1	Comparative performance of five commercially available serologic assays to detect
2	antibodies to SARS-CoV-2 and identify individuals with high neutralizing titers
3	
4	Eshan U. Patel, M.P.H. ^{a,b} , Evan M. Bloch, M.D. ^a , William Clarke, Ph.D. ^a , Yu-Hsiang Hsieh, Ph.D. ^c ,
5	Denali Boon, Ph.D. ^d , Yolanda Eby, M.S. ^a , Reinaldo E. Fernandez, B.S. ^e , Owen R. Baker, B.S. ^f ,
6	Morgan Keruly, B.S. ^e , Charles S. Kirby, B.S. ^a , Ethan Klock, B.S. ^e , Kirsten Littlefield, B.S. ^g , Jernelle
7	Miller, M.S. ^a , Haley A. Schmidt, B.S. ^a , Philip Sullivan, M.P.H. ^a , Estelle Piwowar-Manning, B.S. ^a ,
8	Ruchee Shrestha, M.P.H. ^a , Andrew D. Redd, Ph.D. ^{e,f} , Richard E. Rothman, M.D., Ph.D. ^c , David
9	Sullivan, M.D. ^g , Shmuel Shoham, M.D. ^e , Arturo Casadevall, M.D., Ph.D. ^g , Thomas C. Quinn,
10	M.D. ^{e,f} , Andrew Pekosz, Ph.D. ^g , Aaron A.R. Tobian, M.D., Ph.D. ^{a,e,*} , Oliver Laeyendecker, PhD ^{e,f,*}
11	
12	^a Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
13 14	^b Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
14 15	^d Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
16	^e Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
17	^f Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Baltimore, MD, USA
18	^g Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
19	
20	* These authors contributed equally and are co-senior authors.
21	
22	Corresponding author: Oliver Laeyendecker, PhD, National Institute of Allergy and Infectious
23	Diseases, National Institutes of Health, 855 North Wolfe Street, Rangos Building, Room 538A,
24	Baltimore, MD 21205, USA; Email address: <u>olaeyen1@jhmi.edu</u>
25	
26	Main text word count: 2864/3000
27	
28	Abstract word count: 232/250
29	
30	Running title: Commercial SARS-CoV-2 EIAs and nAbs
31	
32	Conflicts of interest: The authors declare no potential conflicts of interest.
33	*
-	

34 ABSTRACT

35

36 Accurate serological assays to detect antibodies to SARS-CoV-2 are needed to characterize the 37 epidemiology of SARS-CoV-2 infection and identify potential candidates for COVID-19 38 convalescent plasma (CCP) donation. This study compared the performance of commercial 39 enzyme immunoassays (EIAs) to detect IgG or total antibodies to SARS-CoV-2 and neutralizing 40 antibodies (nAb). The diagnostic accuracy of five commercially available EIAs (Abbott, Euroimmun, EDI, ImmunoDiagnostics, and Roche) to detect IgG or total antibodies to SARS-41 42 CoV-2 was evaluated from cross-sectional samples of potential CCP donors that had prior 43 molecular confirmation of SARS-CoV-2 infection for sensitivity (n=214) and pre-pandemic 44 emergency department patients for specificity (n=1,102). Of the 214 potential CCP donors, all 45 were sampled >14 days since symptom onset and only a minority had been hospitalized due to 46 COVID-19 (n=16 [7.5%]); 140 potential CCP donors were tested by all five EIAs and a microneutralization assay. When performed according to the manufacturers' protocol to detect 47 IgG or total antibodies to SARS-CoV-2, the sensitivity of each EIA ranged from 76.4% to 48 49 93.9%, and the specificity of each EIA ranged from 87.0% to 99.6%. Using a nAb titer cutoff of ≥ 160 as the reference positive test (n=140 CCP donors), the *empirical* area under receiver 50 51 operating curve of each EIA ranged from 0.66 (Roche) to 0.90 (Euroimmun). Commercial EIAs 52 with high diagnostic accuracy to detect SARS-CoV-2 antibodies did not necessarily have high 53 diagnostic accuracy to detect high nAbs. Some but not all commercial EIAs may be useful in the 54 identification of individuals with high nAbs in convalescent individuals. 55 56 Abstract word count: 247/250 57 58 Key words: COVID-19, SARS-CoV-2, serologic assays, neutralizing titers, convalescent plasma 59

61

62 INTRODUCTION

63 Globally, as of August 2020, there have been over 23.5 million reported cases of Severe Acute Respiratory Syndrome Associated Coronavirus 2 (SARS-CoV-2) infection, which causes 64 Coronavirus-19 (COVID-19) disease.¹ Surveillance based on case-reporting is informative but it 65 66 significantly underestimates the true burden of infection and can lead to biased epidemiological 67 inferences. Accurate and reliable serological assays to detect SARS-CoV-2 antibodies can be 68 used to better understand the epidemiology of SARS-CoV-2 infection at the population-level, as the presence of antibodies to SARS-CoV-2 indicates recent or prior exposure to the virus.² 69 70 Serological assays can also be useful for screening blood donations, qualifying individuals for 71 convalescent plasma donation, monitoring immune responses to vaccine candidates, clinically managing patients, and studying the natural history of infection.² It is still unknown whether the 72 73 presence of antibodies against SARS-CoV-2 confers immunity against reinfection with the virus, 74 or how long those antibodies persist following infection. 75 As of August 2020, 39 commercially available serological assays have received an individual 76 emergency use authorization (EUA) by the US Food and Drug Administration (FDA) for the detection of antibodies to SARS-CoV-2.³ These assays detect IgA, IgM, IgG or total antibodies 77 78 to the subunit 1 of the spike glycoprotein (S1), the spike glycoprotein receptor binding domain 79 (RBD), or the recombinant nucleocapsid protein (N) of the virus. The assays can also be 80 categorized, broadly, as (1) lateral flow immunoassays (LFAs); (2) enzyme-linked 81 immunosorbent assays (ELISAs); and (3) chemiluminescent immunoassays (CLIAs). ELISAs 82 and CLIAs (collectively known as enzyme immunoassays [EIAs]) often provide semiquantitative 83 output that can be interpreted as antibody titers, whereas current LFAs are strictly qualitative. 84 Recent systematic reviews of the literature have noted the need for additional data on the

85 performance of commercially available SARS-CoV-2 serologic assays, as most previous studies 86 have been deemed to have a high risk of bias, particularly due to the use of small sample sizes 87 and/or exclusion of specimens from asymptomatic SARS-CoV-2 infections and mild or moderate cases of COVID-19.4-6 88 89 Commercial SARS-CoV-2 EIAs may have an additional role in the implementation of COVID-19 convalescent plasma (CCP) therapy programs.^{2,7} The FDA recently issued an EUA for CCP 90 therapy.⁸ Indeed. observational evidence suggests CCP is likely safe and efficacious, particularly 91 when administered early in the disease process.^{9–12} Higher IgG antibody titers to the S1 protein 92 in CCP transfused to COVID-19 patients have been associated with decreased mortality.¹² 93 94 Higher IgG antibody titers to the spike (S) and nucleocapsid (N) protein of SARS-CoV-2 have also been shown to correlate with SARS-CoV-2 neutralizing antibody (nAb) titers^{13–16}, which are 95 96 presumed to be critical for viral clearance. Current in vitro assays to detect nAbs are resource-97 and time-intensive, and are not typically conducted in clinical laboratories. Commercial SARS-98 CoV-2 EIAs that are already in use to qualify CCP donors could also potentially be applied to 99 identify those with high nAbs. However, data on the comparative performance of commercial 100 SARS-CoV-2 EIAs to discriminate between CCP donors with high and low nAbs are limited. 101 This study was designed to compare the performance of five commercially available EIAs to

102 detect IgG or total antibodies to SARS-CoV-2 and to discriminate between high and low nAbs.

104 MATERIALS AND METHODS

105 Ethics statement

106 This study used stored samples and data from two parent studies that were approved by The

- 107 Johns Hopkins University School of Medicine Institutional Review Board. All samples were de-
- 108 identified prior to laboratory testing. Both studies were conducted according to the ethical
- 109 standards of the Helsinki Declaration of the World Medical Association.

110 Study specimens

111 To test the clinical sensitivity of SARS-CoV-2 EIAs, we included stored plasma specimens from 112 a convenience sample of potential CCP donors that were recruited in the Baltimore, MD and Washington DC area (n=214).¹³ Individuals were eligible for enrollment if they had a 113 114 documented history of a positive molecular assay test result for SARS-CoV-2 infection 115 (confirmed by medical chart review or shared clinical documentation) and met standard self-116 reported eligibility criteria for blood donation. Demographic information of included CCP 117 donors is shown in *Supplemental Table 1*. Among included CCP donors, there was a median of 118 44 days from diagnosis until sample collection (interquartile range, 38-50 days). Although all 119 included CCP donors were symptomatic at the time of SARS-CoV-2 infection, less than 10% 120 had a history of hospitalization due to COVID-19. To test the clinical specificity of SARS-CoV-2 EIAs, we included stored serum specimens from an identity-unlinked serosurvey conducted in 121 122 2016 among adult patients attending the Johns Hopkins Hospital Emergency Department 123 (n=1,102). Both parent studies were cross-sectional and no individual contributed multiple 124 specimens. All plasma/serum samples were stored at -80°C until assays were performed.

125 SARS-CoV-2 EIAs

126 Plasma/serum specimens were analyzed using five commercially available EIAs: the Euroimmun 127 Anti-SARS-CoV-2 ELISA, the Epitope Diagnostics, Inc. (EDI) Novel Coronavirus COVID-19 128 IgG ELISA Kit, the ImmunoDiagnostics SARS-CoV-2 NP IgG ELISA kit, the Abbott-Architect 129 SARS-CoV-2 IgG chemiluminescent microparticle immunoassay (CMIA) and the Roche 130 Diagnostics Elecsys®Anti-SARS-CoV-2 E-CLIA (Table 1). These commercially available EIAs 131 were selected either because data on performance characteristics for the assay are limited and/or 132 the assay has received an EUA by the FDA. The target antigen for each EIA is the nucleocapsid 133 protein with the exception of the Euroimmun ELISA for which the target antigen is the S1 134 protein. The Roche assay measures total antibodies to SARS-CoV-2, whereas the others measure 135 only IgG to SARS-CoV-2. EIAs were conducted according to the manufacturers' instructions. 136 The intended use of each EIA is the qualitative detection of antibodies; however, each EIA 137 provides semi-quantitative output normalized by a calibrator. For simplicity, we refer to the 138 normalized continuous output of each EIA as a "ratio" value. The manufacturers' ratio cutoffs to 139 qualitatively indicate seropositivity, indeterminate serostatus, or seronegativity for SARS-CoV-2 140 antibodies are provided (Table 1). Specimens were tested by each EIA based on sample volume 141 availability and assay kit availability at the time of testing.

142 Microneutralization assay

143 Plasma nAb titers were quantified against 100 fifty percent tissue culture infectious doses

144 (TCID50) using a microneutralization (NT) assay in VeroE6-TMPRSS2 cells, which has been

145 previously described.^{13,17} In brief, plasma was diluted 1:20 and subsequent two-fold dilutions.

146 Infectious virus was added to the plasma dilutions at a final concentration of 1×10^4 TCID₅₀/ml.

147	After a 1-hour incubation at room temperature, 100µL of each sample dilution was added to 6
148	wells in a 96-well plate of VeroE6-TMPRSS2 cells, ¹⁸ and incubated for 6 hours at 37°C. The
149	inocula were removed from the plate, fresh media was added, and the plate was incubated at
150	37°C for 48 hours. The cells were fixed with 4% formaldehyde (in each well), incubated for 4
151	hours at room temperature, and stained with Napthol Blue Black (Sigma-Aldrich). We calculated
152	a nAb titer area under the curve (AUC) value for each sample using the exact number of wells
153	protected from infection at every dilution. Samples with no neutralizing activity were assigned a
154	value of one-half the lowest measured AUC.

155 Statistical analysis

156 The diagnostic accuracy of each EIA to detect IgG or total antibodies to SARS-CoV-2 was

157 examined using CCP donor specimens as reference standard positive and pre-pandemic

158 specimens as reference standard negative. For each EIA, non-parametric, empirical receiver

159 operating curve analysis (ROC) was performed to calculate the area under the receiver operating

160 curve (AUROC). This analysis was also done using the manufacturers' cut-offs. Sensitivity (%)

161 was calculated as 100 x (Positive/[Positive + False-Negative]). Specificity (%) was calculated as

162 100 x (Negative/[Negative + False-Positive]). For these analyses, an available-case approach was

used for each EIA and indeterminate results were considered to be seronegative. Three separate

sensitivity analyses were conducted: (1) we performed head-to-head comparisons, (2) we

165 considered indeterminate specimens as positive, and (3) we excluded indeterminate specimens.

166 Exact binomial (Clopper-Pearson) 95% confidence intervals (CI) were calculated for estimates.

167 The remaining analyses were conducted in CCP donors that had data for all five EIAs and nAb

titers (n=140). The correlation of EIA ratios and nAb AUC values were examined using

169	spearman's correlation coefficients (ρ) with 95% CIs estimated over 1000 bootstrap iterations.
170	We evaluated four binary cut-offs of the nAb AUC value to indicate "high" nAbs titers: ≥ 20 ,
171	\geq 40, \geq 80, and \geq 160. For each nAb AUC cut-off, we evaluated the performance of each EIA to
172	discriminate between low and high nAb titers using empirical ROC analysis.
173	According to the recent EUA for CCP therapy, all CCP donors will be required to be antibody
174	positive for SARS-CoV-2. Thus, we also calculated the positive percentage agreement and
175	negative percentage agreement between each binary nAb threshold and each EIA using the
176	manufacturer's cut-offs originally recommended for SARS-CoV-2 serostatus in the CCP donor
177	population (indeterminates were considered as seronegative).
178	Statistical analyses were performed in Stata/MP, version 15.2 (StataCorp, CollegeStation, TX)
179	and R statistical software.
180	RESULTS
181	Of the 214 specimens from potential CCP donors, 146 were tested by the Euroimmun, EDI, and
182	Abbott assays; 140 were tested by the ImmunoDiagnostics assay, and all 214 were tested by the
183	Roche assay (140 were assayed by all five EIAs). Of the 1,102 pre-pandemic specimens
184	included, 562 were tested by the Euroimmun assay, 579 were tested by the EDI assay, 306 were
185	tested by the ImmunoDiagnostics assay, and 500 were tested by the Abbott and Roche assays.

- 186 In empirical ROC analyses, all assays —with the exception of EDI— had an AUROC value that
- 187 exceeded 0.95, suggesting each assay has the capacity to accurately detect antibodies to SARS-
- 188 CoV-2 (Table 2). For the ELISAs (Euroimmun, EDI, and ImmunoDiagnostics) the AUROCs
- 189 were greater by 5 absolute percentage points in the empirical ROC analysis compared to the

190	analysis using the manufacturers' cutoffs. For the Abbott and Roche assays, the AUROCs were
191	similar in the empirical analysis and the analysis using the manufacturers' cut-offs.
192	Using the manufacturers' cut-offs, the sensitivity of each EIA to detect SARS-CoV-2 antibodies
193	ranged from 76.4% to 93.9%, whereas the specificity of each EIA ranged from 87.0% to 99.6%.
194	Both the Abbott and Roche assays had comparable characteristics as each other with higher point
195	estimates for sensitivity and specificity compared to the ELISAs. Considering
196	indeterminate/borderline specimens as seropositive as opposed to seronegative decreased the
197	specificity of EDI; however, excluding indeterminate/borderline specimens had minimal impact
198	on estimates (Supplemental Table 2). Similar estimates were also obtained in direct comparisons
199	(Supplemental Tables 3, 4). It is also notable that among the 140 CCP donor specimens that
200	were tested by all five EIAs, there were $6(4.3\%)$ specimens that were seronegative (or
201	indeterminate) for SARS-CoV-2 by all five EIAs. The median time from COVID-19 diagnosis
202	for these 6 individuals was 46 days (range, 33-54). Interestingly, there were 2 false-positive
203	specimens of the 500 pre-pandemic specimens tested by both Abbott and Roche (one of which
204	was false-positive on both assays).

Among pre-pandemic samples, there was greater variation in the distribution of ratio values for ELISAs than for the Abbott and Roche assays (*Supplemental Figure 1*), consistent with the higher specificity observed for the Abbott and Roche assays. For the Abbott, Roche and ImmunoDiagnostics assays, the value of three times the standard deviation above the mean value from all the pre-pandemic samples was below the cutoff used to define a positive sample.

Among the 140 CCP donor specimens, the median nAb AUC value was 60 (interquartile range:

211 10, 150). The prevalence of nAb AUC \geq 20 was 65.7% (n=92), the prevalence of nAb AUC \geq 40

212	was 57.1% (n=80), the prevalence of nAb AUC \geq 80 was 45.7% (n=64), and the prevalence of
213	nAb AUC \geq 160 was 25.0% (n=35). There were significant positive correlations between nAb
214	AUC values and EIA ratio values for all EIAs examined (Figure 1), but the strongest correlation
215	was observed for the Euroimmun assay (ρ =0.81 [95%CI: 0.74-0.85]) and weakest correlation
216	was observed for the Roche assay (ρ =0.40 [95%CI: 0.25-0.54]). With "high" nAb titers as the
217	reference positive, there was substantial between-assay variability in the empirical AUROCs of
218	each EIA, but changing the threshold used to define a "high" nAb titer did not substantially
219	impact the AUROCs of a given EIA (Figure 2). For instance, for all four nAbs thresholds
220	evaluated, all empirical AUROC point estimates for the Euroimmun assay were \geq 90, whereas all
221	AUROC point estimates for the Roche assay were <0.75. For the Euroimmun assay and nAB
222	test at a threshold of \geq 160, the EIA ratio cut-off with the highest overall percent agreement
223	(86%) was 6.0 (positive percent agreement was 77% and negative percent agreement was 89%).
224	Table 3 shows the positive percentage agreement (sensitivity) and negative percentage
225	agreement (specificity) of each assay with the four nAb test thresholds when using the EIA
226	manufacturers cut-offs for seropositivity. All EIAs had a positive percent agreement with "high"
227	nAbs exceeding 90%, regardless of the threshold for high nAbs. However, there was poor
228	negative percentage agreement between each EIA and nAbs. For all EIAs, the negative
229	percentage agreement decreased with increasing threshold for high nAbs.

231 DISCUSSION

We observed substantial variability in the performance characteristics of five commercially 232 233 available EIAs for the detection of antibodies to SARS-CoV-2 and detection of high nAb titers in 234 convalescent individuals. The Roche and Abbott assays had high diagnostic accuracy for the 235 detection of antibodies against SARS-CoV-2. However, the Roche assay ratios weakly correlated 236 with nAb titers and poorly identified persons with high nAb titers. In contrast, the Euroimmun 237 assay ratios had the highest correlations with nAb titers and high discriminative capacity for 238 detecting high nAbs. This variability in assay performance should be considered when selecting 239 an EIA to detect antibodies against SARS-CoV-2 and/or high nAbs among recovered persons. 240 Consistent with our findings, there is growing evidence that both the Abbott and Roche assays 241 have comparable performance characteristics that are often superior to many other commercially 242 available ELISAs to detect IgG or total antibodies against SARS-CoV-2 in convalescent individuals.^{19,20} Although we did not include "challenge" specimens to examine potential cross-243 244 reactivity of antibodies to other pathogens, others have shown limited evidence of crossreactivity for the Euroimmun, EDI, Roche, and Abbott assays.^{19,21–25} Data on the performance of 245 246 the ImmunoDiagnostics ELISA to detect SARS-CoV-2 antibodies are limited. 247 Large public health laboratories and large blood collection centers often rely on automated 248

serological platforms—like those by Roche and Abbott—for screening of multiple pathogens
including SARS-CoV-2. While our data support the use of Roche and Abbott to detect SARSCoV-2 antibodies, their utility to detect high nAbs in CCP donors is less clear. Similar to prior
reports, we observed varying degrees of positive correlations between commercial EIA ratios

and neutralizing titers.^{14,26} It is perhaps unsurprising that the Euroimmun ELISA ratios

253 correlated best with nAb titers since it detects S1-specific antibodies-a subset of which are 254 responsible for virus neutralization—while the other assays we assessed detect N-specific 255 antibodies which lack virus neutralization activity. Accordingly, our empirical ROC analysis also 256 indicates Euroimmun may have better performance in discriminating high nAb titers, as 257 compared to the Abbott and Roche assays. Interestingly, using the manufacturer's cut-off, 258 Jaaskelainen et al. found the Abbott assay had greater positive and negative percent agreement with nAb activity than the Euroimmun assay.²⁷ In our study, the Abbott assay was also better 259 260 able to discriminate high nAbs than the Roche assay, which is in contrast to a study by Tang et al. that found similar performance between the Abbott and Roche assays.²⁸ However, similar to 261 262 Tang et al., we found that applying the manufacturer's cutoffs for the commercial EIAs 263 (including Euroimmun) led to suboptimal negative percentage agreement with high nAbs near the FDA recommended nAb titer cut-off of $\geq 1:160$.²⁸ Larger comparative studies are needed to 264 determine the optimal EIA and cut-off to discriminate nAb levels in convalescent donors, 265 including other promising EIAs that were not included in these evaluations.²⁹ 266 267 This study has limitations. First, the data were cross-sectional, so we were unable to capture the 268 influence of longitudinal antibody dynamics on diagnostic accuracy. Second, there were several 269 types of specimens that were not included in the evaluation, such as samples from early in 270 SARS-CoV-2 infection (e.g., <14 days post-symptom onset), samples from individuals who were 271 asymptomatic when infected with SARS-CoV-2, and samples from convalescent individuals 272 who were infected >6 months ago—all of which could potentially influence our estimates of 273 assay sensitivity. Third, the samples used to examine assay specificity were not well-274 characterized due to the identity-unlinked design of the JHHED serosurvey. However, given that 275 we used samples from patients in an inner-city emergency department that delivers primary care

276	to the local underserved community, several included patients who were likely seeking care for
277	viral respiratory illnesses. Finally, the samples evaluated were primarily from the Baltimore-
278	Washington D.C. region, and results may not be generalizable elsewhere.
279	Implementation of the appropriate EIAs to detect SARS-CoV-2 antibodies will require careful
280	consideration of the inferential purpose (e.g., individual- vs. population-level inference), context
281	(e.g., prevalence in target population), operational feasibility (e.g., high-throughput platform vs.
282	manual ELISA) and the underlying test performance characteristics of the assays. Although the
283	output ratio results for commercially available EIAs correlate with nAb titers, EIA ratios should
284	not be universally considered a surrogate for nAb titers. This is particularly relevant for
285	programs that are currently scaling CCP therapy per new FDA guidelines. Ratios from some
286	commercial EIAs, however, may help inform prediction models that can also incorporate other
287	predictors of high nAb titers. These models could prove useful in the identification of optimal
288	CCP donors in the absence of accurate and reliable high-throughput tests for nAb titers.

289 Acknowledgements

290

- We acknowledge all of the participants who contributed specimens to this study and all studystaff without whom this study would not have been possible.
- 293
- 294 Funding

295

- 296 This work was supported in part by the Division of Intramural Research, National Institute of
- 297 Allergy and Infectious Diseases (NIAID), National Institutes of Health, as well as extramural
- support from NIAID (R01AI120938, R01AI120938S1 and R01AI128779 to A.A.R.T;
- 299 R01AI05273 and R01AI152078 to A.C.; T32AI102623 for supporting E.U.P.; UM1-AI068613
- 300 for supporting **R.E.F**. and **E.K.**; and NIH Center of Excellence in Influenza Research and
- 301 Surveillance HHSN272201400007C to A.P. and R.E.R.), National Heart Lung and Blood
- 302 Institute (K23HL151826 to **E.M.B** and R01HL059842 to **A.C.**), National Institute of Drug
- 303 Abuse (T32DA007292 for supporting **D.B.**), Bloomberg Philanthropies (**A.C.**) and Department
- **304** of Defense (W911QY2090012 to **A.C.** and **D.S.**).

306		References
307	1	Johns Hopkins University. COVID-19 Dashboard by the Center for Systems Science and
308		Engineering (CSSE) at Johns Hopkins University (JHU). https://coronavirus.jhu.edu/map.html
309		(accessed Aug 20, 2020).
310	2	Theel ES, Slev P, Wheeler S, Couturier MR, Wong SJ, Kadkhoda K. The Role of Antibody
311		Testing for SARS-CoV-2: Is There One? J Clin Microbiol 2020; 58. DOI:10.1128/JCM.00797-20.
312	3	U.S. Food and Drug Administration. In Vitro Diagnostic EUAs. 2020.
313		https://www.fda.gov/medical-devices/coronavirus-disease-2019-covid-19-emergency-use-
314		authorizations-medical-devices/vitro-diagnostics-euas#isft1 (accessed Aug 18, 2020).
315	4	Lisboa Bastos M, Tavaziva G, Abidi SK, et al. Diagnostic accuracy of serological tests for covid-
316		19: systematic review and meta-analysis. BMJ 2020; 370 : m2516.
317	5	Deeks JJ, Dinnes J, Takwoingi Y, et al. Antibody tests for identification of current and past
318		infection with SARS-CoV-2. Cochrane database Syst Rev 2020; 6: CD013652.
319	6	Caini S, Bellerba F, Corso F, et al. Meta-analysis of diagnostic performance of serological tests for
320		SARS-CoV-2 antibodies up to 25 April 2020 and public health implications. Euro Surveill Bull
321		Eur sur les Mal Transm = Eur Commun Dis Bull 2020; 25. DOI:10.2807/1560-
322		7917.ES.2020.25.23.2000980.
323	7	Bloch EM, Shoham S, Casadevall A, et al. Deployment of convalescent plasma for the prevention
324		and treatment of COVID-19. J Clin Invest 2020; 130: 2757-65.
325	8	U.S. Food and Drug Administration. FDA Issues Emergency Use Authorization for Convalescent
326		Plasma as Potential Promising COVID-19 Treatment, Another Achievement in Administration's
327		Fight Against Pandemic

- Joyner MJ, Wright RS, Fairweather D, *et al.* Early safety indicators of COVID-19 convalescent
 plasma in 5,000 patients. *J Clin Invest* 2020.
- 330 10 Joyner MJ, Bruno KA, Klassen SA, *et al.* Safety update: COVID-19 convalescent plasma in
- 331 20,000 hospitalized patients. In: Mayo Clinic Proceedings. 2020.
- Joyner MJ, Klassen SA, Senefeld J, *et al.* Evidence favouring the efficacy of convalescent plasma
 for COVID-19 therapy. *medRxiv* 2020.
- Joyner MJ, Senefeld JW, Klassen SA, *et al.* Effect of Convalescent Plasma on Mortality among
 Hospitalized Patients with COVID-19: Initial Three-Month Experience. *medRxiv* 2020.
- Klein SL, Pekosz A, Park H-S, *et al.* Sex, age, and hospitalization drive antibody responses in a
 COVID-19 convalescent plasma donor population. *J Clin Invest* 2020.
- 14 Luchsinger LL, Ransegnola B, Jin D, et al. Serological Analysis of New York City COVID19

Convalescent Plasma Donors. medRxiv Prepr. Serv. Heal. Sci. 2020; published online June.
DOI:10.1101/2020.06.08.20124792.

- 15 Meschi S, Colavita F, Bordi L, et al. Performance evaluation of Abbott ARCHITECT SARS-CoV-
- 342 2 IgG immunoassay in comparison with indirect immunofluorescence and virus
- 343 microneutralization test. J Clin Virol 2020; **129**: 104539.
- 344 16 Ng D, Goldgof G, Shy B, *et al.* SARS-CoV-2 seroprevalence and neutralizing activity in donor
 345 and patient blood from the San Francisco Bay Area. *Medrxiv Prepr Serv Heal Sci* 2020.
- 346 17 Schaecher SR, Stabenow J, Oberle C, *et al.* An immunosuppressed Syrian golden hamster model
 347 for SARS-CoV infection. *Virology* 2008; 380: 312–21.
- 348 18 Matsuyama S, Nao N, Shirato K, et al. Enhanced isolation of SARS-CoV-2 by TMPRSS2-

349	expressing cells. <i>Proc Natl Acad Sci U S A</i> 2020; 117 : 7001–3.
• • •	

- 250 19 Perkmann T, Perkmann-Nagele N, Breyer M-K, *et al.* Side by side comparison of three fully
- automated SARS-CoV-2 antibody assays with a focus on specificity. *Clin Chem* 2020; published
- online Aug. DOI:10.1093/clinchem/hvaa198.
- Theel ES, Harring J, Hilgart H, Granger D. Performance Characteristics of Four High-Throughput
 Immunoassays for Detection of IgG Antibodies against SARS-CoV-2. *J Clin Microbiol* 2020; 58.
 DOI:10.1128/JCM.01243-20.
- 35621Lau CS, Hoo SP, Yew SF, et al. Evaluation of an electrochemiluminescent SARS-CoV-2 antibody
- assay. *J Appl Lab Med* 2020; published online July. DOI:10.1093/jalm/jfaa134.
- 358 22 Merrill AE, Jackson JB, Ehlers A, Voss D, Krasowski MD. Head-to-Head Comparison of Two
 359 SARS-CoV-2 Serology Assays. *J Appl Lab Med* 2020; published online July.
- **360** DOI:10.1093/jalm/jfaa125.
- 361 23 Charlton CL, Kanji JN, Johal K, *et al.* Evaluation of six commercial mid to high volume antibody
- 362 and six point of care lateral flow assays for detection of SARS-CoV-2 antibodies. J Clin
- 363 *Microbiol* 2020; published online July. DOI:10.1128/JCM.01361-20.
- Whitman JD, Hiatt J, Mowery CT, *et al.* Test performance evaluation of SARS-CoV-2 serological
 assays. medRxiv Prepr. Serv. Heal. Sci. 2020; published online May.
- **366** DOI:10.1101/2020.04.25.20074856.
- 367 25 Brochot E, Demey B, Handala L, François C, Duverlie G, Castelain S. Comparison of different
 368 serological assays for SARS-CoV-2 in real life. *J Clin Virol* 2020; : 104569.
- Weidner L, Gansdorfer S, Unterweger S, *et al.* Quantification of SARS-CoV-2 antibodies with
 eight commercially available immunoassays. *J Clin Virol* 2020; **129**: 104540.

371	27	Jääskeläinen AJ, Kuivanen S, Kekäläinen E, et al. Performance of six SARS-CoV-2
372		immunoassays in comparison with microneutralisation. J Clin Virol Off Publ Pan Am Soc Clin
373		<i>Virol</i> 2020; 129 : 104512.
374	28	San Tang M, Case JB, Franks CE, et al. Association between neutralizing antibodies to SARS-
375		CoV-2 and commercial serological assays. <i>bioRxiv</i> 2020.
376	29	Bonelli F, Sarasini A, Zierold C, et al. Clinical and Analytical Performance of an Automated
377		Serological Test That Identifies S1/S2-Neutralizing IgG in COVID-19 Patients
378		Semiquantitatively. J Clin Microbiol 2020; 58. DOI:10.1128/JCM.01224-20.

380 FIGURE LEGENDS

- 381
- 382 Figure 1. Correlations between SARS-CoV-2 enzyme immunoassay antibody titers and neutralizing
- 383 antibody titer AUC values in COVID-19 convalescent individuals (n=140). Spearman correlation
- 384 coefficients (ρ) were calculated with 95% confidence intervals (CI) estimated over 1000 bootstrap iterations.
- 385
- 386 Figure 2. Empirical receiver operating curve analysis for various SARS-CoV-2 enzyme
- 387 immunoassays to detect high neutralizing antibody (nAb) titers at various thresholds (n=140).
- 388 Four thresholds for a high nAb AUC value were examined as the reference positive test.

389 MAIN TABLES

390

391 Table 1. Characteristics of commercial SARS-CoV-2 enzyme immunoassays evaluated.

392

Manufacturer	Assay Name	Target antigen (recombinant)	Platform	Manufacturer's interpretation	No. Samples Evaluated	
Euroimmun, Lubeck, Germany	Anti-SARS-CoV-2 ELISA (IgG) ^a	Spike-1 protein	Manual ELISA	Negative: S/C ratio < 0.8 Borderline: S/C ratio $\ge 0.8 \& <1.1$ Positive: S/C ratio ≥ 1.1	CCP donors: 146 Pre-pandemic: 562	
Epitope Diagnostics, Inc., San Diego, CA	EDI TM Novel Coronavirus COVID-19 IgG ELISA Kit	Nucleocapsid protein	Manual ELISA	Negative: OD-n < 0.18 Borderline: OD-n ≥0.18 & <0.22 Positive: OD-n ≥0.22	CCP donors: 146 Pre-pandemic: 579	
ImmunoDiagnostics Limited, Sha Tin, Hong Kong ^b	SARS-CoV-2 NP IgG ELISA kit	Nucleocapsid protein	Manual ELISA	Negative: OD-n < 0.15 Borderline: OD-n $\ge 0.25 \& \le 0.50$ Positive: OD-n > 0.50	CCP donors: 140 Pre-pandemic: 306	
Abbott Laboratories Inc., Abbott Park, IL	Abbott-Architect SARS-CoV-2 IgG assay ^a	Nucleocapsid protein	Abbott Architect TM i2000 (CMIA) ^c	Negative: index (S/C) <1.40 Positive: index (S/C) ≥1.40	CCP donors: 146 Pre-pandemic: 500	
Roche Diagnostics	Elecsys [®] Anti-SARS-CoV-2 ^a	Nucleocapsid protein	Roche cobas™ c 422 analyzer (ECLIA)	Non-reactive: index <1.0 Reactive: index ≥ 1.0	CCP donors: 214 Pre-pandemic: 500	

393

^a This assay had received emergency use authorization by the US Food and Drug Administration prior to August 20, 2020.

^b ImmunoDiagnostics recommends each lab create its own cut-offs for qualitative interpretation.

^c This study utilized the Abbott Architect i1000sr platform.

398 Table 2. Diagnostic accuracy of various enzyme immunoassays to detect IgG or total antibodies to SARS-CoV-2.

	Em	pirical analysis		Μ	anufacturer's cuto	ff	40
Serologic assay	N	AUROC	AUROC	Sensitivity		Specificity 401	
	18	(95% CI)	(95% CI)	n/N	% (95% CI)	n/N	% (95% CT)
Euroimmun*	708	0.97 (0.96-0.99)	0.92 (0.90-0.94)	127/146	87.0 (80.4-92.0)	548/562	97.5 (95.9-98.8
EDI*	725	0.89 (0.87-0.91)	0.83 (0.80-0.86)	115/146	78.8 (71.2-85.1)	504/579	87.0 (84.0-8 9 9
ImmunoDiagnostics*	446	0.96 (0.93-0.97)	0.88 (0.84-0.91)	107/140	76.4 (68.5-83.2)	302/306	98.7 (96.7-9 9.0
Abbott	646	0.98 (0.96-0.99)	0.96 (0.94-0.97)	135/146	92.5 (86.9-96.2)	498/500	99.6 (98.6-10 40
Roche	714	0.97 (0.96-0.98)	0.97 (0.95-0.98)	201/214	93.9 (89.8-96.7)	498/500	99.6 (98.6-10 40

409 Note: Exact binomial (Clopper-Pearson) 95% confidence intervals are shown for all estimates.

411 * Borderline/indeterminate specimens per manufacturer's cutoffs were considered negative in the manufacturer's cutoff analysis.

426 Table 3. Concordance between manufacturer enzyme immunoassay cut-offs for SARS-CoV-2

427 seropositivity and high neutralizing antibody titers at various thresholds.

	Positive Percentage Agreement, no. (%)					
Sorologia oscov	nAb ≥20	nAb ≥40	nAb ≥80	nAb ≥160		
Service assay	(n=92)	(n=80)	(n=64)	(n=35)		
Euroimmun	90 (97.8%)	80 (100%)	64 (100%)	35 (100%)		
EDI	86 (93.5%)	74 (92.5%)	61 (95.3%)	34 (97.1%)		
ImmunoDiagnostics	86 (93.5%)	76 (95.0%)	61 (95.3%)	35 (100%)		
Abbott	90 (97.8%)	79 (98.8%)	64 (100%)	35 (100%)		
Roche	90 (98.4%)	78 (97.5%)	63 (98.4%)	34 (97.4%)		
	Negative Percentage Agreement, no. (%)					
	Negati	ve Percentage	Agreement, r	10. (%)		
Sanalagia aggay	Negati nAb <20	ve Percentage nAb <40	Agreement, r nAb <80	nAb <160		
Serologic assay	Negati nAb <20 (n=48)	ve Percentage nAb <40 (n=60)	e Agreement, r nAb <80 (n=76)	no. (%) nAb <160 (n=105)		
Serologic assay Euroimmun	Negati nAb <20	ve Percentage nAb <40 (n=60) 18 (30.0%)	• Agreement, r nAb <80 (n=76) 18 (23.7%)	no. (%) nAb <160 (n=105) 18 (17.1%)		
Serologic assay Euroimmun EDI	Negati nAb <20	ve Percentage nAb <40 (n=60) 18 (30.0%) 25 (41.7%)	Agreement, r nAb <80 (n=76) 18 (23.7%) 28 (36.8%)	nAb <160 (n=105) 18 (17.1%) 30 (28.6%)		
Serologic assay Euroimmun EDI ImmunoDiagnostics	Negati nAb <20	ve Percentage nAb <40 (n=60) 18 (30.0%) 25 (41.7%) 29 (48.3%)	Agreement, r nAb <80	no. (%) nAb <160 (n=105) 18 (17.1%) 30 (28.6%) 33 (31.4%)		
Serologic assay Euroimmun EDI ImmunoDiagnostics Abbott	Negati nAb <20	ve Percentage nAb <40 (n=60) 18 (30.0%) 25 (41.7%) 29 (48.3%) 10 (16.7%)	Agreement, r nAb <80	nAb <160 (n=105) 18 (17.1%) 30 (28.6%) 33 (31.4%) 11 (10.5%)		

439 Figure 1. Correlations between SARS-CoV-2 enzyme immunoassay antibody titers and neutralizing

440 antibody titer AUC values in COVID-19 convalescent individuals (n=140). Spearman correlation

441 coefficients (ρ) were calculated with 95% confidence intervals (CI) estimated over 1000 bootstrap iterations.

10

0

.

50

Roche (Ratio)

100

442

ρ = 0.65 (95%CI: 0.54-0.75); p < 0.001 ρ = 0.74 (95%Cl: 0.44-0.81); p < 0.001 ρ = 0.81 (95%CI: 0.74-0.85); p < 0.001 1000 1000 1000 nAb AUC value nAb AUC value nAb AUC value 100 100 100 10 10 10 6 0.75 1.00 2 ġ. 9 12 0.25 0.50 Ś 0 0 1 Euroimmune (Ratio) ImmunoDiagnostics (Ratio) EDI (Ratio) ρ = 0.68 (95%CI: 0.58-0.77); p < 0.001 ρ = 0.40 (95%CI: 0.25-0.54); p < 0.001 1000 1000 nAb AUC value nAb AUC value 100 100

443 444 10

0.0

2.5

5.0

Abbott (Ratio)

7.5

10.0

445 Figure 2. Empirical receiver operating curve analysis for various SARS-CoV-2 enzyme

446 immunoassays to detect high neutralizing antibody (nAb) titers at various thresholds (n=140).

447 Four thresholds for a high nAb AUC value were examined as the reference positive test.

448

Reference: $nAb \ge 20$ Reference: $nAb \ge 40$ 1.0 1.0 Positive Percentage Agreement Positive Percentage Agreement 0.8 0.8 0.6 0.6 0.4 0.4 0.2 0.2 0.0 0.0 0.2 0.4 0.0 0.2 0.4 0.6 0.0 0.6 0.8 1.0 0.8 1.0 1-Negative Percentage Agreement 1-Negative Percentage Agreement Reference: $nAb \ge 80$ Reference: $nAb \ge 160$ 1.0 1.0 Positive Percentage Agreement Positive Percentage Agreement 0.8 0.8 0.6 0.6 0.4 0.4 0.2 0.2 0.0 0.0 0.0 0.0 0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0 1-Negative Percentage Agreement **1-Negative Percentage Agreement**

Serologic Assay -	AUROC (95%CI)			
	nAb≥20	nAb≥40	nAb≥80	nAb≥160
— Euroimmun	0.93 (0.88-0.97)	0.92 (0.86-0.95)	0.90 (0.85-0.95)	0.90 (0.84-0.94)
— EDI	0.89 (0.83-0.94)	0.86 (0.79-0.91)	0.88 (0.81-0.93)	0.87 (0.80-0.92)
- ImmunoDiagnostics	0.87 (0.80-0.93)	0.82 (0.75-0.88)	0.79 (0.72-0.86)	0.83 (0.76-0.89)
— Abbott	0.85 (0.78-0.90)	0.83 (0.76-0.89)	0.81 (0.74-0.87)	0.87 (0.80-0.92)
- Roche	0.74 (0.66-0.81)	0.69 (0.61-0.77)	0.66 (0.57-0.74)	0.66 (0.58-0.74)