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Phosphorus-31 magnetic resonance spectroscopy (31P-MRS) is a unique non-invasive

imaging modality for probing in vivo high-energy phosphate metabolism in the human

heart. We investigated whether current 31P-MRS methodology would allow for clinical

applications to detect exercise-induced changes in (patho-)physiological myocardial

energy metabolism. Hereto, measurement variability and repeatability of three commonly

used localized 31P-MRS methods [3D image-selected in vivo spectroscopy (ISIS) and

1D ISIS with 1D chemical shift imaging (CSI) oriented either perpendicular or parallel

to the surface coil] to quantify the myocardial phosphocreatine (PCr) to adenosine

triphosphate (ATP) ratio in healthy humans (n = 8) at rest were determined on a

clinical 3 Tesla MR system. Numerical simulations of myocardial energy homeostasis in

response to increased cardiac work rates were performed using a biophysical model

of myocardial oxidative metabolism. Hypertrophic cardiomyopathy was modeled by

either inefficient sarcomere ATP utilization or decreased mitochondrial ATP synthesis.

The effect of creatine depletion on myocardial energy homeostasis was explored for

both conditions. The mean in vivo myocardial PCr/ATP ratio measured with 3D ISIS

was 1.57 ± 0.17 with a large repeatability coefficient of 40.4%. For 1D CSI in a

1D ISIS-selected slice perpendicular to the surface coil, the PCr/ATP ratio was 2.78

± 0.50 (repeatability 42.5%). With 1D CSI in a 1D ISIS-selected slice parallel to the

surface coil, the PCr/ATP ratio was 1.70 ± 0.56 (repeatability 43.7%). The model

predicted a PCr/ATP ratio reduction of only 10% at the maximal cardiac work rate

in normal myocardium. Hypertrophic cardiomyopathy led to lower PCr/ATP ratios for

high cardiac work rates, which was exacerbated by creatine depletion. Simulations

illustrated that when conducting cardiac 31P-MRS exercise stress testing with large

measurement error margins, results obtained under pathophysiologic conditions may

still lie well within the 95% confidence interval of normal myocardial PCr/ATP dynamics.
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Current measurement precision of localized 31P-MRS for quantification of the myocardial

PCr/ATP ratio precludes the detection of the changes predicted by computational

modeling. This hampers clinical employment of 31P-MRS for diagnostic testing and risk

stratification, and warrants developments in cardiac 31P-MRS exercise stress testing

methodology.

Keywords: myocardial energy metabolism, phosphorus-31 magnetic resonance spectroscopy, computational

modeling, cardiac exercise stress testing, hypertrophic cardiomyopathy, energy homeostasis, 31P-MRS

INTRODUCTION

The human heart requires a continuous and adequate supply
of energy to guarantee myocardial contractility that is required
to support blood circulation. Myocardial energy homeostasis
is maintained primarily by oxidative phosphorylation of
adenosine diphosphate (ADP) in cardiomyocyte mitochondria.
A disruption of myocardial energy homeostasis may impair
mechanical function of the heart (Tewari et al., 2016b). Indeed,
impaired mitochondrial function can lead to a life-threatening
state of heart failure (Neubauer, 2007; Brown et al., 2016).
Therefore, homeostasis of myocardial energy metabolism and its
(mal-)adaptation in heart disease has been an important area of
cardiovascular research (Taegtmeyer et al., 2016).

Phosphorus-31 MRS (31P-MRS) is a non-invasive and
non-ionizing imaging modality that is uniquely capable of
probing in vivo myocardial high-energy phosphate metabolism.
This technique can quantify the steady-state myocardial
phosphocreatine (PCr) over ATP concentration ratio (Bottomley,
2007), which has been commonly used to characterize the
in vivo myocardial energy status. The PCr/ATP ratio is assumed
to correlate with the cytosolic Gibbs free energy of ATP
hydrolysis (1GP), the energy available to cardiomyocytes to
do work. However, this assumption is valid, if and only if,
the myocardial creatine content is either known or can be
assumed to be unchanged compared with healthy hearts (Wu
et al., 2009). It has long been known that the myocardial
creatine content can be reduced in the diseased heart (Cowan,
1934; Herrmann and Decherd, 1939), thus complicating a
straightforward interpretation of measured PCr/ATP ratios in
patients. Furthermore, the measured myocardial PCr/ATP ratio
only reports on the balance between ATP turnover rate and
ATP synthesis at a specific steady-state. The underlying cause
of any observed difference between the PCr/ATP ratio in
heart disease and in the healthy heart cannot be identified
without additional measurements. Indeed, measurements of the
myocardial PCr/ATP ratio at multiple steady-states or during
transition between steady-states of cardiac work may unmask
underlying energy deficits in heart disease (Dass et al., 2015).

Abbreviations: 2,3-DPG, 2,3-diphosphoglycerate; 31P-MRS, phosphorus-31

magnetic resonance spectroscopy; ADP, adenosine diphosphate; AMP, adenosine

monophosphate; ATP, adenosine triphosphate; CSI, chemical shift imaging; ECG,

electrocardiogram; HCM, hypertrophic cardiomyopathy; HR, heart rate; ISIS,

image-selected in vivo spectroscopy; LV, left ventricle; MRI, magnetic resonance

imaging; MVO2, myocardial oxygen consumption; PCr, phosphocreatine; PDE,

phosphodiesters; Pi, inorganic phosphate; RV, right ventricle; SD, standard

deviation; TR, repetition time.

Furthermore, such measurements would allow for a meaningful
characterization of the (patho-)physiology of in vivo myocardial
energy homeostasis guided by computational modeling and
simulations of cardiomyocyte energy homeostasis (Balaban,
2006; Beard and Kushmerick, 2009), which ultimately may
facilitate diagnosis and risk stratification in patients.

Obtaining reliable dynamic PCr/ATP ratios from the human

heart during transitions between cardiac work rates is unrealistic

(van Beek et al., 1998). Instead, 31P-MRS measurements of the
myocardial PCr/ATP ratio at multiple steady-states of cardiac

work rates are feasible. Pioneered almost three decades ago

(Conway et al., 1988, 1991; Weiss et al., 1990; Kuno et al.,
1994), 31P-MRS measurements of the in vivo human heart

during exercise have recently regained interest (Hudsmith et al.,

2009; Betim Paes Leme et al., 2013; Dass et al., 2015; Levelt
et al., 2016). These studies typically consisted of steady-state
31P-MRS data acquisition at rest and at one additional steady-

state of low-intensity exercise (heart rates of 60–100 beats

min−1) or pharmacologically induced stress (Figure 1). Multiple

measurements over a broader physiological range of cardiac work
rates would be of major benefit for characterizing myocardial

energy homeostasis. Indeed, successful implementation of more

strenuous exercise regimens in clinical cardiac 1H-MRI protocols

has recently been reported (La Gerche et al., 2013; Pflugi et al.,
2015; Roberts et al., 2015; Barber et al., 2016), with maximal
heart rates during supine in-magnet bicycle exercise exceeding

160 beats min−1 (La Gerche et al., 2013). However, 31P-MRS

suffers from low sensitivity and poor measurement repeatability
compared to 1H-MRI, compromising a quantitative evaluation of

potentially subtle changes in myocardial energy homeostasis.

Here, we investigated whether the current standard of 31P-

MRS methodology to measure in vivo myocardial PCr/ATP

ratios typically implemented on clinical research MR systems is
sufficient to discriminate between exercise-induced changes in

steady-state myocardial energy metabolism in health and disease.
Hereto, we determined and compared the precision in terms
of measurement variability and repeatability of commonly used
localized 31P-MRS methods to quantify the myocardial PCr/ATP
ratio in healthy subjects at rest. To compare the precision of
cardiac 31P-MRS measurements with another in vivo application
of 31P-MRS, we also determined the precision of 31P-MRS
measurements of the PCr/ATP ratio in stationary calf muscle.
The results were then used in computational model simulations
of the healthy heart and of hypertrophic heart disease, to estimate
the magnitude of change that may be expected for the myocardial
PCr/ATP ratio over a broad physiological range of cardiac work
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FIGURE 1 | Overview of myocardial PCr/ATP ratios in human cardiac 31P-MRS stress testing reported in the literature. These studies involved measurements in

healthy volunteers (blue) and various patient populations (red), at rest and during exercise (solid lines), or pharmacologically induced stress (dashed lines). Studies that

documented both heart rate as well as the myocardial PCr/ATP ratio at rest and at increased cardiac work rates are included. Error bars represent SD. Note the large

variability in the reported PCr/ATP ratios, both within as well as between studies. See literature for individual study details (Weiss et al., 1990; Conway et al., 1991;

Kuno et al., 1994; Yabe et al., 1994; Lamb et al., 1997, 1999; Pluim et al., 1998; Hudsmith et al., 2009; Holloway et al., 2012; Rider et al., 2012; Betim Paes Leme

et al., 2013; Dass et al., 2015; Levelt et al., 2016). ATP, adenosine triphosphate; PCr, phosphocreatine.

rates. Our findings show that improvements of the 31P-MRS
measurement precision combined with in-magnet exercise at
high intensities will be required for such investigations to become
of diagnostic merit.

MATERIALS AND METHODS

Ethical Approval
This study in healthy volunteers was carried out in accordance
with the recommendations of the local institutional review
board (Academic Medical Center, University of Amsterdam,
Amsterdam, Netherlands) with written informed consent from
all subjects. All subjects gave written informed consent in
accordance with the Declaration of Helsinki prior to the
MR examinations. The protocol was approved by the local
institutional review board.

In Vivo 31P-MRS of the Human Heart
Eight volunteers (seven males and one female; age 32.4 ± 8.6
years; body mass index 23.5 ± 2.5 kg m−2) participated in this
study.

All MR data were acquired on a 3 Tesla Philips Ingenia MR
system (Philips Healthcare, Best, The Netherlands), equipped
with a standard vendor-supplied 31PMR surface coil (Ø 140mm;
51.8 MHz; Philips Healthcare) for radiofrequency transmission
and signal reception. Heart rate was recorded and used to
synchronize MR acquisitions via R-wave detection in the ECG
signal. Subjects were positioned supine with the 31P MR surface
coil carefully positioned on the chest covering the heart. Correct
positioning of the coil was verified on 1H-MR scout images
using a fiducial marker affixed to the coil center. Non-localized
pulse-acquire 31P-MR spectra were obtained to assess metabolite
T1 relaxation time constants using conventional saturation
recovery experiments: repetition time (TR) 1,000–1,500–2,000–
3,000–4,000–6,000–8,000–10,000 s, 4 averages/TR, γ-ATP on-
resonance, 2,048 acquisition points, bandwidth 58 ppm.

Next, we employed three approaches (Figures 2A–C) for
cardiac-triggered localized 31P-MRS data acquisition based on
reports in the literature on obtaining non-invasive assessments
of human myocardial high-energy phosphate metabolism: (1)
single-voxel 3D ISIS (image-selected in vivo spectroscopy) (Lamb
et al., 1996; Buchthal et al., 2000; Fragasso et al., 2006) requiring
eight separate signal acquisitions per localization cycle, 80 ×
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FIGURE 2 | Three approaches for localized 31P-MRS signal acquisition of the human heart at 3 Tesla. (A) positioning of the 3D ISIS voxel guided by 1H-MRI,

enclosing the whole left ventricle (LV). (B) 1D ISIS slice selection perpendicular to the coil with 1D CSI covering the anterior-to-posterior thorax including the LV. (C) 1D

ISIS slice selection parallel to the coil with 1D CSI covering the left-to-right thorax including the LV. Placement of the 31P MR surface coil is indicated. Acquisition time

per scan was ∼7min to obtain a localized 31P MR spectrum (D–F) from voxels outlined by the green boxes. 2,3-DPG, 2,3-diphosphoglycerate; ATP, adenosine

triphosphate; CSI, chemical shift imaging; ISIS, image-selected in vivo spectroscopy; LV, left ventricle; PCr, phosphocreatine; PDE, phosphodiesters; Pi, inorganic

phosphate; RV, right ventricle.

80 × 80 mm3 voxel enclosing the left ventricle (LV), TR 6
ECG R-R intervals, 64 acquisitions/eight cycles; (2) 1D ISIS slice
selection perpendicular to the surface coil with multi-voxel 1D
CSI (chemical shift imaging) (Weiss et al., 1990; Schaefer et al.,
1992) covering the anterior-to-posterior thorax including the
LV, 12 phase-encoding steps, step-size 20mm (CSI), 80mm slice
thickness (ISIS), TR 2 ECG R-R intervals, 16 averages/step; and
(3) 1D ISIS slice selection parallel to the surface coil with 1D
CSI covering the left-to-right thorax including the LV, 12 phase-
encoding steps, step-size 20mm (CSI), 80mm slice thickness
(ISIS), TR 2 ECG R-R intervals, 16 averages/step. Acquisition
time was kept similar for all methods and was∼7min dependent
on heart rate. All procedures were performed twice to allow for
assessments of method repeatability.

In Vivo 31P-MRS of Human Skeletal Muscle
From a cohort of eight volunteers, we obtained resting-state 31P-
MR spectra of the calf muscle to benchmark the repeatability
of localized cardiac 31P-MRS methodology against a well-
established and robust method for in vivo assessments of skeletal
muscle energy metabolism with 31P-MRS (Kemp et al., 2007).
Subjects were positioned supine with the 31P MR surface coil
carefully centered underneath the calf muscle. After verifying
correct positioning of the coil on 1H-MR scout images, a
fully relaxed 31P-MR spectrum was acquired with adiabatic
excitation, 2,048 acquisition points, and a bandwidth of 58

ppm. The procedure was repeated for an assessment of method
repeatability.

31P-MRS Data Analysis
All spectra were processed and analyzed in jMRUI, and signal
amplitudes were quantified using the AMARES time-domain
fitting algorithm (Vanhamme et al., 1997) as described previously
(Bakermans et al., 2015). In brief, the PCr signal was modeled
by a single Lorentzian line shape at 0.00 ppm chemical shift
reference. Signals of γ-ATP (doublet at −2.48 ppm), α-ATP
(doublet at −7.52 ppm), and β-ATP (triplet at −16.26 ppm)
were fitted to Lorentzian line shapes, equal line widths and a J-
coupling constant of 17Hz. A mono-exponential function was
fitted to the mean saturation recovery curves of PCr, γ-ATP,
α-ATP, and β-ATP to estimate the corresponding longitudinal
T1 relaxation time constants. The in vivo myocardial energy
status was expressed as the ratio of the PCr and γ-ATP signal
amplitudes, corrected for partial saturation. Calf muscle PCr/γ-
ATP ratios were quantified after fitting of the fully relaxed 31P-
MR spectra.

Computational Modeling of Myocardial
Energy Metabolism
Numerical simulations of myocardial PCr, ATP, ADP, and
inorganic phosphate (Pi) concentration dynamics and the
resulting Gibbs free energy available from ATP hydrolysis (1GP)
in response to increased cardiac work rates were performed
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FIGURE 3 | Flowchart of model parameterization and conditioning for simulations of myocardial oxidative metabolism at multiple steady-states of cardiac work rates.

Bazil et al. and Wu et al. model specifics and validations are described elsewhere (Wu et al., 2008; Bazil et al., 2016). HCM, hypertrophic cardiomyopathy; HR, heart

rate; MVO2, myocardial oxygen consumption.

using a biophysical model of myocardial oxidative metabolism
(Figure 3). In brief, the model from Bazil et al. (2016) was
supplemented with the high-energy phosphate metabolism
module from Wu et al. (2008) to simulate the relationship
between myocardial oxygen consumption and energy
metabolism in the steady-state for healthy hearts. Mitochondrial
oxygen consumption was converted to myocardial oxygen
consumption (MVO2 in µmol min−1 g−1 LV tissue) using 5.27 g
LV tissue mL−1 mitochondria (Vinnakota and Bassingthwaighte,
2004). The relationship between the heart rate (HR) and MVO2

was defined using a linear model derived from experimental data
on normal human hearts (n = 8, r = 0.71, P = 0.048) reported
in the literature (Vanoverschelde et al., 1993): MVO2 = HR ×

0.023+ 0.82.
To estimate the impact of pathological changes in

cardiomyocellular ATP consumption and ATP supply on
myocardial energy homeostasis as a function of cardiac work
rate in hypertrophic cardiomyopathy (HCM), two alternative
model parameterizations were used (HCMsar and HCMmito,
respectively). For HCMsar, the linear relationship between HR
and MVO2 was modified according to MVO2 = HR × 0.071–
1.72 (n = 54, r = 0.79, P < 0.0001) (Gobel et al., 1978) to model
HCM due to inefficient sarcomere ATP utilization (Ashrafian
et al., 2003). Alternatively, for HCMmito the mitochondrial
capacity to synthesize ATP was reduced by 50% compared to
healthy myocardium (Brown et al., 2016). For both models,
we also explored the effect of reduced myocardial creatine
content that has been documented in human HCM (Cowan,
1934; Herrmann and Decherd, 1939; Nakae et al., 2003).

Hereto, additional simulations were run with reductions of
the myocardial creatine pool size to 75% and to 50% of the
normal value (i.e., 25% and 50% depletion, respectively). Except
for the pathological adaptations of sarcomere ATP utilization,
mitochondrial capacity, and creatine content as described above,
the HCM model parameterizations were identical to the model
parameterizations of normal myocardial oxidative metabolism.

All models were conditioned using the empirical mean
myocardial PCr/ATP ratios and standard deviation (SD) error
margins obtained with the three approaches for localized 31P-
MRS data acquisition (Table 1). For comparison, the coefficient
of variation for measurements in stationary calf muscle was
used to explore the uncertainty that may be achieved by a
more robust method of 31P-MRS data acquisition. First, Monte
Carlo simulations were performed to gather model uncertainty
by generating 100 random samples from a uniform distribution
centered on the previously published model parameters (Bazil
et al., 2016) with a range of ± 10% of their nominal value,
and keeping those parameter sets that yielded deviations of
model fitness within a 50% range of the least-squares error
comparing model simulations with the original cardiac and
calf muscle 31P-MRS data. Second, a sampling scheme was
used to calculate the initial conditions for model metabolite
concentrations, using a total creatine concentration of 41.7 ±

7.35mM, a cytosolic ATP concentration of 8.76 ± 1.57mM
(Bottomley, 2007), and the empirical PCr/ATP ratios (Table 1).
We assumed normally distributed data characterized by their
means and SDs as reported. Initial concentrations of cytosolic
ADP, adenosine monophosphate (AMP), and Pi were set to near
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TABLE 1 | Results of localized 31P-MRS measurements of the human in vivo

myocardial energy status at 3 Tesla.

3D ISIS 1D ISIS-1D CSI

perpendicular

1D ISIS-1D

CSI parallel

Mean PCr/γ-ATP ± SD (–) 1.57 ± 0.17 2.78 ± 0.50 1.70 ± 0.56

Coefficient of variation (%) 10.8 18.0 32.9

Repeatability coefficient (–) 0.64 1.18 0.74

Repeatability coefficient (%) 40.4 42.5 43.7

Mean difference ± SD (–) 0.09 ± 0.33 −0.18 ± 0.61 0.11 ± 0.39

Acquisition time* (s) 384 384 384

ATP, adenosine triphosphate; CSI, chemical shift imaging; ISIS, image-selected in vivo

spectroscopy; PCr, phosphocreatine. *At a heart rate of 60 beats min−1.

zero. Both sampling schemes were used to generate the parameter
sets and metabolite concentrations that were then used as inputs
to drive the model and simulate the effects of work onmyocardial
energy variables. The mean and SD of the model outputs (i.e.,
PCr/ATP, cytosolic ADP, 1GP, and Pi) were then computed
for steady-state conditions over the full physiological range of
cardiac work rates (60–180 beats min−1). A flowchart of model
parameterization and conditioning is provided in Figure 3.

All computations were performed using MATLAB R2016a
(MathWorks, Natick, MA, USA) on a Dell Precision T5810
workstation with an Intel Xeon CPU E5-2640 v3 at 2.6 GHz and
32 GB of RAM. The stiff ordinary differential equation solver
ODE15s was used to simulate the model out to steady-state at
each cardiac work rate.

Statistical Analyses
Data are presented as the mean ± SD. The coefficient of
variation was defined as the ratio of the measurement SD to the
mean, and expressed as a percentage of the mean. Repeatability
of the 31P-MRS methods was assessed using Bland-Altman
analyses of the PCr/γ-ATP ratios (Bland and Altman, 1986).
The repeatability coefficient is given by 1.96 times the SD
of the difference between the two consecutive measurements,
and was expressed as a percentage of the mean PCr/γ-ATP
ratio.

RESULTS

We acquired 31P-MR spectra of the human heart using
three approaches for localized signal acquisition (Figure 2).
All spectra feature the distinct resonance peak of the high-
energy phosphate PCr (chemical shift reference at 0.00 ppm).
The three phosphate groups in ATP (α-, β-, and γ-ATP) are
reflected by three multiplets at different chemical shifts upfield
of PCr. Phosphodiesters (PDE) give rise to the peak at 3 ppm.
Two peaks associated with 2,3-diphosphoglycerate (2,3-DPG) in
erythrocytes in the ventricular blood appear further downfield of
PCr. These peaks overlap with Pi resonating at a pH-dependent
chemical shift of ∼5 ppm relative to PCr. Contamination of
the spectra with signal from 2,3-DPG in the blood prevented
estimations of myocardial pH using the Pi-PCr chemical shift

difference. Non-localized saturation recovery experiments of
the chest yielded T1 relaxation time constants for high-energy
phosphate metabolites at 3 Tesla, and were 4.9 s for PCr, 1.9 s
for γ-ATP, 2.7 s for α-ATP, and 3.1 s for β-ATP. These values
were used to correct the observed PCr/γ-ATP ratios for partial
saturation effects at the heart rate-dependent TR of localized
31P-MRS acquisitions.

Localized 31P-MRS Measurement
Repeatability of the in Vivo PCr/ATP Ratio
The mean in vivo myocardial PCr/γ-ATP ratio measured with
single-voxel localized 3D ISIS in normal volunteers (n = 8)
was 1.57 ± 0.17 with a mean difference between measurements
of 0.09 ± 0.33 and a repeatability coefficient of 40.4%. For
multi-voxel 1D CSI in a 1D ISIS-selected slice perpendicular
to the surface coil, the PCr/γ-ATP ratio was 2.78 ± 0.50
with a mean difference of −0.18 ± 0.61 and a repeatability
coefficient of 42.5%. Alternatively, with 1D CSI in a 1D ISIS-
selected slice parallel to the surface coil, the PCr/γ-ATP ratio
was 1.70 ± 0.56 with a mean difference of 0.11 ± 0.39 and
a repeatability coefficient of 43.7%. The results of these Bland-
Altman analyses are displayed in Figures 4A–C and summarized
in Table 1.

The repeatability coefficient for 31P-MRSmeasurements of the
in vivo calf muscle PCr/γ-ATP ratio was only 9.0%. Calf muscle
PCr/γ-ATP was 3.25 ± 0.21 with a mean difference between
measurements of 0.08± 0.13 (Figure 4D).

Model Predictions of Myocardial Energy
Homeostasis during Exercise
The empirical resting-state 31P-MR data obtained with each
of the three approaches for localized signal acquisition
were used to condition the model. The resulting model
predictions of the myocardial PCr/ATP ratio for higher cardiac
work rates are plotted with 95% confidence intervals in
Figures 5A–C. To benchmark the current practice against
measurements with higher precision, Figure 5D shows
the model predictions initiated with the mean myocardial
PCr/ATP ratio measured with 3D ISIS (1.57), but with
the smaller coefficient of variation that was obtained for
31P-MRS of calf muscle (6.4%). The model predicted an
approximate maximal reduction of only 10% of the steady-state
myocardial PCr/ATP ratio over the entire physiological range
of cardiac work rates in normal human hearts (blue curves in
Figure 5). Inefficient sarcomere energy utilization as modeled
by HCMsar led to a markedly decreased PCr/ATP ratio for
high cardiac work rates (yellow curves in Figure 5), which was
exacerbated by depletion of the myocardial creatine pool to
75% (red curves) and to 50% (purple curves) of the normal
value.

Other model outputs on myocardial energy homeostasis are
plotted in Figure 6, using the in vivo myocardial PCr/ATP
measured with 3D ISIS localization (Table 1) to condition
the model. Cytosolic ADP (Figure 6A) and Pi (Figure 6B)
remained nearly constant in the normal myocardium over
the entire range of cardiac work rates, whereas the Gibbs
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FIGURE 4 | Bland-Altman repeatability analyses of localized 31P-MRS measurements of the in vivo myocardial PCr/γ-ATP ratio. (A) 3D ISIS of the human heart. (B)

1D CSI in a 1D ISIS-selected slice perpendicular to the surface coil. (C) 1D CSI in a 1D ISIS-selected slice parallel to the surface coil. (D) 31P-MRS of the human calf

muscle. Dotted red lines indicate the 1.96 × SD limits of the difference between two measurements in the same subject (repeatability coefficient) around the mean

difference (green solid line). ATP, adenosine triphosphate; CSI, chemical shift imaging; ISIS, image-selected in vivo spectroscopy; PCr, phosphocreatine.

free energy available from ATP hydrolysis 1GP decreased
in magnitude by ∼2 kJ mol−1 for heart rates up to 180
beats min−1 (Figure 6C). The value of 1GP calculated here
differed from previous reports for normal hearts at rest
(Weiss et al., 2005), because we used a different more
accurate estimate of the reference Gibbs free energy 1G0

(Li et al., 2011) than adopted in prior studies (Weiss et al.,
2005).

When sarcomere energy utilization is inefficient, the HCMsar

model predicted a similar 1GP at rest but a 2.5-fold larger
decrease in magnitude of 1GP for heart rates of 180 beats
min−1 compared with the normal myocardium (yellow curve in
Figure 6C). This result was similar for simulations with reduced
myocardial creatine pool sizes (75 and 50% of the normal creatine
level; red and purple curves in Figure 6C, respectively), and
can mainly be attributed to the steeper changes in myocardial
Pi concentrations in response to exercise than in the normal
myocardium: Pi concentration increased almost 3-fold compared
to a less than 100% increase in ADP concentration for HCMsar

with 50% of the normal creatine level (Figures 6A,B). The
predicted myocardial ADP concentrations fell with more severe
myocardial creatine depletion (Figure 6A).

Simulations of a reduced mitochondrial capacity to produce
ATP (HCMmito) for steady-state conditions over a range of

cardiac work rates are compared with normal myocardial
energy homeostasis in Figures 7A–D. The predicted decrease
in magnitude of 1GP for increased cardiac work rates was
similar to the normal myocardium (yellow curve in Figure 7D).
However, the absolute Gibbs free energy of ATP hydrolysis
was nearly 2.3 kJ mol−1 lower over the full physiological
range of cardiac work rates compared to normal myocardium.
Consequently, the predictedminimal magnitude of1GP attained
during increased cardiac work rates in conditions of reduced
mitochondrial capacity was similar to model predictions for
1GP when sarcomere energy utilization is inefficient: ∼−60
kJ mol−1. Also, the predicted magnitude of 1GP was similar
in simulations of myocardial creatine depletion. Figure 7C

illustrates that this was due in large part to steeper changes in
myocardial Pi concentrations in response to increased cardiac
work rates compared to the normal myocardium for which Pi
content remained nearly constant. Predicted myocardial ADP
concentrations were lower for reduced myocardial creatine pool
sizes (Figure 7B).

Taken together, these simulations illustrate that when
conducting cardiac 31P-MRS exercise stress testing with
large measurement error margins, results obtained under
pathophysiologic conditions such as sarcomeric energy
inefficiency, reduced mitochondrial capacity, and creatine
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FIGURE 5 | Sarcomeric energy inefficiency results in lower myocardial PCr/ATP ratios compared to the healthy myocardium. Graphs show computational

model-based predictions of the myocardial PCr/ATP ratio over a range of cardiac work rates for the healthy heart (blue) and for hypertrophic cardiomyopathy due to

sarcomeric energy inefficiency (HCMsar) with 100% (yellow), 75% (red), and 50% (purple) of the normal creatine pool size. The solid curve represents the mean of the

simulation results while the shaded region reflects the model uncertainty (95% confidence intervals). Resting-state mean and confidence intervals are based on

empirical 31P-MRS measurements and associated coefficients of variation for 3D ISIS (A), 1D CSI in a 1D ISIS-selected slice perpendicular to the surface coil (B), 1D

CSI in a 1D ISIS-selected slice parallel to the surface coil (C), and for the improved measurement precision of 31P-MRS in calf skeletal muscle but assuming the mean

PCr/ATP ratio found with 3D ISIS (D). ATP, adenosine triphosphate; CSI, chemical shift imaging; ISIS, image-selected in vivo spectroscopy; PCr, phosphocreatine.

depletion may still lie well within the 95% confidence interval of
normal myocardial PCr/ATP dynamics.

DISCUSSION

The non-invasive nature of localized 31P-MRS makes this
technique a candidate modality for measurements of in
vivo human myocardial energy metabolism during cardiac
stress tests. Despite this promising potential, practical and
technological challenges have prevented 31P-MRS from
becoming a widespread diagnostic imaging modality in the
clinical workflow. Here, we determined the resting-state
measurement variability and repeatability for three commonly
used approaches for localized 31P-MRS of the human heart, and
employed computational modeling to estimate their suitability
for assessments of myocardial energy homeostasis over a broad

range of cardiac work rates. Our results show that with the
level of precision achieved by current methodology, altered
energy homeostasis under pathophysiologic conditions such as
decreased mitochondrial capacity or inefficient sarcomere energy
utilization may not be detectable with cardiac 31P-MRS stress
testing.

For the healthy human myocardium at rest, the literature

mean value of the PCr/ATP ratio is ∼1.7 ± 0.3 (Bottomley,

2007). However, normal myocardial PCr/ATP values reported

for healthy subjects range from 0.9 ± 0.3 up to 2.5 ±

0.5, demonstrating a large variability among research sites
that use different 31P-MRS methods for quantification of the
humanmyocardial energy status (Figure 1, also comprehensively
reviewed in Bottomley, 2007). Our results were corrected
for heart rate-dependent partial saturation effects that could
modulate the PCr/ATP ratio for our measurements at relatively
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FIGURE 6 | Sarcomeric energy inefficiency leads to an increase in myocardial cytosolic Pi concentration for high cardiac work rates. Graphs show computational

model-based predictions of myocardial energy homeostasis over a range of cardiac work rates for the healthy heart (blue) and for hypertrophic cardiomyopathy due to

sarcomeric energy inefficiency (HCMsar) with 100% (yellow), 75% (red), and 50% (purple) of the normal creatine pool size. The solid curve represents the mean of the

simulation results while the shaded region reflects the model uncertainty (95% confidence intervals). Resting-state mean and confidence intervals are based on

empirical 31P-MRS measurements and associated coefficient of variation for 3D ISIS. (A) cytosolic ADP concentrations. (B) cytosolic Pi concentrations. (C) Gibbs free

energy available from ATP hydrolysis 1GP. ADP, adenosine diphosphate; ISIS, image-selected in vivo spectroscopy; Pi, inorganic phosphate.

short TR (i.e., TR < 5 × T1). Nonetheless, for the three
localization approaches applied in the same subjects, normal
PCr/ATP ratios in the present work ranged from 1.57 ± 0.17
for single-voxel 3D ISIS up to 2.78 ± 0.50 for multi-voxel 1D
CSI with 1D ISIS slice selection perpendicular to the surface
coil. Such differences between methods may be attributed to
different degrees of signal contamination. Indeed, single-voxel
3D ISIS generally benefits from a well-defined voxel shape (de
Graaf, 2008), whereas CSI may suffer from Fourier bleeding
that introduces signal contamination originating from tissue in
voxels outside the region of interest (Keevil, 2006). Particularly
in 1D CSI oriented perpendicular to the surface coil, Fourier
bleeding of signal from high PCr levels present in superficial chest
skeletal muscle may contribute to an overestimation of the actual
myocardial PCr/ATP ratio, compromise measurement precision,
and ultimately hamper the detection of changes in myocardial
PCr levels. Moreover, experimental variation in surface coil
placement and voxel positioning negatively affects measurement
repeatability, compromising the applicability of current 31P-MRS
methodology for diagnostic cardiac stress testing.

Only few laboratories have reported on method repeatability
(Bland and Altman, 1986) of human cardiac 31P-MRS in
test-retest study designs. Lamb et al. compared several signal
acquisition localization schemes at 1.5 Tesla (Lamb et al., 1996),
and found that the inter-examination repeatability coefficient for
the PCr/ATP ratio was rather large: >45% for 1D CSI, 1D CSI
with 2D ISIS, as well as for 3D ISIS. This was predominantly
attributed to differences in coil placement and other practicalities
between examinations rather than true physiological changes
in the myocardium (e.g., of nutritional origin). Using 1D CSI,
Schaefer et al. reported a test-retest repeatability coefficient
of 22% for measurements of the human myocardial PCr/ATP
ratio at 1.5 Tesla (Schaefer et al., 1992). The use of magnetic
field strengths >1.5 T holds promise in terms of improved

signal to noise ratios and/or shorter acquisition times, which is
theoretically beneficial for signal quantification and therewith
measurement repeatability. A repeatability coefficient of 53%
was reported for 31P-MRS measurements of the PCr/ATP ratio
with 31min of acquisition time using 3D CSI at 3 Tesla
(Tyler et al., 2009). Later, this protocol was adjusted by Dass
et al. to achieve a clinically acceptable acquisition time of
8min by lowering the 3D CSI spatial resolution and omitting
cardiac triggering (Dass et al., 2010), but with unreported
measurement repeatability. Similar to these reports in the
literature, we found rather large repeatability coefficients of
more than 40% for the myocardial PCr/ATP ratios obtained
within 7min of acquisition time. Clearly, these data suggest
that with the strategies currently used for cardiac 31P-MRS,
only large changes in the PCr/ATP ratio may be detected
in the human myocardium. As such, 31P-MRS measurement
of in vivo myocardial PCr/ATP ratio in humans has not
evolved beyond its use as a research tool to study myocardial
energy homeostasis in groups of patients with phenotypic
cardiomyopathy (Lamb et al., 1999; Dass et al., 2015; Levelt et al.,
2016).

Our simulations showed that a 50% reduction of the
mitochondrial capacity to produce ATP results in only a
small decrease of the PCr/ATP ratio at increased cardiac work
rates. Due to a lack of nutrients and oxygen, mitochondrial
ATP production may become marginal in ischemic conditions,
leading to a more pronounced decrease of the PCr/ATP ratio
during exercise. Indeed, in some cases, cardiac 31P-MRS exercise
stress testing has provided encouraging results. Particularly, a
transient exercise-induced decrease in the myocardial PCr/ATP
ratio was observed in patients with coronary artery disease,
which could not be detected in patients with non-ischemic
heart disease (Weiss et al., 1990). This response improved after
successful revascularization, suggesting clinical potential for this
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FIGURE 7 | A reduction in mitochondrial capacity to synthesize ATP disturbs myocardial energy homeostasis. Graphs show computational model-based predictions

of myocardial energy homeostasis over a range of cardiac work rates for the healthy heart (blue) and for hypertrophic cardiomyopathy due to a 50% reduction in

mitochondrial capacity to synthesize ATP (HCMmito) with 100% (yellow), 75% (red), and 50% (purple) of the normal creatine pool size. The solid curve represents the

mean of the simulation results while the shaded region reflects the model uncertainty (95% confidence intervals). Resting-state mean and confidence intervals are

based on empirical 31P-MRS measurements and associated coefficient of variation for 3D ISIS. (A) myocardial PCr/ATP ratio. (B) cytosolic ADP concentrations. (C)

cytosolic Pi concentrations. (D) Gibbs free energy available from ATP hydrolysis 1GP. ADP, adenosine diphosphate; ATP, adenosine triphosphate; ISIS,

image-selected in vivo spectroscopy; PCr, phosphocreatine; Pi, inorganic phosphate.

methodology in myocardial ischemia. Similarly, cardiac 31P-
MRS exercise stress testing has been proposed as a means
to noninvasively test therapeutic strategies in Chagas disease,
where a reduction in the PCr/ATP ratio may be indicative of
microvascular disease caused by a Trypanosoma cruzi parasite
infection (Betim Paes Leme et al., 2013).

Furthermore, our simulations indicate that the normal
myocardial Pi concentration is tightly regulated and maintained
within a submillimolar range over the entire physiological
range of cardiac work rates. In contrast, for both models of
HCM, cytosolic Pi was predicted to increase to millimolar
concentration levels approaching 2mM at high cardiac work
rates. Indeed, a rise in Pi has been reported for patients with
hypertensive heart disease after pharmacologically induced stress
(Lamb et al., 1999). Moreover, the HCM models predicted that
myocardial creatine depletion (Cowan, 1934; Herrmann and
Decherd, 1939) progressively aggravates the loss of cytosolic Pi

concentration homeostasis. Combined, our simulations support
the quantitative hypothesis of cytosolic Pi interference with
myocardial mechanical function as proposed by Tewari et al.
(2016a), which may explain progressive heart failure in human
HCM. Notably, the predicted rise of cytosolic Pi concentrations
into the millimolar range for higher cardiac work rates in HCM
makes this metabolite an alternative target for diagnostic in
vivo detection with 31P-MRS. This will, however, require major
methodological improvements in terms of signal localization to
prevent any contaminating signal from 2,3-DPG in the blood
overlapping with Pi.

Finally, our model predictions showed that 31P-MRS
measurements of the steady-state PCr/ATP ratio at high-intensity
cardiac work rates are more sensitive to pathophysiological
derangements in myocardial energy homeostasis than resting-
state measurements. Protocols to perform such strenuous
physical exercise inside a clinical MR scanner as an alternative
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to pharmacologically induced stressors have recently been
developed (Jeneson et al., 2010; Gusso et al., 2012) and applied
to study heart function (La Gerche et al., 2013) and perfusion
(Pflugi et al., 2015) at heart rates > 160 beats min−1. These
protocols utilize a supine cycling exercise regime rather than
isometric hand grip exercise (Weiss et al., 1990) or prone flexion
of the legs (Hudsmith et al., 2009), and therefore facilitate a broad
range of cardiac work rates. However, cycling motion of the legs
combined with higher respiratory and heart rates may aggravate
motion artifacts and signal contamination in localized 31P-MRS,
deteriorate the ECG signal typically used for synchronizing
measurements with the beating heart, and introduce magnetic
field inhomogeneities that can compromise data quality. These
aspects make obtaining quantitative results with 31P-MRS
during high-intensity exercise even more challenging than
at resting-state conditions, and are obviously detrimental
to measurement precision. Moreover, strenuous exercise
cannot be maintained at a steady-state level for a prolonged
period of time, particularly in case of myocardial ischemia or
other pathophysiological conditions, which imposes practical
constraints on data acquisition time. Ongoing developments in
coil design for radiofrequency transmission and signal reception
(El-Sharkawy et al., 2009; Rodgers and Robson, 2015; Schaller
et al., 2015; Löring et al., 2016), MR sequence design (Robson
et al., 2005), and subsequent data processing (Zhang et al., 2013)
for 31P-MRS may alleviate these issues by increasing sensitivity,
spatial localization, and decreasing acquisition time. In addition,
clinical MR scanners with a magnetic field strength of 7 Tesla
are becoming more widely available and promise higher signal
to noise ratios and a potential for higher spectral resolution
(Stoll et al., 2016). Indeed, spectra with a signal to noise ratio
similar to those acquired in 30min at 3 Tesla were acquired
in only 6min at 7 Tesla, aided by the shorter longitudinal T1

relaxation times for high-energy phosphate metabolites at 7
Tesla (Rodgers et al., 2014). On the other hand, higher magnetic
field strengths require even more demanding solutions for
minimizing magnetic field inhomogeneities and motion-induced
artifacts that could diminish the theoretical gain in sensitivity
and/or spectral, spatial, and temporal resolution.

The current work emphasizes the need for technological and
methodological advancements of cardiac 31P-MRS. In addition,
improvements are required for an experimental validation of
computational model predictions of human myocardial energy
homeostasis and its (mal-)adaptation in disease. Currently,
such validations have been limited to in vitro assays and
in vivo studies with animal models (Wu et al., 2008, 2009).

Further developments in 31P-MRS methodology may lead to
opportunities for in vivo model validation, and ultimately

for cardiac 31P-MRS exercise stress testing to become of any
diagnostic merit.

CONCLUSION

Simulations of human myocardial energy homeostasis over a
broad range of cardiac work rates predict only moderate changes
in the PCr/ATP ratio, even for hypertrophic cardiomyopathy at
high-intensity work rates. The present study shows that current
measurement precision of commonly used localized 31P-MRS
methods for quantification of the myocardial PCr/ATP ratio
precludes the detection of such changes. This prevents using 31P-
MRS for diagnostic testing and risk stratification in the clinic.
As such, these results warrant further developments in 31P-
MRSmethodology combined with more strenuous exercise stress
testing protocols to facilitate in vivo cardiac 31P-MRS exercise
stress testing of myocardial energy metabolism in patients.
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