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Abstract: In critically ill patients, liver dysfunction often results in coagulopathy and encephalopathy
and is associated with high mortality. Extracorporeal clearance of hepatotoxic metabolites, including
bilirubin and ammonia, aims to attenuate further hepatocyte damage and liver injury, resulting
in decreased mortality. The efficacy of hemadsorption combined with conventional hemodialysis
to eliminate bilirubin and ammonia to support the liver’s excretory function in acute liver injury
has been described previously. However, the optimal use of liver support systems in chronic liver
dysfunction due to secondary sclerosing cholangitis in critically ill patients (SSC-CIP) has not been
defined yet. We herein describe the kinetics of successful bilirubin and ammonia elimination by
hemadsorption in a patient with SSC-CIP after extracorporeal membrane oxygenation (ECMO)
therapy for severe acute respiratory distress syndrome (ARDS) in a patient with coronavirus disease
2019 (COVID-19). During the course of the disease, the patient developed laboratory signs of liver
injury during ECMO therapy before clinically detectable jaundice or elevated bilirubin levels. A
diagnosis of SSC-CIP was confirmed by endoscopic retrograde cholangiopancreatography (ERCP)
based on intraductal filling defects in the intrahepatic bile ducts due to biliary casts. The patient
showed stable elevations of bilirubin and ammonia levels thereafter, but presented with progressive
nausea, vomiting, weakness, and exhaustion. Based on these laboratory findings, hemadsorption
was combined with hemodialysis treatment and successfully eliminated bilirubin and ammonia.
Moreover, direct comparison revealed that ammonia is more efficiently eliminated by hemadsorption
than bilirubin levels. Clinical symptoms of nausea, vomiting, weakness, and exhaustion improved.
In summary, bilirubin and ammonia were successfully eliminated by hemadsorption combined with
hemodialysis treatment in SSC-CIP following ECMO therapy and severe COVID-19. This observation
is particularly relevant since it has been reported that a considerable subset of critically ill patients
with COVID-19 suffer from liver dysfunction associated with high mortality.

Keywords: bilirubin elimination; ammonia elimination; hemadsorption; CytoSorb; secondary scleros-
ing cholangitis; SSC-CIP; COVID-19; extracorporeal membrane oxygenation; intensive care medicine

1. Introduction

In critically ill patients, liver dysfunction potentially results in coagulopathy and
encephalopathy and is associated with high mortality [1,2]. Liver dysfunction can either
occur because of primary liver diseases or result from secondary causes. Reasons for
primary liver dysfunction are hepatotoxic agents, including drugs or viral infection, leading
to acute liver dysfunction and potential recovery from injury [3,4]. More frequently,
liver dysfunction is observed secondary to cholestasis, hypoxic liver injury, sepsis, or
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cardiogenic shock with acute and possibly persistent liver dysfunction in critically ill
patients [5,6]. Among them, secondary sclerosing cholangitis (SSC) has been observed after
hypoxic liver injury, but also in critically ill patients (SSC-CIP) requiring extracorporeal
membrane oxygenation (ECMO) therapy [7]. SSC-CIP and impaired liver clearance cause
accumulation of toxic metabolites (including elevated levels of bilirubin and ammonia)
with sustained synthetic liver function [7]. In critically ill patients, elevated bilirubin levels
are associated with higher mortality [8,9].

Furthermore, accumulation of ammonia can cause cerebral edema with a risk of per-
sistent cerebral injury [10]. Treatment regimens of liver dysfunction in critically ill patients
include prevention of ongoing liver injury, ultimately leading to the requirement for liver
transplantation or death [11,12]. In addition, liver support systems are used as supportive
therapy. Extracorporeal clearance of hepatotoxic metabolites, including bilirubin and am-
monia, aims to attenuate further hepatocyte damage and liver injury, potentially resulting
in decreased mortality [13]. Liver support systems include therapeutic plasma exchange,
which has been shown to improve outcomes but may lead to hypotension and increased
bleeding risk [14–17]. Another approach is albumin dialysis, as described with molecular
adsorbent recirculating system (MARS) or advanced organ support (ADVOS) [18–20].
ADVOS is an advanced hemodialysis system combining organ support for the liver and
kidneys. Although case studies have shown the efficacy of the ADVOS system in critically
ill patients with acute liver dysfunction, it has not yet been established in daily intensive
care practice [21,22]. Finally, the efficacy of hemadsorption in combination with conven-
tional hemodialysis to eliminate bilirubin and ammonia to support the liver’s excretory
function in acute liver injury has been described previously [23–26].

However, the role of liver support systems in chronic liver dysfunction, including
SSC, has not yet been defined. We herein describe the kinetics of successful bilirubin
and ammonia elimination by hemadsorption in a patient with SSC-CIP following ECMO
therapy and coronavirus disease 2019 (COVID-19).

2. Case Description

A 61-year-old woman with confirmed COVID-19 was admitted to a different hospital
with a productive cough experienced for a few days. She required invasive assisted
ventilation shortly after admission. Her medical history included rheumatoid arthritis,
obstructive sleep apnea, and arterial hypertension. Because of progressive severe acute
respiratory distress syndrome (ARDS), the patient was transferred to our tertiary care
hospital for kinetic therapy (prone positioning for at least 12 h per day) and continuous
renal replacement therapy (CRRT) due to oliguric acute kidney injury (AKI) (Figure 1A).
Because of progressive hypoxemia, venovenous ECMO therapy was initiated 13 days after
admission to our hospital (Figure 1A). Subsequently, nasopharyngeal swabs and tracheal
aspirates tested negative for SARS-CoV-2. After tracheotomy and weaning, ECMO therapy
and invasive assisted ventilation were no longer required, but the patient still needed
intermittent renal replacement therapy (IRRT) (Figure 1A).

During the course of the disease, the patient developed laboratory signs of liver injury
during ECMO therapy before the clinical appearance of jaundice with elevated bilirubin
levels, but sustained synthetic liver function reflected by the international normalized
ratio (INR) and serum albumin measurements (Figure 1B–E). A diagnosis of SSC-CIP
was confirmed by endoscopic retrograde cholangiopancreatography (ERCP), showing
intraductal filling defects in the intrahepatic bile ducts due to biliary casts. In addition,
the patient received drugs that have previously been associated with SSC, including
amoxicillin-clavulanate, and ketamine sedation [27–29]. Plasma levels of bilirubin and
ammonia gradually increased after that, with stable liver synthesis reflected by normal
values of the international normalized ratio (INR) without substituting coagulation factors
(Figure 1D,E).
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Figure 1. Timeline of COVID-19 disease course. (A) Timeline of treatment regimens after admission, 
kinetic therapy included prone positioning for at least 12 h per day. (B–E) Time course of plasma 
AST, ALT, GGT, AP, INR, bilirubin, and albumin. Abbreviations: ALT, alanine transaminase; AP, 
alkaline phosphatase; AST, aspartate transaminase; COVID-19, coronavirus disease 2019; GGT, 
gamma-glutamyl transferase; INR, international normalized ratio. 

Figure 1. Timeline of COVID-19 disease course. (A) Timeline of treatment regimens after admission,
kinetic therapy included prone positioning for at least 12 h per day. (B–E) Time course of plasma
AST, ALT, GGT, AP, INR, bilirubin, and albumin. Abbreviations: ALT, alanine transaminase; AP,
alkaline phosphatase; AST, aspartate transaminase; COVID-19, coronavirus disease 2019; GGT,
gamma-glutamyl transferase; INR, international normalized ratio.

Nevertheless, the patient developed progressive nausea, vomiting, weakness, and
exhaustion as the disease progressed. Hepatic encephalopathy was treated with lactulose
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and rifaximin, but clinical symptoms worsened (Figure 2A). Based on these observations,
hemadsorption using the CytoSorb hemoperfusion device (CytoSorbents Europe, Berlin,
Germany) was used in combination with IRRT (6 treatments within 7 days and 8–12 h
per session). In this patient with SSC following ECMO therapy and severe COVID-19,
hemadsorption successfully eliminated bilirubin, ammonia, and C-reactive protein (CRP)
levels, while serum albumin levels remained stable (Figure 2A). Direct comparison revealed
that bilirubin was less efficiently eliminated by hemadsorption by 33% and 56% after 2
and 6 treatments, respectively (Figure 2B) compared to ammonia by 65% and 74% after 2
and 6 treatments, respectively (Figure 2C). During successful elimination of bilirubin and
ammonia, clinical symptoms of nausea, vomiting, weakness, and exhaustion improved.
Following a continuation of IRRT but termination of hemadsorption therapy, bilirubin
(32.2 mg/dL) and ammonia levels (208 g/dL) increased again, worsening clinical symp-
toms within 20 days. The patient suddenly died due to cardiac arrhythmia before liver
transplantation evaluation was initiated.
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Figure 2. Timeline of hemadsorption therapy. (A) Arrowheads indicate the time points of hemad-
sorption. Plasma levels of bilirubin, albumin (upper panel), ammonia (middle panel), CRP, and WBC
count (lower panel) are shown. (B) Levels of bilirubin before (95 days after admission) and after
the initiation of hemadsorption therapy (106 and 110 days after admission). (C) Levels of ammonia
before (95 days after admission) and after the initiation of hemadsorption therapy (106 and 110 days
after admission). Abbreviations: CRP, C-reactive protein; WBC, white blood cell.
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3. Discussion

During acute liver dysfunction, a range of toxic metabolites accumulate in the blood.
These metabolites include hydrophobic, albumin-bound molecules such as unconjugated
bilirubin, bile acids, phenols, aromatic amino acids, and fatty acids, in addition to water-
soluble compounds such as ammonia and circulating cytokines. Water-soluble metabolites,
including ammonia, are in principle removed by hemodialysis but require high cut-off
membranes for sufficient clearance [30–35]. In contrast, protein-bound liver toxins, in-
cluding bilirubin, are not effectively removed by hemodialysis alone [36,37]. The aim of
adsorption technologies as liver support system is the removal of such albumin-bound
molecules. In in vitro studies, bilirubin is effectively removed by hemadsorption with a
minimal loss of albumin itself [38,39]. Therefore, combining hemadsorption with hemodial-
ysis is an attractive approach for eliminating protein-bound and water-soluble metabolites
in patients with severe liver dysfunction. Various blood purification systems are available
as liver support therapies to eliminate toxic metabolites in acute liver dysfunction [39].
In particular, methods of albumin dialysis have been frequently used for the clearance
of protein-bound liver toxins [19,20]. Beside this, these systems are complicated to use,
expensive, and have limited value in daily intensive care practice [21,22]. In addition, a
survival benefit has not been demonstrated in randomized clinical trials [40,41]. However,
there is evidence that the use of liver support systems improves clinical symptoms of
liver dysfunction and might reduce mortality not attributed to a particular liver support
system [13].

The application of hemadsorption is best studied in the context of sepsis. The inflam-
matory state associated with sepsis leads to proinflammatory cytokine release into the
systemic circulation with deleterious effects and high mortality [42–44]. These observations
resulted in efforts to attenuate this inflammatory response by extracorporeal cytokine
removal using CRRT [45]. However, no randomized controlled trials could demonstrate a
survival benefit of using CRRT for cytokine removal, including the use of high-volume pro-
cedures [46–48]. In contrast to CRRT, multiple experimental studies using animal models
of sepsis have demonstrated the efficacy of hemadsorption for reducing various circulating
cytokines and chemokines (including CRP) associated with attenuation of organ injury
and improved survival [49–53]. According to the manufacturer’s data, hemadsorbers
have a surface area of about 45,000 m2 and eliminate molecules up to 55 kDa in size. In
contrast to soluble cytokines and chemokines in circulation, most liver toxins are bound to
plasma albumin (39). Protein-bound bilirubin and most bile acids are below 55 kDa in size
and can, therefore, principally be eliminated through hemadsorption [26,39]. However,
water-soluble metabolites, including ammonia with 17 kDa, are only removed by high-flux
hemodialysis [30–35]. While the effectiveness of additional hemadsorption to eliminate
protein-bound bilirubin and water-soluble ammonia has been described previously in
critically ill patients with acute liver failure, treatment efficacy in SSC-CIP has not yet
been reported [54–56]. The pathogenesis of SSC-CIP remains elusive, but current concepts
suggest that the primary insult is hypoperfusion of the biliary vasculature. The intrahepatic
cholangiocyte epithelium is supplied by the peribiliary vascular plexus that arises from the
hepatic arteries. This contrasts with the liver parenchyma supplied by a dual blood source
arising from the hepatic arteries and portal system. Therefore, the biliary vasculature is
thought to be more susceptible to hypoperfusion and consecutive ischemia [57]. SSC-CIP
has previously been observed after ECMO therapy, including in cases of COVID-19, and
a direct viral tropism with detection of SARS-CoV-2 RNA and associated nucleocapsid
protein in cholangiocytes and bile ducts has been proposed [58,59]. Finally, endotheli-
itis resulting in hypercoagulability in the peribiliary vascular plexus may also aggravate
ischemia of the biliary tract.

We herein expand current knowledge and describe a case of SSC-CIP following ECMO
therapy and severe COVID-19 treated by hemadsorption. The main limitation is a case
description, and further clinical research is required to strengthen our observations. More-
over, hemadsorption has already been described in the context of acute liver failure [54–56].
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This is particularly relevant since it has been reported that about one-third of patients
critically ill with COVID-19 suffer from liver dysfunction associated with high mortal-
ity [60]. Moreover, this is the first report of SSC-CIP treated with hemadsorption, especially
relevant since SSC-CIP affects a considerable number of COVID-19 patients requiring
ECMO therapy [58]. By combining hemadsorption with hemodialysis treatment, successful
bilirubin and ammonia elimination were observed. More importantly, our patient showed
that extracorporeal clearance of bilirubin and ammonia were associated with improved
clinical symptoms, including nausea, vomiting, weakness, and exhaustion.

4. Conclusions

In conclusion, the kinetics of bilirubin and ammonia during hemadsorption therapy
confirmed efficient removal in this case of SSC following ECMO therapy and severe COVID-
19, associated with regredient clinical symptoms of chronic liver dysfunction. Furthermore,
direct comparison revealed that ammonia is more efficiently eliminated by hemadsorption
than bilirubin levels.
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