined. Evidence of diabetes (fasting glucose > 125 mg/dl),
hypertension (blood pressure > 10/14 mm Hg) and obesity (BMI > 30) was recorded in
individuals’ medical charts. Evidence of cardiometabolic disease (CMD) was assessed
by presence of at least three anomalies (diabetes, hypertension, BMI > 30 kg/m2 and
HDL < 40 mg/dl). All 273 individuals selected for this genetic study were devoid of vessel
stenosis, assessed through coronary angiography carried out at a single recruitment site.
Family history of diabetes and hypertension, defined by presence of the disease in a sibling,
parent or second-degree relative, was also recorded.

Statistical analysis of clinical and biochemical data was performed using two-way
ANOVA. Differences were considered statistically significant with a p < 0.05.

4.2. Chemicals

Isopropanol, acetonitrile, formic acid and ammonium formate were LC–MS Chromasolv®

Fluka and high-performance liquid chromatography (HPLC) quality and were purchased
from Sigma-Aldrich (Sigma-Aldrich, Saint-Quentin Fallavier, France). Ultra-pure water
(resistivity: 18 mΩ) was obtained with a Milli-Q Integral purification system (Millipore,
Molsheim, France) fitted with a 0.22 µm filter. The mobile phase was prepared with a
solvent containing 400 mL of water, 600 mL of acetonitrile, 0.1% formic acid and 0.630 g of
ammonium formate, and a solvent containing 100 mL of acetonitrile, 900 mL of isopropanol,
0.1% formic acid and 0.630 g of ammonium formate.
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4.3. Sample Preparation

Lipid extraction from serum was performed using isopropanol (1:6, v/v), as recom-
mended by the MS-equipment supplier, which is the most robust solvent enabling a broad
coverage and recovery of lipid species from serum [33]. Experiments were carried out with
50 µL serum aliquots. Samples were then centrifuged at 14,000 g, and supernatants were
then transferred to vials for injection in the UPLC system.

4.4. UPLC analysis

A Waters Acquity UPLC® (Waters Corp, Saint-Quentin en Yvelines, France) fitted with
a Acquity CSH C18 column (2.1 × 150 mm, 1.7 µm) and a corresponding guard column
(Acquity CSH 1.7µM) (Waters Corp, Saint-Quentin en Yvelines, France) were used to anal-
yse lipid compounds in serum samples as previously described [34]. The oven temperature
was set at 55 ◦C. The flow rate used for these experiments was 400 µL/min and a volume
of 5 µL of sample was injected. The total run time was 24 min. A binary gradient consisted
of above-described mobile phases was used according to Waters’ recommendation. Mobile
phase B was maintained at 99% during 4 min at the end of the gradient.

4.5. Mass Spectrometry

Mass spectrometry was carried out as previously [34]. The UPLC system was coupled
with a Q-Exactive™ Hybrid Quadrupole-Orbitrap mass spectrometer (Thermo Fisher Sci-
entific, Illkirch, France). Infusion of a calibration mixture (caffeine, MRFA and Ultramark®

1621) was used for calibration of the instrument. Parameters of the heated-electrospray
(HESI-II, Thermo Fisher Scientific, Illkirch, France) interface were as follows: S-Lens 50 V,
Sheat gas: 65, Auxiliary gas: 25 arbitrary units, capillary voltage 3 kV, capillary temperature
350 ◦C and vaporization temperature 60 ◦C. The maximum target capacity of the C-trap
(autogain control, AGC) target was defined as 3e6 ions and the maximum injection time
was 200 ms. Full scans were obtained in positive and negative ion modes simultaneously
with a resolution of 70,000 full width at half maximum (FWHM), in the scan range of
mass-to-charge ratio (m/z) of 85–1275.

4.6. Untargeted Lipidomic Data Analysis

Analysis of MS data derived from UPLC complied with standard protocols and food
and drug administration (FDA) guidelines [35,36], as previously described (34). XCMS tools
implemented in R statistical language (v 3.1.0) (http://www.bioconductor.org, accessed
on 10 May 2020) were used for preprocessing steps of MS data analysis (peak picking,
peak grouping, retention-time correction, annotation of isotopes and adducts). Profiles
of positive and negative ionization modes were separately extracted and converted into
mzXML format for preprocessing by the XCMS tools. Identification of Regions of Interest
(ROI) used the wavelet-based peak-picking approach (centwave). MS-data preprocessing
resulted in a peak table listing lipidomic features characterized by a retention time (RT),
mass-to-charge ratio (m/z) and corresponding intensity for each serum sample.

A data matrix reduction was applied to retain spectral features consistently found in
the individuals. Over 40% of missing values were withdrawn. Performance and reliability
of the analytical process and compliance of data with FDA-acceptance criteria [37] were also
verified through a quality assurance (QA) strategy, based on analysis of a pooled quality-
control (QC) sample, which was injected every 10 samples throughout the analytical run.
Median fold-change-normalization approach [38] was applied on the retained MS features,
followed by a generalized log-transformation. A threshold of 30% calculated for each
metabolic feature in the QC samples was set for relative standard deviation (RSD), which is
an accepted standard to assess data reproducibility in metabolomic studies [35,36]. Four
samples were identified as outliers and were discarded from the study. The resulting matrix
was then used for multivariate and univariate statistical analyses (principal component
analysis and linear regression).

http://www.bioconductor.org
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4.7. Metabolome-Genome Wide Association Studies (mGWAS)

All individuals were genotyped by Illumina Human610-Quad BeadChip and Illu-
mina Human660W-Quad BeadChip, respectively (552,510 overlapping SNPs), as part of
the FGENTCARD consortium [32]. All SNPs with over 98% genotyping success rate, mi-
nor allele frequency above 1% and in Hardy-Weinberg equilibrium (p-value > 1 × 10−7)
were included in the analysis. An imputation across the whole genome to CEU HapMap
population as a reference was performed using the IMPUTE2 tool [39], which yielded
2,573,690 SNPs. The plink tool [40] was used to perform both association analyses based on
an additive genetic model. An FDR adjusted p-value (q-value) < 1 × 10−8 was considered
to be significant genome-wide. Plotting circles were generated using an in-house tool
specifically developed to illustrate mGWAS associations.

4.8. Metabolome-Wide Association Studies (MWAS)

A linear-regression model was applied to carry out MWAS through the assessment
of association, between each metabolic feature with clinical and biochemical continuous
phenotypes (total, HDL and LDL cholesterol, triglycerides). Normality assumption of
the residuals of each metabolic feature was investigated by Shapiro–Wilk test. The R
statistical language was used to perform the linear regression and compute a p-value for
each metabolic feature with a threshold of significance set to 0.05. Adjustment for age and
sex was performed by including them as covariates in the statistical model. False discovery
rates (FDR) were corrected using the Benjamini-Hochberg method to adjust P-values for
false discovery involving multiple comparisons.

4.9. Assignment of Lipid Features

Annotation of lipid candidates corresponding to lipidome signals was carried out
using the free resource LIPID MAPS (https://www.lipidmaps.org, accessed on 1 May 2022).
We initially performed bulk-structure searches and subsequently refined our analysis by
interrogating the LIPID MAPS Structure Database (LMSD) with a list of precursor ions. We
entered the list of precursor ion m/z and chose appropriate polarity for the adduct ions. We
defined a mass tolerance of ±0.001 m/z and sorted our data according to the delta between
the input m/z and the m/z of candidate proposed in the database.

5. Conclusions

Results from our untargeted-lipidomic profiling provide information on fundamental
mechanisms regulating serum lipids in humans. Replication of these findings in larger
study populations and further analyses, such as MS/MS validation experiments designed
to unambiguously assign lipids to lipidomic features, are required.
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