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Abstract: Tumors undergo fast neovascularization to support the rapid proliferation of cancer
cells. Vasculature in tumors, unlike that in wound healing, is immature and affects the
tumor microenvironment, resulting in hypoxia, acidosis, glucose starvation, immune cell
infiltration, and decreased activity, all of which promote cancer progression, metastasis, and
drug resistance. This innate defect of tumor vasculature can however represent a useful
therapeutic target. Angiogenesis inhibitors targeting tumor vascular endothelial cells important
for angiogenesis have attracted attention as cancer therapy agents that utilize features of the tumor
microenvironment. While angiogenesis inhibitors have the advantage of targeting neovascularization
factors common to all cancer types, some limitations to their deployment have emerged. Further
understanding of the mechanism of tumor angiogenesis may contribute to the development of
new antiangiogenic therapeutic approaches to control tumor invasion and metastasis. This review
discusses the mechanism of tumor angiogenesis as well as angiogenesis inhibition therapy with
antiangiogenic agents.
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1. Introduction

Vasculogenesis refers to the process by which vascular endothelial cells differentiate from
endothelial precursor cells to form the lumen. Neovascularization refers to the process, whereby new
blood vessels are formed from existing ones following endothelial cell proliferation and migration [1].
This process is essential during physiological angiogenesis, such as systemic blood supply in the fetal
stage, luteinization related to postpartum menstrual cycle, and wound healing [2]. During tumor
proliferation, oxygen and nutrients required for solid tumor growth are supplied from neighboring
blood capillaries. However, because the diffusion distance of oxygen is 100–200 µm, for tumors to
grow to ≥1–2 mm, generation of new blood vessels towards the tumor (i.e., neovascularization) is
required [3,4]. Tumors located >100–200 µm from capillaries often encounter hypoxic conditions,
which promote the expression of hypoxia-inducible factor-1 (HIF-1). HIF-1 induces the expression
of angiogenic proteins, such as vascular endothelial growth factor (VEGF), epidermal growth factor,
fibroblast growth factor (FGF), hepatocyte growth factor (HGF), and platelet-derived growth factor
(PDGF), which then stimulate hypervascularization [5,6]. The sustained expression of these angiogenic
factors results in abnormally structured angiogenic tumor vessels. Tortuous and dilated tumor
vessels show increased vascular permeability and high interstitial pressure, further reducing blood
perfusion and increasing hypoxic conditions in the tumor microenvironment [7–9]. Administration of
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angiogenesis inhibitors leads to tumor vascular normalization, a reduction in vascular permeability
and interstitial fluid pressure, and an improvement in tumor perfusion. A normalized tumor
vascular system with reduced hypoxic conditions not only augments the effects of radiotherapy
and chemotherapy but also enhances antitumor immunity [10–12]. The findings can contribute to
a new approach (i.e., the combination of angiogenesis inhibitors and immunotherapy) to further
improve the overall survival of cancer patients. This review discusses the molecular mechanisms of
tumor angiogenesis and outlines options for cancer therapy with antiangiogenic agents including
combined immunotherapy.

2. Molecules Involved in Neovascularization

Neovascularization is regulated by a balance between angiogenesis-inducing factors and
angiogenesis-inhibiting factors such as those outlined in Table 1. Here, we describe the molecules that
induce angiogenesis and their mechanisms. Among angiogenesis-inducing factors, VEGF plays an
important role in the initiation of angiogenesis. The VEGF family consists of five members, namely
VEGFA, VEGFB, VEGFC, VEGFD, and placental growth factor (P1GF). VEGF signals are transmitted
through three VEGF receptor tyrosine kinases: VEGFR1, VEGFR2, and VEGFR3 [8,13]. The VEGF
family of proteins is the most critical factor for the induction of neovascularization. VEGF induces
proliferation of endothelial cells, promotes cell migration, and decreases the rate of apoptosis. It also
increases vascular permeability and promotes migration and circulation of other cells [13,14]. VEGFA
and its receptor, VEGFR2, have major angiogenic effects [15]. Upon binding to the VEGF receptor
on the vascular endothelial cell membrane, VEGF induces dimerization and autophosphorylation
of the receptor and initiates a signaling cascade that activates a variety of downstream pathways.
Phosphorylation of phospholipase C (PLC) γ activates the RAS/mitogen-activated protein kinase
(MAPK) cascade via protein kinase C (PKC) activation and regulates gene expression and cell
proliferation [16–18]. In addition, activation of the phosphoinositide-3-kinase (PI3K)/protein kinase
B (AKT) pathway produces NO via AKT, suppresses apoptosis, and activates endothelial cell NO
synthase, thereby enhancing vascular permeability [19–22]. VEGFR1 has a weak kinase activity and
limits VEGFR2-induced angiogenic effects by regulating the amount of VEGFA that can be bound by
VEGFR2 [23]. The following has been reported: (i) VEGFR3 and its ligand, VEGFC, are responsible for
lymphangiogenesis; (ii) VEGFC and VEGFD contribute to tumor angiogenesis by binding to VEGFR2
and VEGFR3; (iii) VEGFR3 is expressed in the tip cells of tumor vessels [15,24].

Table 1. Endogenous regulators of angiogenesis.

Activators Functions Inhibitors Functions

Vascular endothelial
growth factor family

Induction of angiogenesis,
enhancement of vascular
permeability

Angiopoietin-2 Antagonist of Ang1

Epidermal growth
factor

Promotes growth of vascular
endothelial cells Thrombospondin-1,2 Inhibits endothelial migration,

growth, adhesion and survival

Fibroblast growth
factor Induction of angiogenesis collagen Substrate for MMPs

Platelet-derived growth
factor

Involved in migration of
vascular endothelial cells Endostatin Inhibits endothelial survival

and migration

Angiopoietin-1 Stabilization of vascular
endothelium Angiostatin Suppresses tumor

angiogenesis

Transforming growth
factor

Production of extracellular
matrix TIMPs Suppresses pathological

angiogenesis

Ephrin Control of blood vessel and
lymph duct formation Platelet Factor-4 Inhibits binding of bFGF and

VEGF

Matrix
metalloproteinase

Degradation of extracellular
matrix, activation of
angiogenesis inducing factor

Vasostatin Inhibits endothelial growth
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Angiopoietins play a critical role in the maturation of blood vessels. Human angiopoietins
consist of three ligands, Ang-1, Ang-2, and Ang-4. Ang-1 and Ang-2 are of critical importance in
angiogenesis and are outlined hereafter. The Tie family of receptors includes receptor tyrosine kinases
specifically expressed in the vascular endothelium. They include Tie1 and Tie2. Tie2 is activated by
Ang-1, which is secreted by platelets and peri-endothelial cells; whereas Tie1 is an orphan receptor
homolog of Tie2, whose expression enhances Tie2 activation [25]. The Ang-1/Tie-2 signaling pathway
is specific for endothelial cells. Ang-1 binds to the Tie-2 tyrosine kinase receptor of endothelial cells,
whose downstream phosphorylation activity stimulates cell survival by activating the PI3K-AKT
pathway [26–28]. Furthermore, it contributes to the maturation of blood vessels by inhibiting the
proinflammatory pathway initiated by nuclear factor-kappa B (NF-κβ) [26–28]. In contrast, in the
absence of cell-cell adhesion, extracellular matrix-anchored Tie2 regulates angiogenesis via extracellular
signal-regulated kinase (ERK) 1/2 signaling [29]. Ang-2 antagonizes Ang-1 activity and, in the presence
of low levels of VEGF, leads to detachment of pericytes and regression of blood vessels. However, in
the presence of high levels of VEGF, Ang-2 elicits an inflammatory response and destabilizes existing
vessels. This, in turn, promotes angiogenesis and lymphangiogenesis by weakening the interaction
between endothelial cells and pericytes and increasing endothelial cell migration [1,30,31].

3. Characteristics of Angiogenic Tumor Vessels

Angiogenesis-promoting factors such as VEGF induced by the tumor microenvironment (e.g.,
hypoxia), stimulate sustained and abnormal neovascularization [32,33]. The vessels formed during
neovascularization are unlike those formed during wound healing and exhibit unusual morphological
characteristics. In normal vessels, the distribution of arteries, capillaries, and veins is stable, and the
vessels have an ordered hierarchical structure. In comparison, angiogenic tumor vessels are dilated
and tortuous. Furthermore, vascular density and blood vessel diameter are not uniform [34,35]. A
simple squamous epithelium, known as vascular endothelial cells, covers the lumen of capillaries,
which is lined with pericytes and covered by the basement membrane. Angiogenesis promoting factors
induce weakening and migration of vascular endothelial cell junctions and change the vascular
wall structure [36,37]. Pericytes and vascular endothelial cell junctions between pericytes and
vascular smooth muscle cells are also weakened, and the number of pericytes is reduced [38,39]. The
basement membranes are multilayered and collagen IV thickness is uneven. Weakened cell junctions
between endothelial cells and pericytes result in their infiltration into the tumor stroma [38,39]. The
morphological abnormalities observed in tumor blood vessels raise the question of whether there are
phenotypic differences at the molecular and functional levels between tumor endothelial cells (TECs)
that line tumor blood vessels and normal endothelial cells. TECs express higher levels of proangiogenic
genes such as VEGFR, VEGF, and EGFR. The Hu antigen, a neuronal protein identified in the serum
of patients with small cell lung cancer and paraneoplastic encephalomyelitis/sensory neuronopathy,
promotes TECs survival by stabilizing VEGF mRNA. TECs also up-regulates integrin αVβ3 and cause
cytogenetic abnormalities [40]. Moreover, in comparison with normal endothelial cells, TECs have a
high proliferative capacity, migratory ability, and angiogenic potential [41]. Additionally, cells showing
stem cell/precursor cell-like properties have been reported in the TECs population, together with
those originating from bone marrow-derived vascular endothelial progenitor cells and tissues derived
from tissue stem cells [42]. Furthermore, a population expressing stem cell markers such as aldehyde
dehydrogenase and having high angiogenic potential has also been reported [43]. ATP-binding cassette
sub-family B member 1 (ABCB1) is the most well-known drug efflux transporter and TECs strongly
expressing ABCB1 are resistant to drugs [44]. Importantly, cancer microenvironment factors such as
hypoxia, are also thought to be involved in tumor vascular endothelial cell abnormalities, together
with humoral factors derived from cancer cells and exosomes [45,46]. Tumor vascular endothelial
markers are expressed in cancer cells when cultured under hypoxia or in a low-serum medium.
Furthermore, Kubota et al. reported that an ataxia telangiectasia mutated kinase was strongly activated
in immature vessels in response to the accumulation of reactive oxygen species, where it provided
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a defensive function [47]. More recently, Maishi et al. demonstrated that biglycan secreted by TECs
induced intravascular invasion and metastasis of cancer cells and reported a new mechanism of cancer
metastasis induction from tumor vessels [48]. As can be seen, various factors typical of the cancer
microenvironment exert complex and diverse properties in tumor vascular endothelial cells.

4. Regulatory Mechanisms of Neovascularization

4.1. HIF-1α

Hypoxic conditions in the tumor microenvironment up-regulate angiogenesis inducing factors
such as VEGF, PDGF, P1GF, and HGF. However, reactions activated by such a hypoxic environment
are thought to be elicited primarily by HIF-1α [49,50]. HIF is a transcription factor heterodimer
consisting of subunits HIF-1α and HIF-1β [51,52]. When oxygen tension is normal, HIF-1α is quickly
degraded [53]. Under normal oxygen concentration, HIF-1α is modified by prolyl 4 hydroxylase
(PHD), which acts as a direct oxygen sensor by catalyzing the binding of molecular oxygen to a specific
proline on HIF-1α [52]. The Von Hippel-Lindau cancer suppression protein binds to hydroxylated
HIF-1α to activate the protein complex and targets HIF-1α for proteasome-dependent degradation
following its ubiquitination [54]. Under normal oxygen conditions, asparagine residues near the
C-terminus are hydroxylated by factor inhibiting HIF-1 (FIH-1), which also requires oxygen for
its activity. FIH-1 reduces HIF-1α transcriptional activity by preventing the binding of p300 and
cAMP response element binding protein (CREB) to HIF-α [55,56]. As PHD is inactive and HIF-1α
is not hydroxylated in a low-oxygen environment, the Von Hippel-Lindau factor cannot bind and
direct HIF-1α for proteasome-mediated proteolysis. Instead, HIF-1α can bind to p300 and CREB.
The HIF-1α-conjugated protein is also believed to be transferred to the nucleus, heterodimerized by
HIF-1β, and immediately involved in initiating transcription of target genes. With a binding site
corresponding to 5′-RCGTG-3′, the HIF heterodimer transcription factor activates target genes via a
hypoxia response sequence (HRE) [57]. HIF-1α binds to the HRE of VEGFA, PDGF, and transforming
growth factor-alpha, inducing their expression (Figure 1) [58].

In addition to angiogenesis, HIF-1α activates glucose metabolism, thereby leading to acidosis in
the tumor microenvironment. HIF-1α enhances the expression of glucose transporter 1, 3 and increases
the uptake of glucose into cells [59]. Additionally, it cleaves glycolytic enzymes (phosphofructokinase
L, hexokinase, aldolase A, and lactate dehydrogenase A) by activating ATP production and promoting
glycolysis [60,61]. HIF-1α activates pyruvate dehydrogenase kinase 1, which then inactivates pyruvate
dehydrogenase, resulting in suppression of the TCA cycle [62]. Thus, overexpression of HIF-1α under
hypoxic conditions accelerates lactic acid production by promoting glycolysis and suppressing the
TCA cycle, leading to an acidic tumor microenvironment. The latter contributes to tumor survival by
conferring apoptosis resistance [63], increasing invasion and metastatic potential [64], and providing
immune tolerance through T cell suppression [65].
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Figure 1. Hypoxia inducible factor (HIF) and vascular endothelial growth factor (VEGF) link the
angiogenesis signaling pathways. Low oxygen tension (hypoxia) results in constitutive activation
of the HIF pathway and VEGF. The tumor hypoxic environment leads to an immunosuppressive
tumor microenvironment by inducing regulatory T cells (Tregs), myeloid-derived suppressor cells
(MDSCs), and M2 tumor-associated macrophages (TAMs). Antiangiogenic therapy results in blood
vessel regression by suppression of neovascularization, leading to tumor starvation and tumors falling
into dormant states. CAFs, cancer-associated fibroblasts; iDCs, immature dendritic cells; mDCs, mature
dendritic cells; ICAM-1, intercellular adhesion molecule 1; VCAM-1, vascular cell adhesion molecule 1.

4.2. Endoplasmic Reticulum Stress Signals

The endoplasmic reticulum is a protein folding and maturation site within the cell, where
membrane proteins are glycosylated and secreted. Failure to mature results in the accumulation
of proteins with an abnormal higher-order structure. Accumulation of such abnormal proteins causes
endoplasmic reticulum stress, and the cellular responses elicited to deal with it are collectively referred
to as the endoplasmic reticulum stress response. Tumor microenvironment characteristics such as
hypoxia, acidosis, and glucose deprivation contribute to the activation of the endoplasmic reticulum
stress pathway and promote cancer cell survival. Up-regulation of the endoplasmic reticulum
molecular chaperone, BiP/GRP78 has been observed in multiple cancer cells, indicating that it is
involved in their proliferation and metastasis [66]. VEGF expression is induced in the protein kinase
R like endoplasmic reticulum kinase (PERK)-activating transcription factor 4 (ATF4) pathway in the
endoplasmic reticulum stress environment [67]. The inositol-requiring kinase enzyme 1 alpha (IRE1α)
signal also promotes cell growth in certain cancer cell types due to up-regulation of cyclin A1 via X-box
binding protein 1 (XBP-1) downstream of IRE1α [68]. Expression of XBP-1 is elevated in breast cancer
cells and hepatocellular carcinoma. Therefore, XBP-1 expression is believed to contribute to the survival
of cancer cells by inducing BiP/GRP78 expression [69]. As in the case of PERK and IRE1α signals, ATF6
is thought to be involved in neovascularization by controlling the expression of VEGF [70]. In addition
to cancer cells, tumor tissues and their microenvironments include fibroblasts, mesenchymal stem cells,
and immune cells including macrophages and T cells. Cells that build these tumor microenvironments
can induce angiogenesis by producing multiple growth factors, cytokines, and chemokines. Fibroblasts
in tumor tissue are the major constituents of tumor stromal tissue and are said to play a vital
role in cancer development. Known as cancer-associated fibroblasts (CAFs) they secrete stromal



Cancers 2019, 11, 316 6 of 16

cell-derived factor 1 (SDF1). CAF-derived SDF1 not only directly stimulates cancer cell proliferation
via C-X-C chemokine receptor type 4 on tumor cells, but also recruits endothelial progenitor cells
towards the tumor and induces angiogenesis [71]. In colorectal cancer, angiogenesis is promoted
by CAF-induced secretion of interleukin 6 and a concomitant increase in VEGF production [72].
Macrophages involved in carcinogenesis and malignancy are called tumor-associated macrophages
(TAMs). Most TAMs are composed of M2 macrophages, which affect tumor development through
increased immunosuppression and angiogenesis. TAMs stimulate angiogenesis directly by facilitating
the production of angiogenesis promoting factors such as VEGF, and indirectly by localizing matrix
metallopeptidase 9 to the tumor microenvironment. There, metallopeptidase 9 induces angiogenesis
by cleaving and releasing VEGF from the matrix [73,74]. In addition, vascular endothelial cells produce
Ang-2c and TAMs express its receptor, Tie2, further stimulating angiogenesis in tumor tissues [75].

5. Antiangiogenic Therapy

Clinical treatment approaches targeting tumor angiogenesis include the anti-VEGF monoclonal
antibody bevacizumab, anti-VEGFR2 monoclonal antibody ramucirumab, VEGFR ligand traps (e.g.,
aflibercept, VEGFR, PDGFR, c-KIT), and multi-target tyrosine kinase inhibitors (e.g., sunitinib and
sorafenib) [76,77] (Table 2, Figure 2). Bevacizumab, a humanized monoclonal immunoglobulin G1
antibody, is the most widely studied antiangiogenic agent that prevents VEGFA from binding to
receptors, thus hindering neovascularization and the activation of signal transduction cascades [78].
After bevacizumab combined with chemotherapy was first approved by the U.S. Food and Drug
Administration (FDA) in 2004, the drug was also approved by the FDA for use in non-small cell
lung cancer, metastatic colorectal cancer, renal cell carcinoma (RCC), ovarian cancer, glioblastoma
multiforme, cervical cancer, fallopian tube cancer, and primary peritoneal cancer [79].

Table 2. Angiogenesis inhibitors approved by FDA.

Drug Target Molecule Approved Disease

Bevacizumab Anti-VEGF monoclonal antibody
mCRC, NSCLC, mRCC, ovarian cancer, malignant
glioma, advanced cervical cancer, fallopian tube
cancer, primary peritoneal cancer

Ramucirumab Anti-VEGFR2 monoclonal antibody Advanced gastric or gastroesophageal junction
adenocarcinoma, NSCLC, advanced colorectal cancer

Ziv-aflibercept Soluble decoy of VEGFR Metastatic colorectal cancer

Sunitinib TKI: VEGFR, PDGFR, FLT3, KIT RCC, Gastrointestinal stromal tumor, pancreatic
neuroendocrine tumor

Sorafenib TKI: VEGFR, PDGFR, FLT3, KIT, Raf RCC, unresectable hepatocellular carcinoma,
metastatic or recurrent thyroid carcinoma

Axitinib TKI: VEGFR, PDGFR, KIT Advanced RCC

Pazopanib Multiple targeted receptor TKI RCC, Advanced soft tissue sarcoma

Vandetanib TKI: VEGFR, EGFR, RET Unresectable or metastatic medullary thyroid cancer

Ramucirumab combined with chemotherapy has been shown to extend overall survival of
gastric cancer, non-small cell lung cancer, and rectal cancer patients. In 2012, aflibercept (i.e.,
a peptide-antibody fusion targeting the VEGF ligand) combined with fluorouracil, irinotecan,
and folinic acid was also approved by the FDA for use in colorectal cancer [80]. Sunitinib and
sorafenib, which are multi-target tyrosine kinase inhibitors, have been approved as monotherapy
agents based on improvement in overall survival and progression-free survival in phase III studies
in metastatic-differentiated thyroid cancer, unresectable hepatocellular carcinoma, and advanced
RCC [81–83].
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Figure 2. Vascular endothelial growth factor (VEGF) binds to the VEGF receptor, a receptor tyrosine
kinase, leading to receptor dimerization and subsequent auto phosphorylation of the receptor complex.
The phosphorylated receptor then interacts with a variety of cytoplasmic signaling molecules, leading
to signal transduction and eventually angiogenesis. Examples of clinical drugs (Table 2) that inhibit
the pathway are shown. PI3K, phosphoinositide-3-kinase; AKT, protein kinase B; mTOR, mechanistic
target of rapamycin; MEK, MAPK/ERK kinase; ERK, extracellular signal-regulated kinase.

6. Resistance Mechanism of Angiogenesis Inhibitors

Resistance to angiogenesis inhibitors develops through a variety of mechanisms such as activation
of an alternate angiogenic pathway that promotes tumor angiogenesis. When VEGF and VEGFR
are inhibited, other angiogenic factors such as P1GF, SDF1, Ang-1, FGF, HGF, and cytokines, are
induced [84]. In preclinical models, FGF1, FGF2, Ang-1, Ephrin-A1, and Ephrin-A2 have been induced
in pancreatic tumors treated with anti-VEGFR2 antibody [85]. HGF, bFGF, and P1GF levels were
increased in patients with metastatic colorectal cancer before disease progression when treated with
a combination of fluorouracil, irinotecan, and bevacizumab [86]. Cancers such as colorectal cancer,
RCC, and neuroendocrine tumors are often highly dependent on the induction of angiogenesis
by VEGF. On the opposite end, cancers that are less susceptible to anti-VEGF antibodies, such as
breast cancer, pancreatic cancer, malignant melanoma or prostate cancer, use different angiogenesis
mechanisms and angiogenic factors [87]. Long-term administration of angiogenesis inhibitors induces
hypoxia in the tumor microenvironment by over-pruning blood vessels and up-regulates HIF-1α [88].
Angiogenesis promoting factors, such as P1GF, VEGF, Ang-1, and FGF, which are induced by
HIF-1α, recruit bone marrow-derived dendritic cells (BMDCs) that mediate the growth of new blood
vessels to support tumors. The presence of BMDCs in the tumor environment induces resistance to
angiogenesis inhibition [89,90]. In addition to BMDCs, the hypoxic environment within the tumor
promotes recruitment of regulatory T cells (Tregs), bone marrow-derived repression cells (MDSCs),
and M2 TAMs.

Immune cell populations in tumors promote angiogenesis, tumor growth, epithelial-mesenchymal
transition, metastasis, and immunosuppression of the tumor microenvironment [91,92]. Besides
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acquiring resistance to angiogenesis inhibition by inducing other cells, tumor cells have also been
reported to escape the effect of angiogenesis inhibitors by adopting different neovascularization
modalities, including vascular co-option and vasculogenic mimicry [93]. Vessel co-option refers to
the process whereby cancer cells incorporate pre-existing vessels from surrounding tissue instead
of inducing new vessel growth [94]. The main factors regulating vessel co-option are VEGF and
angiopoietins. Moreover, several studies have reported an increase in vessel co-option after inhibition
of angiogenesis [95]. Anti-VEGF antibody treatment in glioblastoma promotes an increase in vessel
co-option, and similar phenomena have been reported in other solid tumors [96]. Vasculogenic mimicry
refers to a situation, whereby tumor cells function like endothelial cells and form a blood vessel-like
structure [97]. This phenomenon has been reported in malignant melanoma, sarcoma, glioma, breast
cancer, and many other cancer types [98–100]. Preclinical studies have reported increased vasculogenic
mimicry by angiogenesis inhibition therapy with bevacizumab, and the effectiveness of combining
angiogenesis inhibitors with chemotherapy has been suggested.

7. Neovascularization and Immunity

Tumor angiogenesis and tumor immunity share a complex relationship. When exposed
to hypoperfusion/vascular hyperpermeability by immature tumor neovasculature, the tumor
microenvironments becomes hypoxic and VEGF is up-regulated. This induces a decrease in T cell
activation by dendritic cells (DCs), a reduction in the number of intratumorally infiltrating lymphocytes,
and an increase in immunosuppressive cells, all of which affect immune function [101]. Steady-state
immature dendritic cells (iDCs) in vivo are superior in antigen uptake ability, but have weak T
cell stimulating ability and induce immune tolerance through Treg activity. iDCs that phagocytose
and process the antigen, migrate to regional lymph nodes where they convert to mature dendritic
cells (mDCs) that present the antigen to T cells and activate them [102]. Although DC maturation
is activated by the NF-κB pathway, the increase in VEGF due to the hypoxic environment of the
tumor reduces the number of mDCs by inhibiting DC maturation through inhibition of the NF-κB
pathway and suppresses immunity [103–105]. Furthermore, VEGF binds to VEGFR2, inhibits the T cell
activation function of mDCs, up-regulates the expression of programmed cell death ligand 1 (PD-L1)
(B7-H1/CD274), and suppresses the function of DCs [106]. The migration and adhesion of vascular
adhesion molecules to vascular endothelial cells plays an important role in the activation of immunity
by causing the accumulation of immune cells, such as macrophages, NK cells, granulocytes, B cells, and
T cells [107]. VEGF promotes abnormal neovascularization and affects immune cell migration, which
reduces the expression of cell adhesion molecules, such as intercellular adhesion molecule 1, vascular
cell adhesion molecule 1, and E-selectin. The down-regulation of cell adhesion molecules inhibits
tumor invasion by immune cells and reduces the immune response [108–110]. A tumor immune
response is induced by tilting the quantitative and functional balance of tumor-attacking effector T
cells and immunosuppressive cells to the former dominant state. The tumor hypoxic environment
enhances the expression of SDF1-α and C-C motif chemokine 28, thereby inducing immunosuppressive
cells such as Tregs, MDSCs, and M2 TAMs, and suppresses tumor immunity [91,92,111]. When
VEGF binds to VEGFR on MDSCs, signal transducer and activator of transcription 3 signaling is
activated and induces MDSC proliferation [112], VEGF also promotes an increase in Tregs in the
tumor microenvironment [113,114]. Increasing the recruitment of T cells and promoting tumor
invasion by angiogenesis inhibitors have shown the effect of tilting the tumor microenvironment
towards immunity promotion. Bevacizumab and sorafenib induce DC maturation and improve
T cell activation [115]. Inhibition of VEGF increases E-selectin expression on the tumor vascular
endothelium and promotes an increase in T cell tumor invasion [116]. In the laboratory, administration
of bevacizumab led to a decrease in MDSCs in the RCC mouse model, as well as a decrease in Tregs
in vitro and in vivo [114,117]. A similar decrease in Tregs has been observed in RCC patients treated
with sunitinib, where it correlated with overall survival [118].
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8. Angiogenesis Inhibitors and Immunotherapy

Although the immune system is very effective in inducing an immune response against foreign
antigens, malignant tumors can avoid immune surveillance via multiple mechanisms of immune
tolerance. Overexpression of immune checkpoint molecules inducing immune tolerance has been
demonstrated in some solid tumors, and correlates with poor prognosis [119]. Programmed-cell
death-1 (PD-1 is a checkpoint molecule expressed on the outer surface of NK cells, B cells, DCs,
monocytes, and CD4 + and CD8 + T cells [120]. When PD-1 is expressed by T cell stimulation and
binds to PD-L1 and PD-L2 on antigen-presenting cells and some cancer cells, the Ras/MAPK/ERK
kinase/ERK pathway and PI3K/AKT pathway are inhibited and inactivate T cells [120]. PD-L1 is
expressed in cancers of tissues such as the lung, colon, ovaries, as well as in malignant melanoma
and its expression is enhanced by the inflammatory cytokine interferon gamma [121]. Additionally,
activation of HIF-1 in a hypoxic environment within a tumor leads to elevated expression of PD-L1 in
cancer tissue [122]. In other words, cancer cells escape immune surveillance by inactivating locally
accumulated T cells through the PD-1/PD-L1 pathway. Immunological checkpoint inhibitors such
as nivolumab and pembrolizumab, which are PD-1 inhibitors, and atezolizumab, which is a PD-L1
inhibitor, promote the antitumor activity of T cells by blocking these pathways, and are clinically
effective in several cancer types [122]. As mentioned in the previous section, angiogenesis inhibitors
and immunological checkpoint inhibitors are expected to have a combined immunostimulatory effect.
Increased infiltration of CD4 + and CD8 + T cells, in addition to macrophages, into the tumor space and
increased expression of PD-L1 in the tumor by co-administration of bevacizumab and sunitinib have
been shown in the RCC mouse model [123]. Additionally, a decrease in MDSCs in tumor tissue and an
increase in PD-1 expression in tumor infiltrating lymphocytes have been observed in RCC patients
treated with sunitinib [124]. Combination therapy with atezolizumab and bevacizumab resulted in an
increase in CD8 + T cells and major histocompatibility complex 1 in the tumor, as well as up-regulation
of chemokines and down-regulation of genes associated with neovascularization in patients with
metastatic RCC [125]. Several phase III studies on the combined treatment of angiogenesis inhibitors
and immunity checkpoint inhibitors are in progress, and the results of these preclinical and clinical
trials are listed in Table 3. Two phase III trials have shown that a combination therapy of atezolizumab
and bevacizumab is effective and tolerable. Comparisons of combination chemotherapies (carboplatin
and paclitaxel) and atezolizumab + bevacizumab in untreated non-small cell lung cancer have shown
better survival (response rate, progression-free survival, and overall survival) in the atezolizumab +
bevacizumab group than in the chemotherapy + bevacizumab group. Subgroup analysis of the low
PD-L1 expression group, the group with low effector T cell gene expression, and the liver metastases
group also shows similar results [126]. In a study of patients with metastatic RCC characterized by
≥1% PD-L1 expression, the combination therapy (bevacizumab and atezolizumab) group had a longer
progression-free survival than the sunitinib monotherapy group [127].

Table 3. Selected ongoing phase III clinical trials involving anti-angiogenic inhibitors combined with
cancer immunotherapy.

Tumor Type Combination Drugs Study Status NCT ID

Stage IV NSCLC Atezolizumab+Carboplatin+paclitaxel+Bevacizumab Active, not recruiting NCT02366143
Advanced RCC Bevacizumab+Atezolizumab Active, not recruiting NCT02420821
Advanced RCC Avelumab+Axitinib Active, not recruiting NCT02684006
Advanced RCC Lenvatinib/Everolimus or Lenvatinib/Pembrolizumab Recruiting NCT02811861

Recurrent OC, FTC, or PPC Pegylated Liposomal
Doxorubicin+Atezolizumab+Bevacizumab Recruiting NCT02839707

RCC Pembrolizumab+Axitinib Active, not recruiting NCT02853331
Late relapse OC Atezolizumab+Chemotherapy+Bevacizumab Recruiting NCT02891824
OC,FTC,or PPC Atezolizumab+Carboplatin+paclitaxel+Bevacizumab Recruiting NCT03038100
Early relapse OC Atezolizumab+Bevacizumab+Chemotherapy Recruiting NCT03353831
Locally Advanced or
Metasatatic HCC Atezolizumab+Bevacizumab Recruiting NCT03434379
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9. Conclusions

In this review, we have discussed the mechanism of tumor angiogenesis as well as antiangiogenic
therapy from the perspective of the tumor microenvironment. Although angiogenesis inhibitors have
been used in combination with chemotherapy for more than 10 years, resulting overall survival has
increased by only a few months and resistance to treatment has often developed rapidly. Angiogenesis
inhibitors have failed to improve overall survival in some cancers such as breast cancer. These findings
highlight the complexity of the pathways involved in tumor neovascularization and raise questions
about the effective use of antiangiogenic therapy in cancer treatment. Therefore, we need to better
understand the role of neovascularization in different cancers and how they avoid the effects of
antiangiogenic therapy. A combination therapy with angiogenesis inhibitors and immunotherapy
effectively enhances the benefits of angiogenesis inhibitors and represents the most promising
path ahead.
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