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Abstract

Purpose: Mesenchymal stem cells (MSCs) have demonstrated clinically relevant therapeutic
effects for treatment of trauma and chronic diseases. The proliferative potential, immunomodu-
latory characteristics, and multipotentiality of MSCs in monolayer culture is reflected by their
morphological phenotype. Standard techniques to evaluate culture viability are subjective,
destructive, or time-consuming. We present an image analysis approach to objectively determine
morphological phenotype of MSCs for prediction of culture efficacy.

Approach: The algorithm was trained using phase-contrast micrographs acquired during the early
and mid-logarithmic stages of MSC expansion. Cell regions are localized using edge detection,
thresholding, and morphological operations, followed by cell marker identification using H-
minima transform within each region to differentiate individual cells from cell clusters. Clusters
are segmented using marker-controlled watershed to obtain single cells. Morphometric and textural
features are extracted to classify cells based on phenotype using machine learning.

Results: Algorithm performance was validated using an independent test dataset of 186 MSCs in
36 culture images. Results show 88% sensitivity and 86% precision for overall cell detection and
a mean Sorensen–Dice coefficient of 0.849 � 0.106 for segmentation per image. The algorithm
exhibited an area under the curve of 0.816 (CI95 ¼ 0.769 to 0.886) and 0.787 (CI95 ¼ 0.716 to
0.851) for classifying MSCs according to their phenotype at early and mid-logarithmic expan-
sion, respectively.

Conclusions: The proposed method shows potential to segment and classify low and moderately
dense MSCs based on phenotype with high accuracy and robustness. It enables quantifiable and
consistent morphology-based quality assessment for various culture protocols to facilitate cyto-
therapy development.
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1 Introduction

Chronic diseases such as cancer, diabetes, stroke, obstructive pulmonary disease, renal failure,
and arthritis are leading causes of disability and death. According to the National Center for
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Chronic Disease Prevention and Health Promotion, six in 10 adults in the US have a chronic
disease and four in 10 adults in the US have two or more.1 The high prevalence of these diseases
calls for effective treatments that can provide a long-term cure. Studies show that the approach of
cell therapies has valuable potential to address this problem.2–5 Cell therapy is the transplantation
of laboratory-expanded cells into patients to restore normal function by replacing damaged cells
or by altering the physiology of the host in favorable ways. Mesenchymal stem cells (MSCs), a
heterogeneous group of stem cells, have gained attention for clinical applications in regenerative
medicine and tissue engineering 6–10 over the past few years. There is a growing body of literature
demonstrating their therapeutic efficacy in a variety of pre-clinical models, including chronic
renal failure,11 skeletal regeneration,12 and acute myocardial infarction.13

The success of cytotherapies to provide new remedies is highly reliant on the viability and
reproducibility of cultured cell properties. In the past, cell quality has been commonly charac-
terized and assessed with the help of their morphological characteristics.14,15 MSCs that rapidly
self-replicate (RS) are spindle-shaped and fibroblastic, whereas cells that slowly replicate (SR)
are flattened and rhomboidal.16 In addition to slow replication, SR cells lose most of their ability
to differentiate into multiple cell lineages and promote tissue repair. Standard evaluation tech-
niques such as labeling, flow cytometry, and in vitro assays are invasive and time-consuming
making real-time culture monitoring impossible.17–19 Regular examination of cultures under a
microscope is another qualitative approach that is used for routine quality assurance. However,
visual inspection is highly subjective and tedious making it less reliable and robust. Therefore,
a non-invasive and objective method is necessary to address these limitations.

Computer vision/artificial intelligence is a very promising method to quantitatively predict
culture quality from images of MSCs based on their morphological phenotype. The topic of cell
image analysis has received great recognition with the increasing demands in bioinformatics20

and significant contributions in the field of medical diagnostics and biomedical applications.21,22

Morphological cell image analysis has become a standard theory for computerized processing
and pattern recognition and it encompasses a rather wide application area, such as cell clump
segmentation, morphological feature extraction, and abnormal cell identification.23–25 It has also
been integrated with the study of histological tumor sections,26 boundary detection of epithelial
cell nuclei,27,28 or understanding drug influences.29 Image-based segmentation of MSCs reported
previously30 demonstrated better results compared to conventional thresholding techniques.
However, this work was more driven toward identifying all cell regions rather than individual
cells, making it unsuitable for culture quality monitoring through morphological profiling of
each cell. In addition to segmentation, there has been significant research demonstrating the
possibility of characterizing MSCs based on their shape.31 Machine learning has been imple-
mented previously to classify MSCs from other cell lines,32,33 to predict immunosuppressive
capacity using their functional subpopulations,34 and also to identify them based on their differ-
entiation potential.35 This idea could be similarly extended to differentiate MSCs depending on
their efficacy as indicated by their morphological phenotypes (RS and SR).

Building on our preliminary work,36 the research reported here presents an integrated
approach to segment and classify MSCs in phase micrographs, potentially providing automated
analysis of monolayer culture viability. This is achieved by the development and evaluation
of

• an algorithm to localize and segment individual MSCs and MSCs in clusters from images
of low and moderate cell density, and

• a machine learning model using morphological and textural features extracted from seg-
mented cells to distinguish between RS and SR phenotypes of MSCs.

The efficiency and performance of automated cell segmentation is strongly dependent on
imaging modality. Fluorescence and phase-contrast microscopy are the two most widely applied
techniques for acquisition of cell images with improved image contrast. Fluorescence micros-
copy is prone to photobleaching, which limits its applications in long-term monitoring.37 Also, in
fluorescence imaging, cells are typically stained or genetically engineered to generate fluores-
cent proteins to enhance cell boundary information, which may cause changes to the cellular
morphology and dynamics, potentially invalidating their use in humans.38 Thus, this imaging
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technique is less desirable for a non-invasive and real-time approach. This is overcome by
phase-contrast microscopy, an optical imaging method that converts the phase shifts in light
passing through a specimen into intensity changes in the image. It is based on the principle
that the difference in the refractive index between the cells and the substrate causes phasing
that provides relatively high image contrast in micrographs without any biological modification
to cells.39 Phase-contrast microscopy is a standard technique for visual inspection and evaluation
of MSC morphology.

Here, segmentation of MSCs is handled as a three-step approach, where it first localizes
regions in the image that contain cells, then finds algorithm-defined markers, and finally inte-
grates the regions with markers to segment individual cells inside clusters. The individual cells
obtained with the algorithm can be analyzed further to draw conclusions about the culture pop-
ulation. In addition to segmenting MSCs, features that are potential indicators of the physio-
logical state of the MSCs are also computed. These features are used by a machine learning
model to classify the phenotype of each cell as RS or SR. Based on the phenotype of the cells
from culture images, the algorithm will be able to provide the proportion of maximally effica-
cious cells in the culture. Thus, the developed image analysis protocol is novel in its contribution
to automated and rapid image-based processing to objectively examine the efficacy of adherent
MSCs cultures. Another innovative aspect of this work is the implementation of a comprehensive
top-to-bottom computer vision pipeline to identify MSCs and predict their relationship to RS or
SR morphological phenotypes. Moreover, its potential to replace or augment visual inspection
would make cell culture evaluation rapid, quantitative, and less tedious, rendering it beneficial
for scale-up of cell manufacturing. Beyond validation of the applicability of this image analysis
algorithm for cell quality control, an advantage of this work is its promise for streamlining
culture processes for cell therapy development and manufacturing.

2 Methods

2.1 Overview

The image analysis approach was developed to classify MSC phenotype using phase-contrast
micrographs of monolayer culture. Figure 1 shows the overall flow of the method; each step is
detailed in the subsequent sections. Following preprocessing, the algorithm estimates cell den-
sity. Morphological operations and thresholding detect regions of the image that contain cells.
Candidate markers are localized within these regions to identify if the cell region is a single cell
or cell cluster. A cell cluster is further segmented to identify individual cells. After the segmen-
tation of each cell, the algorithm extracts several human-engineered morphometric and textural
features. Cell segmentation and feature extraction algorithms are built using the comprehensive
set of reference-standard algorithms provided by the Image Processing Toolbox in MATLAB 9.5
(R2018b). Machine learning classifiers are trained using these features to distinguish between
the RS and SR phenotype. Classification models were developed in Jupyter Notebook 6.0.1
using Python 3.5.6 libraries.

2.2 Dataset

Human bone marrow-derived MSCs were seeded at 100 cells∕cm2 under standard conditions of
expansion40 and imaged on the second and fourth day after the culture was prepared to capture
variation in phenotype as cells proliferate. For the MSCs employed in this study, a density of
∼1000 cells∕cm2 is expected at day 2 and ∼6500 per cm2 at day 4.12 A Motic AE31 phase-
contrast microscope with a 10× objective and Moticam 1SP 1.0 MP camera was used to acquire
culture images. All the images collected for this study have a size of 1280 × 1024 pixels and a
resolution of 1.56 pixels∕μm. Cell culture and image capture were repeated three times to gen-
erate the dataset for training and testing of the algorithm. Using Adobe Photoshop and Microsoft
Paint software, cells were manually segmented and labeled as RS or SR phenotype by an indi-
vidual with more than 15 years of experience in culturing MSCs. Images from two cultures
served as ground truth for training, and images from the third culture were used for independent
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testing as detailed in Table 1. The training dataset of 71 images consisted of 472 cells with 307
cells labeled as RS and 165 cells as SR. The algorithm was validated with 36 phase-contrast
micrographs having 186 cells with 121 RS cells and 65 SR cells. Each cell from the segmented
ground truth was also characterized as RS or SR by 20 people trained to visually identify MSC
phenotype to further analyze the generalizability of the method.

Table 1 Mesenchymal stem cell culture dataset.

Culture day No. of images No. of cells No. of RS cells No. of SR cells

Culture 1 2 15 76 49 27

(Train) 4 15 146 80 66

Culture 2 2 17 96 73 23

(Train) 4 24 154 105 49

Culture 3 2 15 64 46 18

(Test) 4 21 122 75 47

Fig. 1 Pipeline of algorithm to classify mesenchymal stem cells in phase-contrast micrographs.
Example images illustrate (a) low and (b) moderate density. Cell ROI in image (b) include (c) indi-
vidual cells and (d) clusters of cells, differentiated by the number of candidate markers (blue)
inside RoIs (white).
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2.3 Image Preprocessing and Area Fraction Estimation

The input RGB phase-contrast micrograph is converted to grayscale (Igray), shown in Fig. 2(a),
and preprocessed to reduce the effect of undesired imperfections introduced during imaging.
Contrast of Igray is adjusted to increase the intensity variation between the cells and the substrate,
making cell regions more detectable for segmentation. Cell edges are sharpened using unsharp
masking and then filtered using anisotropic median-diffusion to remove unwanted artifacts while
improving the signal-to-background ratio without distorting edges [Fig. 2(b)].27 The prepro-
cessed image (Ipreprocessed) is further processed by Sobel filter to identify cell boundaries in the
images [Fig. 2(c)]. Sobel operator highlights regions with maximum intensity change, detecting
edges above a sensitivity threshold of 1. Once object outlines are obtained, dilation and closing
are performed to connect the detected edges. This is followed by flood-fill operation to remove
holes from the filled regions.

Using the same structuring element sizes for morphological operations to process images
with a high number of cells and images with a low number of cells leads to poor segmentation
performance. Apart from the number of cells and clusters, the variances in their size and shape
also become significant as the culture grows over time. Using area fraction (AF) as a deciding
factor for cell density addresses this problem as different parameters are used for low and mod-
erate density levels to identify cell regions and the markers inside them. Also, every image is
evaluated based on their density estimate rather than through the potentially erroneous
assumption that duration in culture is a robust predictor of density. The cell density-based
criterion automatically triggers optimizations in the algorithm so as to ensure comparable
performance at a range of cell density levels.

AF of binary image (Iinitial−region) is used to obtain an estimate of the input micrograph’s cell
density. It is calculated by the algorithm as the percentage of white pixels in the image as given as

EQ-TARGET;temp:intralink-;e001;116;266AF ¼
P

M
x¼1

P
N
y¼1 Iinitial−regionðx; yÞ
M × N

; (1)

where Iinitial−region ðx; yÞ of sizeM × N pixels has a value of 1 for pixels belonging to the detected
initial cell regions and a value of 0 for the background pixels. Based on the training dataset, an
AF of 0.1 was selected as a threshold for the algorithm to decide if an image is less dense (<0.1)
or moderately (≥0.1) dense. In case an image has regions of both low and moderate density, the
algorithm would estimate it to be less or moderately dense depending on the predominant region
present. An image with a larger region of moderate density is more likely to have an increased
AF and be handled as moderately dense. The less-dense cells present would easily be detected as
the thresholds for such images were set to facilitate complex cell segmentation. It should be
noted that the thresholds used for moderately dense images would not be ideal for images with
only less-dense cells as it might lead to a greater number of false detections. On the other hand,
regions of moderate density in images classified as less dense would likely be a small cluster of
cells. The low-density images have optimal thresholds for detecting markers in such clusters to
separate individual cells.

Fig. 2 Example image of MSCs shows the steps involved in detecting initial cell regions. (a) The
input phase-contrast micrograph is converted to grayscale and (b) preprocessed using contrast
adjustment, sharpening, and anisotropic filtering. (c) Edges are detected using Sobel operator.
(d) Edges are connected and filled using dilation, closing, and flood-fill operation to obtain initial
cell regions (I initial−region).
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2.4 Candidate Cell Region Detection

Cell region detection is conducted as a semantic segmentation41 step to identify pixels belonging
to cells as defined in the truth, and hence, regions detected may contain more than one cell.
Figure 3 shows the process of candidate cell region detection. For less dense images, Iinitial−region
is used directly to define regions with potential cell objects. Preprocessing is designed to detect
objects with high sensitivity [Fig. 3(a)]; therefore, each object is evaluated to remove image
artifacts and identify candidate cell regions using thresholding [Fig. 3(b)] and morphological
operations [Fig. 3(c)]. For size thresholding, the detected object is removed if the area is less
than a threshold value determined by the minimum, maximum, mean, or the standard deviation
of the area of all foreground objects in the image. This adaptive approach ensures that the thresh-
old values are not overly biased toward the training set as it takes relative object sizes in each
image into account to understand if it is likely to be a cell or not. Similarly, the intensity-based
thresholds are calculated using the maximum and minimum intensity values inside that object
obtained from the pixel positions in Ipreprocessed. Objects labeled as cells in the training set contain
bright pixels in the cytoplasm and/or dark pixels inside the nucleus after contrast adjustment.
Lack of both indicates that the object is not a cell as it has a relatively uniform intensity range
similar to substrate. For shape thresholding, circularity and ellipticity features of the object are
calculated. From the training data, circularity (mean ± std. dev.) of MSCs and phase imaging
artifacts have been found to be 0.43� 0.18 and 0.82� 0.05, respectively, where 1 represents
a perfect circle. Ellipticity is measured as

EQ-TARGET;temp:intralink-;e002;116;316Ellipticity ¼ M1 −M2

M1
; (2)

where M1 and M2 are the major and minor axis lengths, respectively, of an ellipse having the
same normalized second central moment (variance) as the object. Ellipticity (mean ± std. dev.)
of MSCs and very thin artifacts such as fibers or strands have been found to be 0.46� 0.15 and
0.79� 0.04, respectively, where 1 represents a line segment and 0 represents a circle. Since
MSCs are not as circular or elliptical as the artifacts, objects with high circularity and ellipticity
are removed from the detected cell areas. Morphological operations such as opening and erosion
are applied after thresholding to refine boundaries. Finally, objects with pixels connected to the
image border are removed to avoid analysis of truncated cells. As shown in Fig. 3(d), these steps
yield the final image (Icell−region) with detected candidate cell regions corresponding to regions of
interest (ROI).

For moderately dense images, the edge detection step is performed with a reduced sensitivity
threshold of 0.5 to cover all cell edges. Dilation and closing are performed with different struc-
turing element sizes to get new potential cell regions. The same thresholding methods as less
dense images are carried out on these objects with different threshold values to keep them rel-
evant for images with more objects. Thresholding is also repeated more times compared to low
cell density processing as a lower edge detection threshold can cause more false detections.
Thresholding is followed by morphological opening, closing, and border clearing to obtain the
Icell−region for images having moderate cell density.

Fig. 3 Illustration of the steps involved in identifying candidate cell regions. (a) I initial−region obtained
after edge detection and morphological operations are used as the input. (b) Thresholding using
size, intensity, and shape criteria removes detected objects that are not cells. (c) Opening and
erosion optimize the shape of cell areas. (d) Clearing the image border removes incomplete cells
resulting in the final candidate cell regions. (Borders of cell regions are highlighted in blue.)
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2.5 Candidate Marker Detection

In phase-contrast micrographs of cells, intensity is brightest at the cell boundaries where the
phase shift is maximum due to the optical path difference (refractive index and thickness)
between cells and substrate, and is darker within the cell due to relative uniformity within the
cell.42 The darkest regions inside cells are taken as candidate cell markers to identify individual
cells and to segment cells in clusters since each cell contains one prominent regional minimum.
The image Ipreprocessed is further processed using Gaussian filtering and median filtering to
remove unnecessary noise and false local minima that do not belong to the marker. Then, con-
trast-limited adaptive histogram equalization improves the contrast of the regional minimum.
Finally, morphological reconstruction is performed using the histogram equalized image along
with Icell−region as the mask to obtain Imarker−processed, shown in Fig. 4(a).

Markers are segmented using two different threshold values (A and B) for H-minima
transform.43–45 Used independently, the higher threshold value of A results in under-detection
of markers, and the lower threshold value of B results in false positives (FPs); therefore, the two
are combined. First, a very high value is used as threshold A for H-minima transform to localize
potential markers inside the ROIs from Icell−region. Morphological opening and binary area open-
ing are done to remove objects that aren’t the regional minimum [Fig. 4(b)]. Then, minima are
obtained with a lower threshold, value B. These minima outputs are dilated and closed to get the
candidate markers [Fig. 4(c)]. In the case of zero markers from threshold A in any ROI, markers
detected using B are added to that region. Markers from both the thresholds are also merged for
potential cluster ROIs using perimeter as a criterion [Fig. 4(d)].

Over-detection error is managed for cell regions with more than one marker using distance
thresholding along with area thresholding and morphological operations. The Euclidean distance
between the centroid of themarkers within a cell region is computed, and if the distance is too small,
the regional maximum is over-segmented. Thus, one of the two close markers with the smaller area
is removed. Finally, dilation and erosion are performed to get rid of over-segmentations.

2.6 Cell Segmentation and Validation

ROIs and markers are combined as shown in Fig. 5(a) for the final instance segmentation41 step
to detect and delineate each cell in the image. A region with no marker is not considered a cell,

Fig. 4 Pipeline for segmentation of markers inside the RoIs (shown in yellow) from Icell−region.
(a) Ipreprocessed is processed to get an image (Imarker−processed) suitable for detecting markers.
(b) Markers are obtained from Imarker−processed using H-minima transform with higher threshold
A. (c) Markers are obtained from Imarker−processed using H-minima transform with lower threshold
B. (d) Markers from both the thresholds are merged for ROIs satisfying the perimeter threshold
criterion and also for ROIs with zero markers from threshold A.
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only one marker is labeled as a single cell [Fig. 5(b)], and a region with more than one marker is
treated as a cluster of cells [Fig. 5(c)]. The marker count within each cluster indicates the number
of cells in the cluster. Each cluster region is segmented into individual cells [Fig. 5(d)] using
marker-controlled watershed, which overcomes the limitations of standard watershed technique,
such as over and under-segmentation, using markers.46,47

The algorithm’s performance for cell detection and segmentation was validated using the
expert-defined truth. For cell detection, the true positives (TP) are given by the number of
individual cells and cells inside clusters that are correctly detected by the algorithm. The false
negatives (FNs) are of two types, namely, missed detections (FN1), where individual cells are not
detected, and under-detections (FN2), where the number of detected cells within a cluster is less
than the actual number. Similarly, the two types of FPs are false detections (FP1) and over-
detections (FP2). FP1 are debris or image artifacts that are erroneously detected as individual
cell objects, and FP2 is the number of extra objects detected within a cluster by the algorithm.
Sensitivity (S) and precision (P) were computed using

Fig. 5 Representation of the cell segmentation steps. (a) Icell−region is integrated with the results
from marker detection (Markers shown in blue). (b) ROIs with single markers are identified as
individual cells, and (c) ROIs with more than one marker are identified as clusters of cells.
(d) Marker-controlled watershed is carried out to segment individual cells within clusters (water-
shed ridge lines shown in red). (e) Results from the steps (b) and (d) are combined to get the
segmentation output.
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EQ-TARGET;temp:intralink-;e003;116;735S ¼ TP
TPþ FN1þ FN2

; (3)

EQ-TARGET;temp:intralink-;e004;116;691P ¼ TP
TPþ FP1þ FP2

; (4)

to estimate how well the algorithm is able to detect MSCs. For segmentation, Sorensen–Dice
similarity coefficient (DICE)48 was used as the metric via

EQ-TARGET;temp:intralink-;e005;116;646DICE ¼ 2 × jA ∩ Bj
jAj þ jBj ; (5)

to analyze the agreement between algorithm output (A) and manual outlining (B) for cell boun-
daries. The DICE score ranges from 0 to 1, with 1 signifying complete overlap between A and B.

The presented algorithm was also assessed by comparing its cell detection and segmentation
results with the conventional U-Net,49 a deep learning technique for biomedical image segmen-
tation. The U-Net architecture was modeled based on the standard implementation proposed by
Ronneberger et al. The conventional U-Net was trained and tested on the same datasets to avoid
any bias. Sensitivity, precision, and DICE evaluation metrics were used to compare performance
of the algorithm reported here to the standard U-Net.

2.7 Feature Extraction

FP objects (FP1 and FP2) and all cells belonging to under-detected (FN2) clusters were excluded
from the dataset to avoid training or validating classification models using wrong objects. The
final dataset used for feature extraction and classification is detailed in Table 2.

Human engineered descriptors of the correctly detected cells were automatically extracted for
the task of classifying each cell into RS or SR phenotype. A total of 30 features, consisting of a
combination of size, shape, and first-order and second-order statistical texture measures, were
computed.50–52 The names of the features are listed in Table 3. The morphometric features were
extracted to distinguish spindle-shaped RS cells from flattened SR cells, whereas texture-based
features were extracted to use spatial distribution of intensity for differentiating between SR cells
that are flattened and RS cells that have a more prominent phase-contrast halo around their cell
body.16,40 Each first-order feature was calculated for segmented cell regions in Igray, Ipreprocessed,
and Ireconstructed giving three measures for each first-order feature. The second-order features were
measured for the gray-level co-occurrence matrix (GLCM) of Igray, Ipreprocessed, and Ireconstructed.
Also, each GLCM feature was computed in 24 different orientations yielding 72 measures for
each second-order feature. Only one measure out of the three and 72 first and second-order
feature measures, respectively, was selected by finding the measure with the highest area under
the curve (AUC) of the receiver operating characteristic (ROC) curve53,54 for distinguishing
between RS and SR cells.

The 30 features were sorted in descending order of their AUC value before computing the
correlation matrix to ensure that features with higher AUCs were retained. Features with corre-
lation >0.8 were removed to reduce redundancy and optimize the computation for the classifier.

Table 2 Mesenchymal stem cell culture dataset used for feature extraction and classification.

Culture day No. of cells No. of RS cells No. of SR cells

Training 2 167 117 50

(Culture 1 + culture 2) 4 296 182 114

Independent testing 2 49 37 12

(Culture 3) 4 91 54 37
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2.8 Cell Classification and Validation

The selected features were used to train linear and non-linear classifiers to find the most suitable
model for our application. Features were transformed to have zero mean and unit variance before
training, and the validation/test data were scaled using the training parameters. As seen in
Table 1, the dataset is imbalanced with RS cells being more prevalent than the SR cells. To
avoid poor classification of SR cells due to its low prevalence, synthetic minority oversampling
technique55 was used during training.

Linear kernel support vector machine (LSVM), radial-basis kernel support vector machine
(RSVM), linear discriminant analysis (LDA), K-nearest neighbor (KNN), and logistic regression
(LR) models were trained to classify MSCs as RS or SR phenotype. The models were trained
using features from both day 2 and day 4 together, and day 2 and day 4 individually. As the
feature correlation and relevance for data from day 2, day 4, and combination of day 2 and 4
would be different, features were selected for each of them individually. It was observed that the
classifier could learn better from features of cells whose images were acquired on the same day
rather than the combination of features of cells from two different days. AUC values were
obtained using ROCKIT software,56 and all the models were compared using the average
AUC value from five-fold cross-validation.57 Further, ensemble classifiers based on soft-voting
method were also trained with the top two classifiers for day 2 and day 4 separately.58 Finally, the
performance of the selected models for the independent test dataset was evaluated using AUC,
sensitivity, and specificity. Sensitivity and specificity were determined by selecting a threshold
that minimizes ð1 − sensitivityÞ2 þ ð1 − specificityÞ2.58

3 Results

3.1 Cell Detection and Segmentation

The algorithm’s ability to accurately locate MSCs was evaluated using sensitivity and precision.
Table 4 shows the breakdown of correctly detected cells and undetected cells for RS and SR cells
in the training and independent testing sets. FNs are further defined as missed detections (FN1)
or under-detections (FN2) as described in Sec. 2.6. The algorithm correctly detected cells with
sensitivity>0.95 for both RS and SR cell phenotypes in the training set. A sensitivity over 0.8 in
the independent testing set indicates the robustness of the algorithm.

Precision is the fraction of objects detected by the algorithm that were identified as cells in
the ground truth labeling of the dataset. Table 5 shows the number of incorrectly identified
objects that are either false detections (FP1) or over-detections (FP2). The algorithm’s precision
for cultures used in training was above 0.95. A precision >0.85 in the independent testing set
demonstrates the generalizability of the algorithm to detect cells with a low FP rate.

The DICE metric was used to evaluate the overlap between the algorithm and the ground
truth segmentation of MSCs. DICE scores (mean ± std. dev.) for the training and testing dataset
are summarized in Table 6 for all cells outlined in the truth and only for the cells that were

Table 3 Human-engineered features extracted for the segmented MSCs.

Feature type Feature names

Size Area, perimeter, minor axis, major axis, width, height

Shape Elongation, compactness, circularity, ellipticity, solidity, extent

First-order features Standard deviation, variance, intensity profile, skewness,

mean intensity, balance, kurtosis, median, mode

Second-order features Correlation, inertia, cluster prominence, energy, entropy,

cluster shade, maximum probability, dissimilarity, homogeneity
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correctly detected. The algorithm segmented over 85% and 80% of the manually defined cell
areas for training and testing, respectively, regardless of cell phenotype.

The performance of the algorithm for cell detection and segmentation were analyzed per each
cell in Tables 3–5. Sensitivity, precision, and DICE metrics of the algorithm were further exam-
ined per image from all cultures and days. The mean ± std. dev of these metrics for the training
and testing images are given in Table 7, and it was confirmed that the algorithm could detect and
segment cells consistently for each image.

Figure 6 shows the ground truth along with algorithm’s segmentation results for two images
of both low and moderate density from the test dataset. The difference in performance of the
algorithm to localize cells in low and moderately dense images was also reviewed as it was
trained with different parameters for these two levels of cell densities. Welch’s t-test at 95%
confidence level failed to show statistical difference in the values of sensitivity (p ¼ 0.375),
precision (p ¼ 0.191), and DICE (p ¼ 0.289) for low and moderately dense cell images.

Table 5 Cell detection precision of the algorithm for training and independent testing.

Correct
detections (TP)

False
detections (FP1)

Over
detections (FP2)

Precision
(P)

Training 466 5 8 0.973

Independent testing 157 13 13 0.858

Table 6 Cell segmentation DICE score of the algorithm for training and independent testing.

Cell phenotype

DICE score (mean ± std. dev.)

All cells
(TP + FN1 + FN2)

Correctly detected
cells (TP)

Training All 0.875� 0.092 0.881� 0.067

RS 0.878� 0.089 0.884� 0.061

SR 0.870� 0.097 0.875� 0.077

Independent testing All 0.803� 0.218 0.869� 0.082

RS 0.814� 0.203 0.871� 0.080

SR 0.783� 0.245 0.866� 0.085

Table 4 Cell detection sensitivity of the algorithm for training and independent testing.

Cell
phenotype

No. of
cells

Correct
detections

(TP)

Missed
detections

(FN1)

Under
detections

(FN2)
Sensitivity

(S)

Training All 472 466 3 3 0.987

RS 307 302 2 3 0.984

SR 165 164 1 0 0.994

Independent
testing

All 186 157 13 16 0.844

RS 121 102 8 11 0.843

SR 65 55 5 5 0.846
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The cell detection and segmentation results of the algorithm are compared against the con-
ventional U-Net in Table 8 for both training and testing data. The presented algorithm outper-
forms the conventional method in all of the evaluation metrics for this task. The low precision of
the U-Net was determined to be due to detection of several image artifacts as cells. The algorithm
was able to overcome such FP detections through various morphological thresholding steps.

Fig. 6 Sample images of MSCs from the independent test dataset comparing the ground truth cell
outlines (top row) with the segmentation results of the algorithm (bottom row). Columns (a) and
(b) are examples of low-density images whose AF values were estimated as 0.04 and 0.08, by the
algorithm, respectively. Similarly, examples of moderate density images with AF values of 0.15
and 0.21 are shown in column (c) and (d), respectively. The ground truth images also illustrate that
the truncated cells on image borders are not considered for analysis.

Table 7 Cell detection and segmentation performance of the algorithm per image from training
and testing datasets. Mean and standard deviations are calculated for all cells over all images.

No. of
images

Cell detection sensitivity
(mean ± std. dev.)

Cell detection precision
(mean ± std. dev.)

Cell segmentation
DICE score

(mean ± std. dev.)

Training 71 0.991� 0.036 0.967� 0.107 0.896� 0.050

Independent testing 36 0.837� 0.207 0.861� 0.217 0.849� 0.106

Table 8 Comparison of algorithm’s cell detection and segmentation performance with conven-
tional U-Net.

Sensitivity
(S)

Precision
(P)

Sensitivity
per image

(mean ± std. dev.)

Precision
per image

(mean ± std. dev.)

DICE score
per image

(mean ± std. dev.)

Training Conventional
U-Net

0.765 0.653 0.817� 0.173 0.692� 0.213 0.841� 0.056

Presented
algorithm

0.987 0.973 0.991� 0.036 0.967� 0.107 0.896� 0.050

Independent
testing

Conventional
U-Net

0.747 0.556 0.772� 0.216 0.536� 0.210 0.804� 0.050

Presented
algorithm

0.844 0.858 0.837� 0.207 0.861� 0.217 0.849� 0.106

p-value N/A N/A 0.025 5.259e – 10 0.008
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Moreover, although the U-Net model used weighted maps to learn the small separation borders,
it could not separate cells in clusters as effectively as the marker-controlled watershed technique
used in the presented pipeline. Additional work would be needed to modify and optimize
U-Net’s architecture for it to be able to localize MSCs more accurately. Thus, it was statically
demonstrated using paired two-sample t-tests that the algorithm could detect and segment cells
significantly better than the state-of-the-art method.

3.2 Cell Phenotype Classification

As mentioned previously, only correctly detected individual cells and cells in clusters with cor-
rect cell count were used for training and testing the machine learning models for the task of
classifying each cell phenotype as RS or SR. LSVM, RSVM, LDA, KNN, and LR were trained
and compared using the AUC metric from five-fold cross-validation. These five classifiers
trained using object features from both day 2 and day 4 cultures were validated by testing their
performance in cross-validation for a combination of cells from “day 2 + day 4,” and day 2 and
day 4 independently. It was observed that day 2 + day 4 models did not perform as well for day 2
as they did for day 4 (Table 9). This may be due to models’ bias toward a higher prevalence of
day 4 MSC features. Training the classifiers with features from day 2 and day 4 individually
improved their performance for both days (Table 9). The outputs from the top two classifiers
(RSVM and LR for day 2; LDA and KNN for day 4) based on cross-validation AUC were
combined for ensemble classification. Figure 7 shows the classifier agreement plot between the
models used for ensemble classification. The x axis in Fig. 7(b) is not continuous due to the
discrete probability distribution of the KNN classifier. The disagreement between the top 2 clas-
sifiers for each day may be because they learn differently from the same features. “RSVM + LR”
and “LDA + KNN” models being a combination of linear and non-linear approaches are able to
harness the potential of both the models to make more accurate predictions. This likely explains
why fusion classifiers perform better than the individual classifiers during five-fold cross-
validation, and hence, they are selected for the image analysis pipeline.

The selected ensemble classifiers for day 2 and day 4 are further evaluated using the inde-
pendent test dataset. The algorithm was able to correctly identify cell phenotypes with an AUC
of 0.82 for day 2 and 0.79 for day 4. The classification models for both days have been sta-
tistically proven to perform better than random chance using the 95% confidence interval for
AUCs given in Table 10. These inferences were not corrected for multiple comparisons as only a
single statistical test was performed for each day. The fitted ROC curves obtained for the day 2

Table 9 Five-fold cross-validation to compare performance of models for distinguishing between
RS and SR cells. AUC values are in bold for Day 2 and Day 4 classifiers that perform best during
cross-validation.

Five-fold cross-validation AUC ± S.E. (culture 1 + culture 2)

Training fold Day 2 + Day 4 Day 2 Day 4

Testing fold Day 2 + Day 4 Day 2 Day 4 Day 2 Day 4

LSVM 0.734� 0.012 0.673� 0.033 0.751� 0.022 0.719� 0.044 0.810� 0.026

RSVM 0.752� 0.012 0.682� 0.008 0.775� 0.025 0.736� 0.057 0.799� 0.024

LDA 0.733� 0.017 0.679� 0.035 0.748� 0.033 0.698� 0.044 0.833� 0.016

KNN 0.725� 0.014 0.677� 0.035 0.738� 0.018 0.719� 0.059 0.828� 0.022

LR 0.747� 0.014 0.696� 0.030 0.765� 0.027 0.731� 0.043 0.821� 0.021

RSVM + LR N/A N/A N/A 0.757� 0.041 0.844� 0.038

LDA + KNN N/A N/A N/A 0.745� 0.064 0.863� 0.030
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Table 10 Performance of the algorithm for classifying MSCs as RS or SR for independent testing.

Culture day Model AUC ± S.E. (95% CI) Sensitivity Specificity

2 RSVM + LR 0.816� 0.060 (0.769, 0.886) 0.789 0.887

4 LDA + KNN 0.787� 0.047 (0.716, 0.851) 0.796 0.757

Fig. 7 Diagonal classifier agreement plots between (a) logistic regression classifier (x axis) and
radial kernel support vector machine (y axis) for day 2 culture and (b) KNN (x axis) and linear
discriminant analysis (y axis) for day 4 culture. Each point represents a cell whose phenotype
is predicted as RS (green) or SR (red) by each classifier.

Fig. 8 Fitted binormal ROC curves illustrating the performances of day 2 and day 4 ensemble
classifiers for the task of distinguishing between RS and SR cells during independent testing.
The dashed blue line represents the RSVM + LR day 2 classifier and the solid orange line rep-
resents the LDA + KNN day 4 classifier.
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and day 4 ensemble classifiers are shown in Fig. 8. The algorithm achieves a sensitivity and
specificity of over 0.75 for both days, further demonstrating its effectiveness in classifying
MSCs based on their phenotype.

3.3 Generalizability of Phenotype Classification

The cells in the training and test dataset were also labeled by a group of 20 individuals with
varied level of expertise in working with MSCs. The group comprised of nine people with one to
three years of experience, six people with four to nine years of experience, and five people with
ten or more years of experience. This analysis was performed to study the generalizability of the
developed algorithm as phenotype assessment of MSCs is highly subjective. Each cell was clas-
sified as either RS (0) or SR (1) by all 20 individuals, and its average phenotype score (APS) was
computed. Based on the range of average scores, the cells were split into categories such as
highly RS, moderately RS, uncertain, moderately SR, and highly SR (Table 11). The confidence
of the group in identifying a cell as either RS or SR was represented by these five categories;
where the highly RS/SR categories meant highest confidence in labeling that cell and uncertain
category meant that the phenotype of that cell was almost indeterminate.

The output of the ensemble classifiers for day 2 and day 4 from training and testing set was
studied to understand which category of the cells were most wrongly predicted by the algorithm.
It was noticed that the algorithm had the highest classification sensitivity (>0.9) for highly RS
and highly SR categories and the least sensitivity (as low as 0.4) for the uncertain category
(Table 11). This enabled us to understand that while our image analysis pipeline has the potential
to predict the cell phenotype with a sensitivity very close to human interpretation, it did exhibit a
similar weakness to trained humans in that it had lower sensitivity in categorizing marginal mor-
phological characteristics. If these limitations are addressed in future iterations of the algorithm,
this approach has the potential to out-perform human observers with decades of experience.

4 Discussion and Conclusions

The image analysis method reported here is capable of segmentation and classification of MSCs
based on their morphological phenotype. Segmentation results provide a cell count per image,
cell density (cells∕cm2), and percent confluency that indicate cell proliferation over the time
course of the culture. Classification of segmented cells yields a count of undesirable SR cells
(quiescent) and the ratio of these non-viable cells to viable RS cells (high potency) that serves as
a vital indicator of culture quality. The promising sensitivity, precision, and DICE score for MSC
localization in phase-contrast micrographs suggest that automated quantitative evaluation can be
seamlessly integrated into the current cell culture workflow.

That being said, it is crucial to note that an overall evaluation of the developed image analysis
approach has not been included in this study. It was only feasible to assess each individual stage
of the algorithm separately using the available dataset and an additional independent dataset

Table 11 Classification sensitivity of the algorithm for the five cell phenotype categories.

Culture
day

No. of cells correctly classified/no. of cells as per truth (sensitivity)

Highly RS
APS ≤ 0.15

Moderately
RS 0.15 <
APS < 0.40

Uncertain
0.40 ≤ APS

≤ 0.60

Moderately
SR 0.60 <
APS < 0.85

Highly SR
APS ≥ 0.85

Training 2 40/40 (1.000) 36/40 (0.900) 29/38 (0.763) 29/33 (0.879) 16/16 (1.000)

4 10/10 (1.000) 9/11 (0.818) 5/12 (0.417) 11/13 (0.846) 3/3 (1.000)

Independent
testing

2 72/74 (0.973) 66/77 (0.857) 26/46 (0.565) 57/65 (0.877) 31/34 (0.912)

4 15/16 (0.937) 17/21 (0.809) 7/19 (0.368) 20/23 (0.869) 12/12 (1.000)
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would be needed for overall validation of the entire system. The cell detection and segmentation
stages are greatly influenced by the intensity distribution, contrast, and clarity of the input phase-
contrast micrographs. The classification stage in turn is dependent on the segmentation output.
Upon resolution of these challenges, classifiers could be trained for more robust prediction by
expanding the dataset and accounting for cells whose phenotype is uncertain. These challenges
faced by different stages of the pipeline are discussed in detail subsequently.

The ability of the algorithm to detect and segment cells is greatly dependent upon the quality
of the acquired images. In phase-contrast micrographs, high contrast is crucial to distinguish
cells from the substrate. The majority of detection errors during training and testing were pri-
marily due to poor image contrast and blur in some image regions. Fluorescence microscopy of
labeled cells would provide higher contrast images and easier segmentation; however, phase-
contrast microscopy is the standard technique for noninvasive evaluation of live cells. The low
rate of FP and FN detections has minimal impact on the overall quality assessment as long as a
sufficient number of images are acquired to capture a population of correctly segmented cells.

The classification results were studied to understand factors that affect the performance of
proposed models. In this study, classifiers were trained using the truth defined by a biologist with
15+ years of experience working with MSCs. The majority of MSCs incorrectly classified were
identified as cells undergoing differentiation from RS to SR phenotype. Additionally, phenotype
labels were obtained for the entire dataset from 20 trained individuals with varying levels of
expertise in culturing MSCs to assess the subjectivity of human classification and the general-
izability of the algorithm. This labeling enabled an analysis of the impact of ambiguity in mor-
phology of differentiating cells on visual inspection and classification. The trained individuals
had minimal agreement about cell phenotype during differentiation, demonstrating the uncer-
tainty in classification of cells in this transition both for human interpretation and the algorithm.
The existing binary classifier could be trained as a multiclass problem with the task of distin-
guishing between RS, SR, and these indeterminate cells. Identifying cells with indeterminate
phenotype would decrease the number of false classifications and increase certainty in prediction
of RS and SR phenotypes. However, more data would be necessary to train the machine learning
model to predict indeterminate class effectively. An alternative would be to calibrate the binary
classifier that differentiates RS from SR cells for correlating its probability output with confi-
dence in a cell’s phenotype. The future work would be to fine-tune the current approach by
adopting the above-mentioned machine learning methods to improve classification robustness.

Classification performance was only validated for cells that were correctly detected and were
not evaluated for FP objects. Since this technique would be implemented in real-time as a pipe-
line where every segmented object would be classified, it is necessary to evaluate the effect of
classification of incorrectly detected objects. Though not in the scope of this article, it may also
be interesting to analyze if the algorithm tends to classify FP objects as RS or SR cells. Images
from three different cell cultures have been used for the dataset here. This algorithm can be
refined and tested using a broader set of images from MSC cultures generated in other labo-
ratories and obtained with different phase-contrast microscopes. The phenotype of cells from
day 2 and day 4 is predicted using two different classifiers. This was done because a day 2
+ day 4 model was biased against cells from day 2 due to limited data as compared to day
4 when more cells are present. Additional data from more cultures may enable sufficient features
for day 2 cells to train a common classifier with greater prediction capacity, removing the need
for two separate classifiers. Apart from this, a larger dataset will not only increase data variability
for algorithm training but also enable characterization of the capability to predict quality of
cultures during practical application. The algorithm’s performance can also be compared to
standard culture evaluation assays, many of which are time consuming and labor intensive,
to evaluate quantitative phenotypic analysis as a measure of replication potential for MSC
cultures. These considerations do not include the considerable amount of time, effort, and
expense associated with training expert observers.

The focus of the research presented in this paper has been to prove the applicability of image-
based analysis for non-invasive and objective determination of MSC phenotype in low and mod-
erately dense cultures. The algorithm is not expected to perform well for highly dense cell
images where there is a lot of cell overlap making even visual investigation complicated.
Quantitative evaluation of the earlier stages of culture is more critical for monitoring the health
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of the culture. MSC cultures are typically harvested or passaged prior to high confluency. This
methodology has the potential to be extended to:

• Forecast the percentage of non-functional MSCs in a culture for a future time based on the
ratio computed for the present and past time points.

• Quantitatively represent the influence of change in culture protocol over the population of
putatively efficacious and non-functional MSCs in a culture.

• Monitor the ratio of non-functional to putatively efficacious MSCs as a function of con-
fluency and cell density in addition to time.

• Estimate efficacy of other stem cell cultures for their prospective use in cytotherapies using
image-based morphological analysis.

In summary, we have shown that the presented analysis can segment and classify MSCs
based on their morphological phenotype to quantify the viability of monolayer cultures. As this
computational pipeline is completely non-invasive, it enables continuous monitoring of culture
conditions to enhance reproducibility. It is anticipated that this algorithm will facilitate biologists
and cell manufacturers to draw conclusions about the functionality of recovered MSCs.
The proposed solution with automated imaging leads to rapid, quantifiable, and standardized
MSC quality control processes. It could be incorporated into high-volume stem cell manufac-
turing to pave the way for efficient cell therapies to treat chronic diseases.
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