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Abstract: Candida albicans, an opportunistic fungus, causes dental caries and contributes to mucosal
bacterial dysbiosis leading to a second infection. Furthermore, C. albicans forms biofilms that are
resistant to medicinal treatment. To make matters worse, antifungal resistance has spread (albeit
slowly) in this species. Thus, it has been imperative to develop novel, antifungal drug compounds.
Herein, a peptide was engineered with the sequence of RRFSFWFSFRR-NH2; this was named P19.
This novel peptide has been observed to exert disruptive effects on fungal cell membrane physiology.
Our results showed that P19 displayed high binding affinity to lipopolysaccharides (LPS), lipoteichoic
acids (LTA) and the plasma membrane phosphatidylinositol (PI), phosphatidylserine (PS), cardiolipin,
and phosphatidylglycerol (PG), further indicating that the molecular mechanism of P19 was not
associated with the receptor recognition, but rather related to competitive interaction with the plasma
membrane. In addition, compared with fluconazole and amphotericin B, P19 has been shown to have
a lower potential for resistance selection than established antifungal agents.

Keywords: Tryptophan center symmetrical short peptide; fungus-targeted activity and biofilm
inhibition; low drug resistance and side-effects

1. Introduction

Approximately 25% (about 1.7 billion) of the worldwide population at any one time
suffers from superficial fungal infections of skin, and nails [1], and an unprecedented
rise in the rate of emergence of antifungal-resistant strains has been observed. Hence,
C. albicans cgmcc 2.2086 compromises fecal microbiota transplantation (FMT), which is
effective in treating recurrent Clostridioides difficile infection (CDI) [2]. Furthermore, C.
albicans was also confirmed to promote tooth decay by altering microbial ecology [3].
However, antifungal resistance generates less public attention than viral and bacterial
infections [4,5]. Indeed, compared to other pathogens, the eukaryotic-like nature of fungal
cells, which possess substantial similarities to human cells has limited the scope of fungi-
specific drug discovery and development [6]. Additionally, the current broad-spectrum
antifungal drugs which may destroy common microbes and allow unwanted microbes to
flourish even if they show low toxicity to human cells results in a change of balance in
the microbes of areas of the body such as the vagina, intestine and mouth, and leading to
adverse clinical consequences [7]. New therapeutic options with low resistance potential
and discriminatory efficacy to control emerging fungal infections are a priority to resolve
these problems.

A group of small antimicrobial peptides (AMPs) with multiple functions, including
wound healing, antibacterial activity, anti-biofilm, and anti-cancer activity with modifica-
tions of their primary sequences [8–12], have recently shown great promise as antifungal
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agents. In addition, they kill pathogens through non-specific membrane permeabilization,
which displayed a low propensity to induce resistance [13,14], therefore representing an
attractive candidate as medical coatings and therapeutic drugs [15,16]. Biofilms generated
by pathogenic bacteria and some eukaryotes like C. albicans are hardy and difficult to
remove [17]. These growth formations are made of organisms typically fastened onto
tissue surfaces via a variety of adhesins. Biofilms are also characterized by a wide range of
biomolecules that render them resistant to antimicrobial agents. However, many AMPs
have come to show promise as antimicrobial agents, particularly against C. albicans, which
has been implicated as a widespread pathogen in human dental caries. Previous stud-
ies have reported that their rapid mode of action, unlike conventional antifungal drugs
that may target fungal sterols or enzyme receptor sites, can potentially reduce treatment
duration, making AMPs excellent antifungal drug candidates [18]. In addition, some
reports have indicated that screening antimicrobial peptides libraries presents a perfect
opportunity for uncovering novel potent and selective targeting motifs for a specific tar-
get [19–21]. This study implemented a search of sequences filtered from the Antimicrobial
Peptide Database (APD). Derived and synthetical peptides were eliminated from this search
(http://aps.unmc.edu/AP/) (Schedule 1). As the main active parameter, the hydrophobic
residues Leu (L), Phe (F), and Ile (I), which occurred more frequently in antifungal peptides,
were chosen as the primary components of novel antifungal short peptide candidates for
testing. Additionally, our previous researches have shown that central-symmetric α-helix
sequence contributed to improving activity and selectivity [22,23]. Therefore, sequences
distributed into that short central-symmetric α-helical template (++ hyh W hyh ++), (h,
hydrophobic amino acid; +, cationic amino acid; y, basic amino acid) were regarded as
potential targeted antibiotic alternatives, which not only decrease the production cost with
short sequences but also reduce the likelihood of drug resistance section with possible
non-receptor site via a membrane permeabilization mechanism. Hydrophilic residues
Ala(A), Cys(C), Ser(S), which occur more frequently in antifungal peptides, were chosen
to modify the whole hydrophobicity of the sequences. Finally, five short peptides with
being amidated at their C-terminus were synthesized and evaluated here (Scheme 1). The
minimum inhibitory concentrations of peptides against bacteria and fungi were first as-
sessed to confirm the spectrum of antibacterial activity. Time-killing, bacterial survival
counts, human erythrocyte cytotoxicity, human embryonic kidney 293T cells, and pig
kidney cells were also assessed to demonstrate the antimicrobial rate cell selectivity. In
addition, salt, acid sensitivity assays, and drug resistance of peptide candidates against
fungi were tested to indicate antimicrobial activity in various conditions. Fluorescent spec-
trography, whole-cell ELISA, protein-lipid overlay assays, scanning electron microscopy
(SEM), transmission electron microscopy (TEM), and confocal laser scanning microscopy
(CLSM) assays were employed to investigate the membrane-disruption mechanism of
the potential peptides synthesized in our study. The overall objective of this study was
to facilitate the development of peptide-based specific agents capable of permeabilizing
plasma membranes of target fungal cell lines.

http://aps.unmc.edu/AP/
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Scheme 1. Comparison of the amino acid distribution of peptides against bacteria and fungi (A); Helical wheel projections
of the five peptides (B); General schematic of P19 (C); Three-dimensional structure projections of the potential central-
symmetric peptide (D).

2. Results

The Matrix-Assisted Laser Desorption/Ionization Time of Flight Mass Spectrometry
(MALDI-TOF MS) (Figure 1) and Reverse-Phase High-Performance Liquid Chromatog-
raphy (RP-HPLC) results suggested that all the peptides were successfully synthesized,
with their measured molecular weights being close to the theoretical molecular weights
(Table 1) and the purities of the peptides were more than 95% (Figure 2).

Table 1. Peptide design and their key physicochemical parameters.

Peptide Sequence Theoretical
MW

Measured
MW Net Charge H a µHrel b

P1 RRLALWLALRR-NH2 1422.79 1422.6 5 0.512 0.201
P2 RRLSLWLSLRR-NH2 1454.79 1454.6 5 0.448 0.262
P3 RRLCLWLCLRR-NH2 1486.92 1486.6 5 0.735 0.014

P17 RRISIWISIRR-NH2 1454.79 1454.8 5 0.485 0.267
P19 RRFSFWFSFRR-NH2 1590.86 1590.8 5 0.481 0.266

a H represents hydrophobicity. b µHrel represents the hydrophobic moment.
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Figure 2. Reverse-Phase High-Performance Liquid Chromatography of the designed peptides.

2.1. Antimicrobial Activity

The antimicrobial activities of the peptides and control antifungals against Gram-
negative bacteria, Gram-positive bacteria and fungi are shown in Tables 2 and 3. To
confirm the potential of fungal antibiotic replacement, amphotericin B and fluconazole
antimicrobial experimental groups were also tested simultaneously. It was suggested that
all of these five designed peptides composed of APD-filtered amino acids were effective
on fungi cells. As shown in Table 2, P17 and P19 exhibited antimicrobial specificity and
efficiency with 1–4 µM MIC value against tested fungi, including fluconazole-resistant C.
albicans 56214, while with higher MIC value against tested bacteria. But P17 still showed
some antibacterial activates, including the probiotic L. rhamnosus 1.0385 at slightly above
antifungal MIC values. Thus, P19 was chosen as an ideal peptide to analyze further.

Table 2. The MICs of the peptides against bacteria.

Peptides
MICs a (µM)

E. coli
25922

E. coli
UB1005

S. aureus
29213

S. aureus
25923

L. rhamnosus
1.0385

L. plantarum
7469

L. rhamnosus
1.0911

S. thermophilus
YM-C

P1 4 2 8 8 8 >128 64 128
P2 4 2 4 16 8 128 8 >128
P3 4 2 8 8 >128 128 128 >128
P17 128 16 128 128 8 >128 32 >128
P19 128 128 128 >128 >128 >128 >128 >128

Melittin 2 2 2 2 >128 >128 >128 >128
Amphotericin B >128 >128 >128 >128 >128 >128 >128 >128

Fluconazole >128 >128 >128 >128 >128 >128 >128 >128
a Minimum inhibitory concentration (MIC, µM) was determined as the lowest concentration of peptide that inhibited 95% of the bacterial
growth. Data were representative of three independent experiments.
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Table 3. The MICs of the peptides against fungi.

Peptides

MICs (µM)

C. albicans
cgmcc
2.2086

C. tropicalis
cgmcc
2.1975

C. parapsilosis
cgmcc
2.3989

C. albicans
SP3902

C. albicans
SP3903

C. albicans
SP3937

C. albicans
56214

C. albicans
Isolated from

Alveolar Fluid

P1 8 2 8 32 16 16 16 8
P2 4 2 8 16 16 8 8 8
P3 8 4 16 16 16 16 16 16
P17 4 1 1 4 2 4 4 8
P19 2 2 2 4 2 4 4 4

Melittin 4 2 2 4 2 4 2 4
Amphotericin B 1 1 2 0.5 0.5 0.5 1 1

Fluconazole 1 4 4 16 32 16 >128 2

2.2. Structure Variability of the Peptides

CD spectroscopy was employed to determine the secondary structures of the peptides
in mimicking physiological environment (PBS) and mimicking the microbial membrane
environment (sodium lauryl sulfate (SDS) and trifluoroethanol (TFE). The spectra of the
peptides in 10 mM PBS, 50% TFE and 30 mM SDS were shown in Figure 3. In the mimicking
membrane environment, P1, P2, and P3 showed α-helical structure, with CD spectra show-
ing minimum peaks at 208 nm and 220 nm. In contrast, in the physiological environment,
P1, P2, P3 tended to unordered conformations with a minimum peak at approximately
198 nm. P17 showed β-sheet structure, with CD spectra showing a minimum peak in the
200–220 nm range, and a positive peak in the 195–200 nm range in the different mimicking
environments. P19 showed β-sheet structure with CD spectra showing a minimum peak
in the approximately 210 nm range. A positive peak in the minimum 198 nm mimicking
membrane environment, while P19 showed unordered conformation in the physiological
environment.

Int. J. Mol. Sci. 2021, 22, x FOR PEER REVIEW 6 of 20 
 

 

Table 3. The MICs of the peptides against fungi. 118 

Peptides 

   MICs (µM)    
C. albicans 

cgmcc  
2.2086 

C. tropicalis 
cgmcc  
2.1975  

C. parapsilosis 
cgmcc  
2.3989  

C. albicans 
SP3902  

C. albicans 
SP3903  

C. albicans 
SP3937  

C. albicans 
56214  

C. albicans  
isolated from 
alveolar fluid 

P1  8  2  8  32  16  16  16  8  
P2  4  2  8  16  16  8  8  8  
P3  8  4  16  16  16  16  16  16  

P17  4  1  1  4  2  4  4  8  
P19  2  2  2  4  2  4  4  4  

Melittin  4  2  2  4  2  4  2  4  
Amphotericin B 1  1  2  0.5  0.5  0.5  1  1  

Fluconazole  1  4  4  16  32  16  >128  2  

2.2. Structure Variability of the Peptides 119 
CD spectroscopy was employed to determine the secondary structures of the pep- 120 

tides in mimicking physiological environment (PBS) and mimicking the microbial mem- 121 
brane environment (sodium lauryl sulfate (SDS) and trifluoroethanol (TFE). The spectra 122 
of the peptides in 10 mM PBS, 50% TFE and 30 mM SDS were shown in Figure 3. In the 123 
mimicking membrane environment, P1, P2, and P3 showed α-helical structure, with CD 124 
spectra showing minimum peaks at 208 nm and 220 nm. In contrast, in the physiological 125 
environment, P1, P2, P3 tended to unordered conformations with a minimum peak at ap- 126 
proximately 198 nm. P17 showed β-sheet structure, with CD spectra showing a minimum 127 
peak in the 200–220 nm range, and a positive peak in the 195–200 nm range in the different 128 
mimicking environments. P19 showed β-sheet structure with CD spectra showing a min- 129 
imum peak in the approximately 210 nm range. A positive peak in the minimum 198 nm 130 
mimicking membrane environment, while P19 showed unordered conformation in the 131 
physiological environment. 132 

 133 
Figure 3. The CD spectra of the peptides. The peptides were dissolved in 10 mM sodium phosphate buffer (pH 7.4), 50% 134 
trifluoroethanol (TFE) and 30 mM sodium lauryl sulfate (SDS). The mean residue ellipticity was plotted against the wave- 135 
length. The values from the three scans were averaged per sample, and the peptide concentrations were fixed at 150 μM. 136 

Time killing curve and fractional cell survival were employed to measure fraction of 137 
cell survival of C. albicans cgmcc 2.2086 upon treatment at the ½ MIC, MIC, and 2 MIC 138 
levels of peptides at various exposure times determine the sterilization speed of P19. Fig- 139 
ure 4a showed that P19 killed C. albicans cgmcc 2.2086 in 60 s and less than 5 s at MIC 140 

Figure 3. The CD spectra of the peptides. The peptides were dissolved in 10 mM sodium phosphate buffer (pH 7.4),
50% trifluoroethanol (TFE) and 30 mM sodium lauryl sulfate (SDS). The mean residue ellipticity was plotted against the
wavelength. The values from the three scans were averaged per sample, and the peptide concentrations were fixed at
150 µM.

Time killing curve and fractional cell survival were employed to measure fraction of
cell survival of C. albicans cgmcc 2.2086 upon treatment at the 1/2 MIC, MIC, and 2 MIC
levels of peptides at various exposure times determine the sterilization speed of P19.
Figure 4a showed that P19 killed C. albicans cgmcc 2.2086 in 60 s and less than 5 s at MIC
values and 2 MIC values, respectively. One hour or more was required to eliminate 90% C.
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albicans cgmcc 2.2086 at the 1/2 MIC level, suggesting that the killing rate of P19 was tightly
correlated with concentration.
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Figure 4. Time killing curve and fractional cell survival treated with potential peptide (a); The fractional cell survival of
bacteria and fungi treated with potential peptide (b).

The fractional survival rates of cells treated with P19 at 2 MIC values of E. coli.
ATCC 25922, S. aureus ATCC 29213, L. rhamnosus 1.0385 and C. albicans cgmcc 2.2086

were measured to confirm the inhibited effect on the growth of bacteria and fungi. Figure 4b
showed that P19 caused some inhibition on the growth of E. coli ATCC 25922, S. aureus
ATCC 29213 and L. rhamnosus 1.0385, while it induced much higher inhibitory levels against
C. albicans cgmcc 2.2086.

Biofilms formed by C. albicans are generally significantly more resistant to antimi-
crobial treatment than living cells and are thus harder to eradicate. Here, the activity of
P19 against biofilms was tested. Results indicated that P19 could induce obvious biofilm
eradication (60%) at 4 MIC levels (Figure 5) and it caused a similar level of antimicrobial
activity against C. albicans biofilms with amphotericin B at 16 MIC value.
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2.3. Biocompatibility of the Peptides

Biocompatibility of the designed peptides, which is a prerequisite for clinical appli-
cation, was investigated. To demonstrated the toxic effects of peptides on normal cells,
human red blood cells cytotoxicity was tested on kidney 293T cells and pig kidneysfrom
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the same lines (Figure 6). The activities of all designed peptides against fresh, healthy
human erythrocytes, human embryonic kidney 293T and pig kidney PK cells were shown
as Figure 6. All the designed peptides induced less than 5% hemolysis at their MIC values,
especially for P19, which showed less than 5% hemolysis even at the highest tested concen-
tration. The peptide cytotoxicity against 293T cells and PK cells also confirmed that the cell
viabilities after exposure to these peptides remained 80% or greater even at their highest
tested concentrations. The tissue cell lines treated with P19 retained viabilities of 100% at
most of the concentrations tested.
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2.4. Sensitivity upon Salt and Acid Condition

The susceptibility of bioactive agents to the physiological environment was another
significant effect that could prevent them from achieving clinical application. Thus, the
antimicrobial activity of the potential peptide P19 against C. albicans cgmcc 2.2086 in the
presence of physiological concentrations of different salts or acidic environments was
further evaluated (Table 4). The result showed that P19 retained its MIC values at 4 µM in
the presence of most salts, except for Na+ and Ca2+, which increased MIC values to 32 µM.
Additionally, P19 showed compromised activity with MIC of 4 µM in acidic conditions.

Table 4. The MIC values of the peptides against C.albicans cgmcc 2.2086 in the presence of physiological salts and acid
environment.

Peptide Control NaCl KCl MgCl2 NH4Cl ZnCl2 FeCl3 pH = 6

P19 2 32 4 4 4 4 4 4
Melittin 4 8 4 8 4 4 4 4

Fluconazole 1 2 1 1 1 1 1 1
Amphotericin B 1 2 1 1 1 1 1 1

2.5. Drug-Resistance

The potential development of drug resistance to C. albicans cgmcc 2.2086 induced
by P19 and antifungals was tested using repeated assays in the presence of sub-MICs
of the antimicrobial agent. Figure 7 showed that a 20-passage repeating treatment with
fluconazole or amphotericin B at sub-lethal concentration resulted in a 1024-fold increase
in MIC value compared with the first passage. In contrast, the rise in peptide levels was
accompanied by a 2-fold MIC increase over40 days only, suggesting that resistance to P19
was not acquired easily.
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Figure 7. Resistance development in the presence of a sub-MIC concentration of potential peptide,
broad-spectrum peptide, and antibiotics.

2.6. Membrane Permeabilization and Integrity

Disc3-5 and PI were used to detect the membrane permeability of C. albicans cgmcc
2.2086 treated with P19, melittin, fluconazole, or amphotericin B. Figure 8a showed the
plasma membrane depolarization experiment, and the fluorescence intensity represents the
results. The fluorescence intensity of P19 was the highest. P19 induced a more significant
change of membrane depolarization compared with other tested agents. In contrast,
minor change of membrane depolarization occurred under treatment with fluconazole or
amphotericin B. Figure 8b showed the flow cytometry experiment. The results visually
showed the distribution of cells by the distribution of PI dye markers, and the areas
where cells were concentrated represent the state of cells as live or die. P19 and melittin
induced more than 90% increase of PI fluorescent signal while the application of antifungals
induced none.
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Figure 8. Cytoplasmic membrane depolarization of C. albicans cgmcc 2.2086, represented by the fluorescence intensity (a);
Flow cytometry experiment, represented the dead cells by the distribution of PI dye dots, membrane permeabilization of C.
albicans cells treated with 1× MIC potential peptide, broad spectrum peptide, and antibiotics, as measured by an increase of
fluorescence intensity of PI (b).

To visually observe morphology, ultrastructure and integrity of membrane of C.
albicans cgmcc 2.2086 treated with P19, SEM, TEM and CLSM were employed. Figure 9a,b
showed that the cell membrane surface treated with P19 was broken and roughen while
untreated cells had integrated and smooth surfaces. Figure 9c,d showed that P19 induced
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outflow of intracellular content. The results indicated that P19 exerted its antifungal activity
by compromising the integrity of the cell membrane (Figure 10).
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2.7. Membrane Binding Affinity

To investigate the binding affinity of P19 to the cell membrane and cellular phos-
pholipids, whole-cell ELISA, and protein-lipid overlay assays using biotin-labeled P19
and HRP-Streptavidin were employed. Figure 11 showed that the binding affinity of P19
to C. albicans cgmcc 2.2086 was significantly higher than to S. aureus ATCC 29213 and L.
rhamnosus 1.0385 (P < 0.05), and P19 showed just a little higher but nonsignificant binding
affinity to C. albicans cgmcc 2.2086 (P > 0.05). Figure 12 further showed that P19 recognized
the negatively charged phospholipids including phosphatidylserine (PS), phosphatidyl-
glycerol (PG), phosphatidylinositol (PI), cardiolipin, PtdIns, PtdIns(4)P, PtdIns(3, 5)P2 and
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PtdIns(4, 5)P2. Figure 13 showed a high binding affinity of P19 with LPS and LTA, which
might inhibit the binding of the peptide with phospholipids in bacteria.
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3. Discussion

In this study, we developed a class of APD-filtered central-symmetric AMPs with five
sequences were synthesized. The high MIC values of P1, P2, P3, P17, P19 against tested
fungi indicated that this short central-symmetric template of 11-residues had bacteria-
killing activity and was also capable of fungicidal action. We also confirmed that hy-
drophobic amino acids (L, F, and I) and hydrophilic amino acids.(A, S and C) as the most
frequent residues found in natural antifungal peptides. In addition, the antimicrobial
spectrum of P1, P2, and P3 demonstrated that basic amino acids showed only a slight effect
on the antibacterial spectrum. Additionally, the more specific antimicrobial activity of
P19 suggested that lower hydrophobic amino acid might be a benefit for improving the
antimicrobial selectivity, which was associated with that the high hydrophobic amino acid,
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Leu-rich peptides, could indiscriminately insert or penetrate more deeply into negatively
charged phospholipids. And this specific activity of phenylalanine-replacement substituted
residues may be due to the presence of a bulky benzene ring inducing steric hindrance,
changing the secondary structure of the peptide, a key factor for antimicrobial activity [23],
which was supported by the secondary structures of these five peptides that P1-P3 showed
α-helical structure in mimicking environments but P17 and P19 showed β-sheet structure
in membrane mimicking environments.

Additionally, the CD results of these five peptides also suggested that not only a
non-ordered structure in PBS but transformed to an α-helical structure in the membrane-
mimetic environment could induce higher broad antimicrobial activity, a non-ordered
structure in PBS. Still, it transformed to a β-sheet structure that could improve the selective
antimicrobial activity against fungi. Our microbial survival counts result showed that
P19 could inhibit all gram-negative bacteria, gram-positive bacteria, and fungi cells with
varying degrees. This also indicated that selective antimicrobial activity of P19 might be
via an affinity for charges and hydrophobic sites located on cell membrane rather than via
a receptor-mediated pathway [24–26]. The results of the drug resistance trial also support
this view.

The primary limitations for an in vivo application of peptide-based biomaterials
stem from possible toxic effects on normal cells and sensitivity to the physiological en-
vironment [27,28]. Especially for this study because of the similarity of fungal cells and
mammalian cells. Many reports have indicated that increased length of the peptides could
facilitate rapid peptide anchor and insert into the lipid bilayer [29], which might induce
higher cytotoxicity and lead to lower sensitivity to degradation [14]. Furthermore, it is
known that salts compromise the binding activity of membrane-active peptides by dis-
rupting electrostatic interactions between the peptides and any potential cell membrane
receptors [30]. These novel peptides showed higher than 80% cell viability even at the
highest concentration of 128 µM. The MIC values of P19 in the presence of physiological
salt concentrations increased somewhat were a little raised, especially in the presence of
Na+. This is primarily arising due to the high ionic strength, which can interfere with
the electrostatic attraction between cationic peptides and anionic bacterial lipid bilay-
ers [31–33]. And this is a common phenomenon for cationic peptides. Thus, these two
results demonstrated that this fungal-specific 11-residues peptide was a safe and cost-
effective antimicrobial agent and suggested exerting antimicrobial activity via bacterial
membrane permeabilization as previously reported broad-spectrum antimicrobial agents.

To further validate the antimicrobial mechanism of P19, fluorescence spectroscopy
and electron microscopy were performed using melittin, fluconazole, and amphotericin
B as controls. Membrane depolarization and flow cytometry results showed that only
membrane-active P19 and melittin increased the fluorescence and enabled the entry of the
PI probe, which indicated a characteristic of peptide-membrane interactions. Combining
with the apparent damage of C. albicans membrane surface observed by SEM, leakage of the
intracellular contents detected by TEM and localization of the FITC-labeled P19 detected
by CLSM, the action mechanism of P19 was suggested to occur in permeabilization of the
plasma membrane and leakage of cytoplasm, which was the main reason for little alteration
in the presence of drug-resistant variants.

The anti-biofilm and fast sterilization activity of P19 suggested that selective antimi-
crobial activity of P19 was not only for the lower hydrophobic amino acid. Then, to further
check the selective activity of P19 between fungi and other bacteria based on the peptide-
membrane interaction mechanism, the affinity of peptides to E. coli, S. aureus, L. rhamnosus
and C. albicans were further detected using whole-cell binding assay. Results showed that a
given level of P19 had a higher binding affinity with C. albicans than with bacterial samples
of the same density. Still, the nonsignificant binding affinity between C. albicans and E. coli
suggested that P19 showed precisely antimicrobial activity against fungi without specific
binding. Negatively-charged lipopolysaccharides (LPS) or lipoteichoic acids (LTA), which
are present in large amounts in the cell envelopes of Gram-positive and Gram-negative
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bacteria, may interact with peptides via charge residue, forming a barrier to reduce the con-
centration of peptides around the plasma membranes, thereby blunting their antimicrobial
effects. Then, the high binding ability of peptide P19 with LTA and LPS indicated that the
selective antibacterial activity of P19 might be associated with the competitive combination
of P19 with LPS (LTA) and plasma membrane [34]. In addition, since this potential peptide
showed membrane disruption discriminately without receptor-mediated pathway, lipid
binding and membrane permeabilization are key components of the mechanisms of action
of many such antimicrobial agents [35]. We then focused on interactions between P19
and lipid and analyzed the selective antimicrobial activity based on the lipid membrane
composition. Figure 9 has identified PIPs as lipid targets, such as PtdIns(4)P, PtdIns(3, 5)P2,
and PtdIns(4, 5)P2 on the plasma membrane, to which P19 caused membrane disruption,
bleb formation, and ultimately cell lysis. In addition to PIPs, P19 also showed binding
affinity to other phospholipids such as PI and PS, which were common components of the
fungal plasma membrane (more) and animal cell membrane (less) but are largely absent
from bacteria [36–38]. Thus, the composition of the phospholipids of the fungal plasma
membrane that enriched in PI and PS without negative-charged LPS and LTA was a benefit
for increasing concentration or accumulation on typical fungal cell surface membranes of
P19, and then improve the peptide bioactivity functions to disrupt fungal cell membrane
integrity, resulting in fungal tissue injury or death. In addition, P19 did show somewhat
binding ability with phosphatidylglycerol (PG) and cardiolipin, two main components
of Gram-negative and Gram-positive bacterial plasma membranes, which give P19 at
least some antibacterial capabilities, although bacterial generally showed more excellent
resistance to P19 antimicrobial activity than fungi when peptide concentrations and target
cell densities were normalized, and this was in accordance with the microbial survival
rates results. It was suggested that P19 showed selective antimicrobial activity based on
the various compositions of lipids on the plasma membrane. Previous reports have shown
that high levels of negatively-charged phospholipids [39,40], increased membrane surface
area [41] and strongly expressed phosphatidylserine (PS) in tumor cells [42] may serve
as high-affinity binding targets for short peptides such as P19, indicating that this short
peptide may have some utility as an anti-tumor agent.

4. Materials and Methods
4.1. Bacteria and Fungi

Escherichia coli (E. coli) ATCC 25,922, Staphylococcus aureus (S. aureus) ATCC 29,213 and
S. aureus ATCC 25,923 were provided by the College of Veterinary Medicine, Northeast
Agricultural University (Harbin, China), and E. coli UB1005 was kindly provided by the
State Key Laboratory of Microbial Technology (Shandong University, China). Lactobacillus
rhamnosus 7469, Lactobacillus rhamnosus 1.0911, Lactobacillus rhamnosus 1.0385, Lactobacillus
rhamnosus 1.0925 and Streptococcus thermophiles (S. thermophilus) YM-C were obtained
from the Key Laboratory of Food College, Northeast Agricultural University. C. albicans
cgmcc 2.2086, C. tropocalis cgmcc 2.1975, C. parapsilosis cgmcc 23,989 were purchased from
the China General Microbiological Culture Collection Center (Beijing, China). Clinical
isolated C. albicans SP3903, C. albicans SP3937, C. albicans SP3902 and C. albicans isolated
from alveolar fluid were obtained from the Medical College of Nanchang University.
Fluconazole-resistant C. albicans 56,214 was provided by the Zhongshan Hospital of Fudan
University.

4.2. Peptide Synthesis

The filtered result was analyzed by R programming. The helical wheel projection was
performed online (http://rzlab.ucr.edu/scripts/wheel/wheel.cg) (Schedule 1B). The pep-
tides designed in this study were synthesized by the Sangon Biotech (Shanghai, China), and
the actual molecular weights were tested by matrix-assisted laser desorption/ionization
time-off light mass spectrometry (MALDI-TOF MS; Linear Scientific Inc., USA). The purity
of the peptides (95%) was assessed by reverse-phase high-performance liquid chromatog-

http://rzlab.ucr.edu/scripts/wheel/wheel.cg
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raphy (HPLC) using column of Shimdzu Inertsil ODS-SP column (4.6 × 250 mm, 214 nm,
20 µL) and a non-linear water/acetonitrile gradient containing 0.1% trifluoroacetic at a
flow rate of 1.0 mL min−1. The general schematic and three-dimensional structure projec-
tion of the potential peptide was graphed by using ChemDraw V10.0 or predicted online
(http://zhanglab.ccmb.med.umich.edu/I-TASSER/).

4.3. Circular Dichroism (CD) Measurements

CD spectra of 150 µM peptides were measured at room temperature in 10 mM
phosphate-buffered saline (PBS) (mimicking an aqueous environment), 50% TFE (mimick-
ing the hydrophobic environment of the microbial membrane), and 30 mM SDS micelles
(negatively charged prokaryotic membrane comparable environment) on a J-820 spectropo-
larimeter (Jasco; Tokyo, Japan), with a quartz cuvette with a 1.0-mm path length. The
spectra were recorded from 195-250 nm at a scanning speed of 10 nm/min, and an average
of 3 scans was collected for each peptide. The acquired CD spectra were then converted to
the mean residue ellipticity with the following formula:

θM = (θobs·1000)/(c·l·n) (1)

where θM is the mean residue ellipticity [(deg·cm2)/dmol], θobs is the observed ellipticity
corrected for the buffer at a given wavelength [md, eg], c is the peptide concentration [mM],
l is the path length [mm], and n is the number of amino acids.

4.4. Antimicrobial Assays

The peptide antimicrobial activity was determined according to the Clinical and
Laboratory Standards Institute method, with modifications. Bacteria concentration was
measured by ultraviolet spectrophotometer, and fungi concentration was confirmed by
McMillan’s turbidimetric method, which compared the fungi solution with the standard
McFarland tube in front of the horizontal line on the paper with the naked eye. Because the
light has different refract in different liquids. The standard solution is composed of sulfuric
acid and barium chloride, which is equivalent to 1*108 CFU fungi. After cultivation, the
growth of fungi and bacteria was measured by TECAN automatic enzyme label instrument.
Briefly, bacterial cells were cultured in MHB until logarithmic phase, yeast colonies cultured
in Yeast Peptone Dextrose Agar (YPDA) were picked and diluted in RPMI 1640 growth
medium buffered with morpholine propane sulfonic acid (MOPS), and then 50 µL of
bacterial or fungi cell solution (0.5–1 × 104 CFU/mL) was added to each well of sterile 96-
well plates. Each well contained 50 µL of AMPs dissolved in BSA; the final concentrations
of the peptides ranged from 0.5 to 128 µM. The lowest concentration of peptide with no
microbial growth being observed were measured after incubation at 37 ◦C for 24 h for
bacteria or at 28 ◦C for 48 h for fungi. Broth with microbial cells and un-inoculated broth
were used as positive control and negative controls, respectively.

The time-kill kinetics of the potential peptide for C. albicans cgmcc 2.2086 was further
investigated by analyzing the fractional cell survival after various peptide exposure times
to determine the killing time curve. Briefly, the microbial cells were treated with a peptide
at a 1× MIC concentration. At various periods (0, 5, 10, 30, 60, 300, 600, 3000 and 6000 s),
microbial suspensions were diluted 10- and 100-folds, and then plated on solid medium
plates using 50 µL diluted suspension. Microbial colonies were counted after 28 ◦C for 48 h
of incubation.

Microbial survival counts of the potential against four typical microbial strains were
also made to confirm the differences in antimicrobial efficacy of peptide constructs on
bacterial and fungal targets. The microbial cells were treated with peptides at a 1× MIC
concentration for 10 min. The subsequent steps were consistent with the time-killing
kinetics method (bacterial colonies were formed and counted after 37 ◦C for 24 h (bacteria)
or 28 ◦C for 48 h (fungi) of incubation. All the above tests were performed at least
three times.

http://zhanglab.ccmb.med.umich.edu/I-TASSER/
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Biofilm eradication assay was further tested to confirm the activity of P19, which was
monitored using the microtiter plate assay shown as Paola Saporito et al. described [43]
with growth media as RPMI 1640 growth medium buffered with MOPS and biofilm
incubating for 48 h.

4.5. Cytotoxicity Assays

The cytotoxicity of the peptides was determined with three cell types, including the
Pig kidney cells, HEK 293T cells and fresh, healthy human red blood cells (donated by
Zhihua Wang) via the MTT dye reduction assay and hemolysis assay [44].

4.6. Salt and Acid Sensitivity Assays

The salt and acid sensitivities of the peptides were measured using with modified
method to test MIC values; tested peptides were incubated in the presence of different final
concentrations of physiological salts. The subsequent steps were consistent with the MIC
determination protocol [26].

4.7. Drug-Resistance

Resistance development of C. albicans cgmcc 2.2086 against antifungals was explored
using a sequential passaging method, described in our previous study [22]. Briefly, MIC
testing was first conducted for P19, fluconazole and amphotericin B. After a 24 h incuba-
tion, fungal cells growing in a well with a half-MIC level were harvested and diluted to
0.5–1 × 104 CFU/mL using RPMI 1640 growth medium buffered with morpholine propane
sulfonic acid (MOPS). The inoculum was subjected to subsequent passage MIC testing,
and the process was repeated for 30 days. The fold change in MIC was plotted against the
number of passages.

4.8. Membrane Permeabilization and Integrity Assays
4.8.1. Cytoplasmic Membrane Depolarization Assay

To analyze membrane disturbances due to P19, melittin, fluconazole or amphotericin
B-treated, cells (1 × 104 cells/mL) of C. albicans cgmcc 2.2086 were incubated with antimi-
crobial agents at their respective MICs for 1 h at room temperature; the cells were then
harvested by centrifugation and resuspended in 1 mL PBS (pH 7.4). Cytoplasmic mem-
brane potential was observed with 0.4 µM DiSC3-5 (Sigma Chemical Co., USA). Changes in
fluorescence were measured from 0 to 800 s with a F-4500 fluorescence spectrophotometer
(Hitachi, Japan) at an excitation wavelength of 622 nm and an emission wavelength of
670 nm.

4.8.2. Flow Cytometer Assay

Cell membrane permeabilization after treatment with P19, melittin, fluconazole or
amphotericin B were also detected via the propidium iodide influx assay. In brief, C.
albicans cgmcc 2.2086 cells (1 × 104 cells/mL) were treated with antifungal agents for 1 h at
28 ◦C, then washed, harvested by centrifugation and resuspended in PBS. The cells were
treated with 10 µg/mL propidium iodide and incubated for 30 min at room temperature.
The uptake of propidium iodide into these cells was analyzed with a FACS flow cytometer
(Becton–Dickinson, San Jose, CA) with a laser excitation wavelength of 488 nm. The flow
cytometry results can be interpreted as follows. Region Q1 was identified as a living
cell region; it represents cells treated with PBS. Q2 region represents the dead cell region.
Ignored the surrounding adherent scattered points, the most concentrated scattered points
represented the largest cell density. The areas where cells were concentrated represent the
state of cells as live or die.

4.8.3. SEM, TEM and CLSM Characterization

The direct visualization of C. albicans cgmcc 2.2086 membrane and the specimens
treated with peptide or not were examined using a HITACHI S-4800 SEM, HITACHI H-
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7650 TEM and Leica TCS SP2 CLSM. For sample preparation, fungal cells were incubated
for 1 h at 28 ◦C with P19 at 1× MIC or in the absence of peptide as a control. After
incubation, the cells were harvested by centrifugation at 5000× g for 5 min, washed three
times with PBS, then processed as previously described [9].

4.9. Membrane Binding Affinity Assays
4.9.1. Whole Cell ELISA

Whole-cell ELISA assay was performed to compare the binding affinity of P19 with
Gram-negative, Gram-positive bacteria, and fungal cells. Briefly, 100 µL 1 × 107 CFU/mL
microbial cells resuspended in carbonate buffer solution (CBS, Ph = 9.5). The suspension
was added to wells on a 96-well plate for coating overnight at 37 ◦C, followed by fixing by
ethanol and air-drying. Plates were blocked with gelatin for 2 h, and then the plate was
washed with PBST for 4 times and incubated with 100 uL of PBST containing biotin-labeled
peptides at a final concentration of 16 µM for 1 h at 37 ◦C. Th503-504en, incubation with
1:20,000 dilution of HRP-Streptavidin for 15 min at 37 ◦C after washing with PBST 4 times.
Finally, the absorbance of OD450 was determined by using a spectrophotometer (Infinite 200
pro, Tecan, China) followed by washing the wells 4 times using the Tetramethylbenzidine
membrane peroxidase (TMB) system.

4.9.2. Protein–Lipid Overlay Assay

Membrane-bound P19 to various phospholipids (including Membrane Strips and PIP
Strips) (Echelon Biosciences) was measured according to the manufacturer’s instructions.
Briefly, the membrane strips were blocked with gelatin for 1 h at 37 ◦C, the plate was
washed with PBST 4 times and incubated with 100 uL of PBST containing biotin-labeled
peptides at a final concentration of 16 µM for 1 h at 37 ◦C. Plates were incubated with
1:20,000 dilution of HRP-Streptavidin for 15 min at 37 ◦C after washing with PBST 4 times.
Peptide binding was detected by ECL as P19 labeled with biotin.

4.10. Binding Affinity to LPS or LTA

The peptide binding affinity to LPS or LTA was dependent on the probe bound to
cell-free LPS or LTA. Briefly, 50 µg/mL LPS from E. coli or 50 µg/mL LTA from S.aureus and
5 µg/mL BC were kept in the dark at room temperature for 4 h. Then, peptides were added
to the mixtures at minimum inhibitory concentrations and cultured for another 1 h at
room temperature. Fluorescence was measured (excitation λ = 580 nm, emission λ = 20 nm,
Excitation bandwidth = 9 nm, Emission bandwidth = 20 nm, Z-axis height = 20,000 µm) on
a Spectro fluorophotometer (the Infinite 200 pro, Tecan, China). 10 µg mL−1 polymyxin B
as control.

4.11. Statistical Analysis

All data were subjected to a one-way analysis of variance (ANOVA) and significant
differences between the means were evaluated by Tukey’s test for multiple comparisons.
The data were analyzed and diagrammed by using the GraphPad Prism 5.0. Quantitative
data were expressed as the mean ± standard error (SE).

5. Conclusions

In summary, short sequence peptides with sequences derived using APD-filters
showed efficient and rapid selective activity against fungi, tolerance to a broad range
of physiological conditions, high biocompatibility and low-likelihood drug-resistance,
suggest ideal candidates for drugs against C. albicans induced infection. Furthermore, selec-
tive mechanism and change of structure of the peptides indicated that fungicidal peptide
P19 had targeting antimicrobial activity through membrane attraction and properties of
the peptide instead of receptor targeting. Short peptides with specific sequences can be
tailored to target specific cell surface lipids on pathogens, allowing researchers to develop
antimicrobials with great precision and a low potential for developing target cell resistance,
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which facilitates the development of further development novel non-receptor targeted
antimicrobial agents.
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Abbreviations

AMPs Antimicrobial peptides
LPS Lipopolysaccharides
LTA Lipoteichoic acids
MALDI-TOF-MS Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry
RP-HPLC Reverse-phase high performance liquid chromatography
SEM Scanning electron microscopy
TEM Transmission electron microscopy
CLSM Confocal laser scanning microscopy
CD Circular dichroism
PI Phosphatidylinositol
PIP Phosphatidylinositol (4,5)bisphosphate
PS Phosphatidylserine
PG Phosphatidylglycerol
FITC Fluorescein Isothiocyanate
PBS Phosphate-buffered saline
PBST Phosphate-buffered saline with 0.05% tween 20
TFE Trifluoroethanol
SDS Sodium lauryl sulfate
MICs The minimum inhibitory concentrations
MTT 3-[4,5-dimethylthiozol-2-yl]-2,5-diphenyltetrazolium bromide
YPDA Yeast Peptone Dextrose Agar
MOPs Morpholinepropanesulfonic acid
MHB Mueller-Hinton Broth
DiSC3–5 3,3-dipropylthiadicarbocyanine
CDI Clostridium difficile infection
FMT Fecal microbiota transplantation
APD The Antimicrobial Peptide Database
TMP Tetramethylbenzidine membrane peroxidase
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