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Accounting for corner flow unifies the
understanding of droplet formation in
microfluidic channels
Piotr M. Korczyk 1,5, Volkert van Steijn 2,5, Slawomir Blonski 1, Damian Zaremba 1,

David A. Beattie 3 & Piotr Garstecki 4

While shear emulsification is a well understood industrial process, geometrical confinement

in microfluidic systems introduces fascinating complexity, so far prohibiting complete

understanding of droplet formation. The size of confined droplets is controlled by the ratio

between shear and capillary forces when both are of the same order, in a regime known as

jetting, while being surprisingly insensitive to this ratio when shear is orders of magnitude

smaller than capillary forces, in a regime known as squeezing. Here, we reveal that further

reduction of—already negligibly small—shear unexpectedly re-introduces the dependence of

droplet size on shear/capillary-force ratio. For the first time we formally account for the flow

around forming droplets, to predict and discover experimentally an additional regime—

leaking. Our model predicts droplet size and characterizes the transitions from leaking into

squeezing and from squeezing into jetting, unifying the description for confined droplet

generation, and offering a practical guide for applications.
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In spite of the beautiful regularity in flows of droplets in
microfluidic networks at low Reynolds and capillary numbers,
their dynamics offers rich phenomenological complexity1–4

that prohibits predictive understanding. A striking example is the
flow of a single droplet through a microchannel5–8 for which the
most basic question how the speed of the droplet depends on flow
conditions, fluid properties, and the level of confinement still
lacks a full answer. The generation of droplets in micro-
channels9,10 using T-junctions11–19, flow-focusing20–22, co-
flow23, step emulsification24–29 and parallel devices30–32,
opened the new discipline of droplet microfluidics33,34 that
revolutionized analytical methods in biology35 and medicine with
digital assays36, single cell sequencing37, or systems for research
on biological evolution38. Droplet microfluidic systems are also
used to create new materials for pharmaceutical39–41, cosmetics42

and food43 industries. In a stark contrast to the bulk process of
shear emulsification that is one of the more illustrative and simple
textbook examples of dimensional analysis, generation of droplets
in confinement is still not completely understood.

The first microfluidic device used for the generation of dro-
plets, a T-junction, was proposed by Thorsen et al.11, who
demonstrated that the dynamics of droplet formation is generally
governed by surface tension and viscous shear, while body forces
such as inertia or gravity play little role9,13. Depending on the
relative magnitude of surface tension and shear, as captured by
the capillary number (Ca), and on the contrast of viscosities
between the two phases, distinct “visco-capillary” regimes have
been identified10: dripping13,14,16,22,44,45, jetting44–46 and parallel
co-flow47. Soon after, it was discovered that “capillary-domi-
nated” formation of droplets in microconfinement results in
droplet sizes that only depend of the ratio of the flow rates of the
two immiscible liquids, completely independent of Ca, as
described by the squeezing model12,48. This simple relation
between droplet size and flow rates as well as the low poly-
dispersity of the generated droplets makes the squeezing regime
attractive for applications, where high precision and reproduci-
bility are required in combination with independence on material
parameters such as, e.g., the viscosity of the sample liquid. Effi-
cient use of this technique thus requires a good understanding of
the limits of the squeezing regime. However, the squeezing model,
while commonly accepted, does not account for the flow of
continuous liquid past the droplet while it is formed.

We show in this paper that the neglect of this corner flow
entails spectacular failure of the squeezing model for vanishing
values of capillary numbers. By formally accounting for this
leaking flow we predict and verify experimentally a number of
new features of generation of droplets in microconfinement,
including an additional leaking regime at the lowest values of
capillary number, the existence of a previously unknown lower
bound of the squeezing regime, and scaling of the upper bound—
the transition from squeezing to jetting. The model that we here
demonstrate offers the unique attempt to a unified mechanistic
description of the dynamics of droplet formation in microfluidic
confinement.

Results
Experimental evidence for the leaking regime. We studied the
formation of droplets in the commonly used geometry of the-so-
called T-junction11 (Fig. 1a). Our device comprises a perpendi-
cular intersection of two inlet channels that deliver two immis-
cible liquids, the droplet phase (DP) and the continuous phase
(CP), and a common output from the junction. The CP pre-
ferentially wets the walls of the channels and the droplets never
contact the walls, always being separated from them by at least a
thin film of the CP. This prevents pinning of a contact line, which

would render the dynamics irreproducible and hard to control.
Stationary inflow of both phases into the junction causes a per-
iodic breakup of the DP into droplets.

We measured the length of droplets as a function of Ca, for
various ratios q=QD/QC of flow rates of the DP and CP (see
Fig. 1b). We normalized the length of the droplets, LD, using the
width of the channel, W, as lD= LD/W, and defined the capillary
number as Ca= μCU/γ, with μC the dynamic viscosity of the CP,
U=QC/HW the mean speed of the CP, H the channel height, and
γ the liquid–liquid interfacial tension. The qualitative behaviour
obtained from these measurements is illustrated in Fig. 1c. The
plateau in which droplet length is virtually independent of Ca,
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Fig. 1 Droplet formation at a microfluidic T-junction and experimental data
for the length of droplets versus the capillary number. a Snapshot
illustrating the geometry of the T-junction with channels of a square cross
section, i.e. W= H= 360 µm. QC and QD are the flow rates of the CP
(hexadecane) and DP (fluorinated oil FC-40), respectively. LD is the length
of a droplet. b Experimental data—normalized length of a droplet lD= LD/W
as a function of the capillary number Ca for different q=QD/QC. The blue
area highlights the region, where all curves have a plateau, interpreted as
the squeezing regime. The boundary at the bottom of this area is taken as
the minimum length for which squeezing is operative (lD≈ 2.5, dashed
line). c Schematic picture of the scaling of the normalized length of a
droplet, lD, with the capillary number Ca, as extracted from the full
experimental data set in b, illustrating the leaking, squeezing, and jetting
regimes
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confirms the well-accepted squeezing regime12. The Ca-
dependent region at higher Ca indicates the—also known—
jetting regime. The most intriguing aspect of the data in Fig. 1b, c
is in the range of vanishing Ca, where the length of droplets
explodes with Ca→ 0. The squeezing regime not only spans a
narrower range of Ca than previously expected13 due to the
existence of the lower boundary, but also due to the dependence
of the upper boundary on q. Generally, the higher q, the narrower
the range of Ca for the squeezing regime, as clearly illustrated by
the highlighted area in Fig. 1b. Given the strong Ca-dependence
in the here identified leaking regime, a good understanding of the
mechanism that introduces this dependency is crucial for
practical applications and presented next.

Mathematical model of the leaking regime. The starting point
for our theoretical framework is the original squeezing model12,48,
which considers droplet formation as a two-step process (Fig. 2a).
During the first ‘filling’ stage, that starts when the previous droplet
has detached, the tip of the DP expands into the main channel and
fills most of the junction. In the second, ‘necking’ stage, the droplet
grows, extending downstream from the junction, while the CP
squeezes the ‘neck’ (Fig. 2b). Defining the volume occupied by the
neck, VN(t), with respect to the shape of the neck at pinch-off, this
volume gradually decreases from VN0 at the start of the necking
stage (t= 0) to zero at pinch-off (t= τ) (see Fig. 2c). The space left
behind the moving interface is filled by the incoming volume of
CP: V�

NðtÞ ¼ VN0 � VNðtÞ. The final volume of a droplet,VD, can
be decomposed as the volume at the end of the filling stage, Vfill,
and the volume added at a rate QD during the time τ of the necking
stage. Hence, VD=Vfill+QDτ. The original squeezing model
assumes complete blockage of the channel by the forming droplet
during the necking stage and calculates the necking time

as—simply—the time required for the continuous phase to displace
the volume initially occupied by the neck VN0, i.e. τ=VN0/QC

(see Fig. 2c). This assumption overlooks that a non-wetting droplet
does not fill the corners of a channel that has a rectangular cross
section49,50, allowing the CP to flow (leak) by the droplet through
these corners, the so-called ‘gutters’15 (see Fig. 2b). For an elon-
gated droplet steadily pushed through a straight rectangular
channel, Wong et al.5 pointed out that such a droplet acts as
a leaky piston with the fraction of the incoming CP flowing around
the droplet (through the gutters) increasing as Ca→ 0. At low
Ca, it is hence expected that the fraction of incoming liquid
that passes by a forming droplet, and thus does not contribute
to the squeezing, is no longer negligible. This introduces a
Ca-dependence in the duration of the necking stage and hence
qualitatively explains the here observed Ca-dependence of the
volume of the droplets at Ca→ 0. In channels without gutters, this
Ca-dependence hence should be absent. Indeed, additional
experiments using a T-junction with ‘gutter-free’ circular channels
reveal that the length of the droplets varies weakly with Ca in
comparison to T-junctions with square channels (see Supplemen-
tary Note 1 and Supplementary Fig. 1). An interesting complica-
tion in the description of corner (or gutter) flow around a forming
droplet—as compared with a droplet moving steadily through
a straight channel—is that the gutter flow is dynamic due to the
simultaneous change in its driving force (interface curvature) and
in its resistance to flow (length of gutters). Although earlier work
did assume a fixed, non-zero, fraction of the CP stream to flow
around a forming droplet15, here we introduce the functional
dependence of the leaky flow through the gutters on fluid prop-
erties and flow conditions to establish a unifying description.

Specifically, we define the instantaneous flow rate of the
CP through a single gutter as QG(t) and through all four
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Fig. 2 The process of droplet formation and concepts behind the theoretical model. a Consecutive snapshots showing a complete droplet formation cycle
comprising a filling and a necking stage. b 3D schematic view of the geometry of a forming droplet in the necking stage showing the decomposition of
the incoming CP flow (QC) in a flow towards the neck (QN) and four flows through the gutters (QG). c Comparison of shapes of the neck at the start of the
necking stage (t= 0) and just before the neck breaks (t= τ), (both images were extracted from the highlighted rectangles in the snapshots in a). The
difference of these shapes defines the volume of the neck VN0, which must be filled by the continuous phase to induce pinch-off. d Circuit diagram
illustrating how flows towards and around the forming droplet depend on the time-dependent resistances (RG for viscous resistance in a gutter and RD for
viscous resistance inside the forming droplet). Laplace pressure jump at the front of a droplet is shown schematically as an ‘electromotive force’
established by the curvature of the interface KF. The change of the Laplace pressure jump due to the accumulation of the CP behind the forming droplet is
modelled as the combination of a capacitance C and the electromotive force with reversed direction in respect to the front of a droplet −KF

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-10505-5 ARTICLE

NATURE COMMUNICATIONS |         (2019) 10:2528 | https://doi.org/10.1038/s41467-019-10505-5 | www.nature.com/naturecommunications 3

www.nature.com/naturecommunications
www.nature.com/naturecommunications


gutters combined as QB(t)= 4QG(t) (see Fig. 2b, d). Then, the
flow contributing to squeezing of the neck is
QNðtÞ ¼ QC � QBðtÞ ¼ dV�

N=dt ¼ �dVN=dt. The necking time
thus equals τ ¼ VN0=�QN, with �QN being the time-averaged
squeezing rate. Introducing η=QB/QN as the relative leaking
strength and �η as its time average, we obtain τ ¼ VN0

QC
1þ �ηð Þ. The

droplet volume hence becomes VD ¼ Vfill þ qVN0 1þ �ηð Þ. Rewrit-
ten in terms of the non-dimensional length lD= LD/W, using
LD ≈VD/HW, as is valid for long droplets51, we obtain:

lD ¼ l0 þ qvN0ð1þ �ηÞ ð1Þ
with l0=Vfill/HW2 and vN0= VN0/HW2. This analysis generalizes
the original squeezing model, recovered for �η ¼ 0. In order to
quantitatively predict the size of the droplets in the leaking
regime, we next derive the functional dependence of �η, on q
and on Ca.

We start from the flow scheme depicted in Fig. 2d and note
that the pressure difference associated with viscous flow of the
CP through the gutters balances the pressure difference arising
from the sum of viscous flow inside the DP and the difference in
curvature of the interface at the front and at the back of the
forming droplet. For the leaking and squeezing regimes (i.e. for
low Ca), viscous shear is unable to deform the interfaces such that
the Laplace law is used to calculate the pressure difference due to
a difference in curvature (KF versus KB) of the quasi-static
interfaces as γ(KF− KB). The viscous pressure head over the
droplet and over the gutters equals RD(QD+QN) and RGQB/4,
respectively, with RD and RG the hydrodynamic resistances of the
droplet and the gutter. The balance hence equals γ(KF− KB)+
RD(QD+QN)= RGQB/4. For systems with a moderate viscosity
contrast, μD/μC, the viscous pressure difference inside the droplet
can be neglected with respect to that in the gutters, because the
cross-sectional area of the gutters AG is much smaller compared
with that of the droplet AD. We hence continue with the
simplified balance:

γ KF � KBð Þ ¼ RGQB=4: ð2Þ
Considering the right-hand side of Eq. (2), the hydrodynamic

resistance of a gutter (RG) increases proportionally to the length
LG of the gutter: RG ¼ αGμC

A2
G
LG, with AG the cross-sectional area of

a gutter (in good approximation constant along the gutter and
independent of time) and αG a dimensionless geometrical
factor52. Referring to Fig. 2d, we estimate the velocity of the
front of the droplet as (QD+QN)/AD and that of the back of the
droplet as QN/AD, such that the length of the gutter increases at a
rate equal to the velocity difference, i.e. dLGdt ¼ QD=WH, where we
approximate the cross-sectional area of the droplet (AD) with the
area of the lumen of the channel WH. Considering the left-hand
side of Eq. (2), we note that the curvature at the front of
the droplet, KF ¼ 2

W þ 2
H, is approximately constant in time. The

curvature at the rear (i.e., at the neck) depends on the neck shape,
which is determined by the amount of the CP collected behind it,
i.e. by the value of the volume V�

N. Adopting the
electric–hydraulic analogy that can be applied to single phase
low Reynolds number flows, we describe the accumulation of
the CP behind the droplet akin to a charging capacitor: the
further the rear interface is pushed into the junction, the larger
the difference in curvatures at the rear and front, and hence the
more charge is stored. If one were able to instantaneously release
the driving pressures in the system during the formation of a
droplet (akin to switching off the main voltage supply in an
electric circuit), the capacitor would discharge, i.e., the forming
droplet would relax its shape inside the T-junction to an
equilibrium shape with similar curvatures at its front and rear.

Similar to electric RC circuits, the product of the capacitance and
resistance can be seen as the characteristic relaxation time. A
quantitative analysis of this time scale is provided in Supple-
mentary Note 2. Using this analogy, we model the curvature
difference as: KF � KB ¼ V�

N
C ¼ 1

W3H
V�
N
c ¼ 1

W
v�N
c , with C a constant

(analogous to capacitance) characterising the rate of change of the
curvature with V�

N. Here c ¼ C
W3H and v�N ¼ V�

N
W2H are dimension-

less equivalents of C and V�
N, respectively. Before using the thus

obtained relation, we provide an intuitive physical interpretation
of the capacitance by connecting it to the classical derivation of
the Young-Laplace law. Considering a droplet of volume,
V, and surface area A, the Helmholtz free energy, dF, equals
dF=−pdV+ γdA. Near equilibrium (dF= 0), the pressure
difference across the droplet interface equals Δp ¼ γ dA

dV ¼ γK .
The curvature difference for a forming droplet, KF− KB, being

equal to V�
N
C can similarly be related to

dAN V�
Nð Þ

dV�
N

, i.e. the change in

neck area, AN, parameterized solely in terms of V�
N. We hence

obtain
dAN V�

Nð Þ
dV�

N
� V�

N
C , with the corresponding interfacial free

energy, W, being equal to W ¼ γAN V�
N

� � ¼ 1
2

V�
Nð Þ2
C . The

capacitance C can hence be interpreted as the coefficient that
describes how the surface area of the neck, AN, and the interfacial
free energy stored in it due to its deformation by the CP, depends
on the volume of the CP collected behind the neck. Now,
we proceed with the main analysis by substituting the relation
KF � KB ¼ 1

W
v�N
c in the pressure balance (Eq. (2)) together

with QB ¼ QC � QN ¼ QC � dV�
N=dt, to obtain:

γV�
N

W3Hc ¼ RG tð Þ � QC � dV�
N=dt

� �
=4. This equation resembles the

well-known equation for electric RC systems (QC ¼ �R � dQ=dt,
with Q the electric charge), although with a time-dependent
resistance RG(t). The solution gives the flow rate to the neck:

QN ¼ qCa
qCaþβQC, with constant β ¼ 4

αG

A2
G

W3H
1
c. Note that the full

expression for QN includes an additional time-dependent term
that decays fast and can be neglected (see Supplementary Note 2).
Strikingly, this model predicts that QN does not depend on time,
implying that, after a short initial transient, the flow through the
gutters is constant in time. Consequently, the front of a forming
droplet should propagate at a fixed speed during droplet
formation22. Our experiments confirm this surprising prediction
(see Supplementary Note 3 and Supplementary Fig. 2). Finally, we
arrive at the following expression for the relative leaking strength:
�η ¼ η ¼ QB

QN
¼ QC�QN

QN
¼ β

qCa. Incorporating this functional depen-
dence in Eq. (1), we obtain:

lD ¼ l0 þ qvN0 1þ β

qCa

� �
ð3Þ

This generalized equation implies that all data from Fig. 1b
should collapse onto a single master curve when using this
functional form for the dependence of droplet size on the ratio of
flow rates and the capillary number. Indeed, fitting a single set of
parameters β, vN0, and l0 to all our data, we find a single master
curve for �η ¼ β

qCa ¼ lD�l0
qvN0

� 1 as shown in Fig. 3. We confirm the
universality of this behaviour for different fluid systems and
channel sizes (see Supplementary Notes 4, 5 and Supplementary
Figs. 3, 4). For rectangular channels with different aspect ratios,
we confirm that the general behaviour is the same, with the details
of the leaking mechanisms depending on the aspect ratio
(Supplementary Note 6, Supplementary Fig. 5 and Supplementary
Table 4). With the functional behaviour of the leaking strength
well captured, the generalized Eq. (3) accurately describes the
experimental data on droplet length (see also Supplementary
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Note 7 and Supplementary Fig. 6). This agreement demonstrates
that the present analysis captures the mechanisms governing
droplet formation in the leaking regime. Figure 3 also shows that
the leaking regime transitions smoothly into the squeezing
regime. Without a sharp boundary, the lower limit of the
squeezing regime, in which droplet length does not significantly
depend on Ca, may be defined as qCa � β, as evident from Eq.
(3). In case a particular application requires the sensitivity of the
final droplet length (with respect to Ca) to be less than a
threshold value of say 10% (�η< 0:1), qCa= 10β provides an
application-tailored lower limit for the squeezing regime.

Scaling of the squeezing to jetting transition. To explain why
ηexp ¼ lD�l0

qvN0
� 1 deviates from the theoretical scaling �η ¼ β

qCa at
the largest values of qCa, we take a closer look at the shapes of
the rear of the droplet at end of the necking stage. For the
capillary-dominated regime, we expect self-similar shapes of the
interface—that is, shapes that solely depend on the instantaneous
volume of the neck V�

NðtÞ. Considering the shape of the interface
at the moment of pinch-off, we observe that the shapes are indeed
all similar at low qCa (Fig. 4a). The volume filled by the CP
during the necking stage, VN0—being directly related to this
shape—is the same for all these cases, and so is β. In contrast, the
interface shape prior to pinch-off is no longer self-similar at
higher qCa, i.e. no longer determined solely by V�

N. Viscous
deformation of the interface, so far left out of the description,
hence introduces a dependence on q and on Ca in vN0, explaining
the deviation from Eq. (3) at high qCa, as observed in the inset of
Fig. 3.

We hypothesize that, for the larger values of qCa, the
instantaneous neck shape is not solely parameterized by V�

N, as

in the case for low qCa, for which the final shape at pinch-off (for
V�
Nðt ¼ τÞ) has a universal value (though with different necking

times τ for different conditions). To capture how viscous
dissipation alters V�

Nðt ¼ τÞ beyond the leaking regime, we
therefore introduce an additional parameter, which we call the
‘shape number’ S.

We derive an expression for S using Onsager’s variational
principle53,54, which is an extension of Rayleigh’s least energy
dissipation principle55. Onsager’s principle allows for taking into
account the dynamic change in free energy of the interface as well
as the energy dissipated by viscous flow. It has been successfully
applied in the field of soft matter physics56. In isothermal
systems, Onsager’s principle minimizes the so-called Rayleighian
R, which takes the following general form57:

R ¼ Φ x; _xð Þ þ _Wðx; _xÞ: ð4Þ

Here, W is the interfacial free energy of the system with _W
being its rate of change. Φ is the dissipation function, which is
equal to half the rate of energy dissipation. x represents the set of
variables of the system and _x their time derivatives. In our
system, viscous dissipation is the only source of
energy dissipation. The rate of viscous dissipation for laminar
flow can generally be expressed in terms of the hydrodynamic
resistance (R) and the flow rate (Q) as RQ2 58. In our system,
for the larger values of qCa, viscous dissipation mainly
stems from the flow through the neck. For that qCa range, gutter
flows are negligibly small and the neck is squeezed by almost
all of the incoming CP (QN ≈QC). The flow rate in the neck
itself hence equals the sum QC+QD. The viscous resistance in
the neck, RN, depends on its instantaneous shape and
hence is parameterized by V�

N and S. The dissipation
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Fig. 3 Experimental verification of the leaking-regime-model. Master curve for �η experimentally determined from all data in Fig. 1b using ηexp ¼ lD�l0
qvN0

� 1
(Eq. 3) and ηexp ¼ β

qCa (definition) with fit parameters l0= 1.46 ± 0.14, vN0= 2.04 ± 0.11, and β ¼ 7:4 ´ 10�5 ±0:3 ´ 10�5. In the leaking regime, the flow
through the gutters is at least equal to the flow to the neck (i.e. ηexp ≥ 1 for qCa≤ β). By contrast, in the squeezing regime, the flow though the gutters is
negligibly small compared with the flow to the neck (i.e. ηexp ≪ 1 for qCa > 10β). The intermediate regime (β < qCa < 10β) is identified as the transition
between leaking and squeezing. Inset: log-log master curve for qCa < 10β. Blue solid line: theoretical scaling �η ¼ β

qCa. All experimental data collapse on this
single curve in the leaking regime, while deviations of ηexp from the theoretical scaling for �η at ηexp < 0.1 are attributed to a remaining dependency of vN0
(taken constant here) on q and Ca as explained later. The transition between squeezing and jetting does not occur at a single value of qCa for curves with
different q, which is highlighted in the graph in the ‘overlap’ region. In the next part, we will explain how to parameterize the system to capture the
squeezing–jetting transition for all these curves based on a single parameter
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function hence is estimated as Φ ¼ 1
2RN V�

N; S
� � � QC þ QDð Þ2.

The free energy of the system W is equal to the interfacial
energy of the neck W V�

N; S
� � ¼ γAN V�

N; S
� �

, where AN V�
N; S

� �
is the instantaneous surface area of the neck. The rate of
change of the free energy can be estimated as

_W V�
N; S

� � ¼ γ
∂AN V�

N;Sð Þ
∂V�

N

∂V�
N

∂t ¼ γK V�
N; S

� �
QN � γK V�

N; S
� �

QC,

with K V�
N; S

� �
the instantaneous curvature of the neck. We hence

obtain the following Rayleighian

R ¼ 1
2
RN V�

N; S
� �

QC þ QDð Þ2 þ γK V�
N; S

� �
QC ð5Þ

Solving the minimization equation for the Rayleighian with
respect to S for fixed V�

N;
dR
dS

��
V�
N
¼ 0; we obtain:

2
kS V�

N

� �
rS V�

Nð Þ ¼ QC þ QDð Þ2
QC

/ Ca 1þ qð Þ2 ð6Þ

where kS V�
N

� � ¼ γ
dK S;V�

Nð Þ
dS

����
V�
N

and rS V�
N

� � ¼ � dRN S;V�
Nð Þ

dS

����
V�
N

, with

kS V�
N

� �
and rS V�

N

� �
both defined as positive functions based on the

expectation that larger S implies larger deformation of the interface
(and hence larger K S;V�

N

� �
) and smaller viscous resistance (and

hence smaller RN S;V�
N

� �
). With the left-hand side of Eq. (6) only

depending on the shape of the neck, this analysis teaches that the
neck shape is fully governed by V�

N and the parameter Ca(1+ q)2,
which we call the ‘shape number’ defined as S=Ca(1+ q)2. We
hence expect the same neck shape prior to pinch-off (V�

Nðt ¼ τÞ)
for different conditions, as long as S is the same. Before we test the
validity using experiments, we stress that the same analysis can be
applied for low qCa with the neck shape solely parameterized in
terms of V�

N, with the Rayleighian being equal to

R ¼ 1
2RG � Q2

B
4 þ V�

N
C QC � QBð Þ. Minimizing R with respect to QB

for fixed V�
N, we obtain the same balance V�

N
C ¼ RG � QB

4

� �
as the one

derived using the momentum balance as a starting point,
confirming the validity of the approach.

The above analysis predicts that, for the larger range of qCa, all
neck shapes prior to pinch-off are uniquely defined by the value
of S. Remarkably, this is exactly what we find in experiments, with
all interface shapes collapsing onto a master shape for fixed S, as
evident from Fig. 4b, c. Having established the physical origin of
this S-number, we finalize the description of droplet formation.
We use the S-number to predict the upper boundary for
squeezing regime, and to explain the mechanism behind the
transition between squeezing and jetting.

At the limit of high rates of flow in the squeezing regime, we
expect shear to wash the instability away from the junction, as
observed in the convective regime in jetting. Since this mechanism
is not captured in the S-number description, we expect that, in
that limit, the shape of the neck just before breakup (for
V�
Nðt ¼ τÞ) will no longer be uniquely captured by S. To test

this hypothesis experimentally, we determined the relation
between V�

Nðt ¼ τÞ and S. We use the breakup distance D (see
inset Fig. 5a) as a proxy for V�

Nðt ¼ τÞ as it is a well-defined direct
observable. Data for different values of q collapse perfectly on the
same curve for d ¼ D=W ≲ 1 and S≲ 0:017. For larger S, the
breakup shape is indeed no longer uniquely defined by S as
evident from the curves for different q. We therefore interpret this
point (Scrit ≈ 0.017) as the transition from squeezing to jetting,
supported by the experimental observation that for larger S, a long
thread of the DP penetrates the main channel, characteristic for
the jetting regime. This threshold value of S accurately predicts the
transition for all curves (Fig. 5b). We note that, to the best of our
knowledge, the S-number criterion is the first attempt to provide a
universal scaling of the squeezing–jetting transition.

In summary, we derived a complete model for the generation
of droplets at low Ca under microscale geometrical confine-
ment. The explicit inclusion of the magnitude of the leaking
flow of the continuous phase past a growing droplet allowed us
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c

Fig. 4 Variations of the shape of the neck. a The neck just before breakup for different values of Ca and q in a T-junction with channels of a square cross
section (W= H= 360 µm). All shapes are compared with the shape in the top left corner (white dashed line) with the differences highlighted in colour.
The diagonal lines separating the snapshots correspond to qCa= β and qCa= 10β. For the leaking regime (qCa < β; yellow) and for the transition between
leaking and squeezing (qCa < 10β; green), this clearly shows that the shape prior to pinch-off is the same irrespective of the values of q and Ca, confirming
that the parameters depending on the shape such as vN0, KB V�

N0

� �
and KB(0) are constant in the leaking regime and in the transition regime between

leaking and squeezing. For the squeezing regime (qCa > 10β; blue) and the jetting regime (S > 0.017; red), the remaining dependency of the shape on q and
Ca is clearly visible. b Comparison of shapes of the neck for a variety of combinations of QC and QD. For better visualisation, a T-junction with flattened
channels (W= 2H= 800 µm) was used. The left column—constant q(=1), the right one—constant S(=0.017). Snapshots in the same row were taken for
the same QC (i.e. the same Ca). c Composition of overlaid images from each column from b. It is visible that, although the length of a droplet is similar for
constant q (a well-known feature of the squeezing regime), the shapes of the neck differ significantly. By contrast, these shapes are the same for constant S
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to uncover the leaking regime of drop formation and to
reformulate the squeezing model for the size of the droplets,
including the transitions between leaking and squeezing, and
between squeezing and jetting. The insights from this work can
be used to revisit droplet formation at low Ca in other common
geometries, such as Y-junctions, cross-junctions, and flow-
focusing devices, including many fine details such as the
influence of channel aspect ratio and viscosity contrast that, to
date, have escaped a unified model of droplet formation in
microfluidic confinement.

From a practical point of view, the leaking regime is the least
attractive mode of breakup, because it presents a very sharp
dependence of droplet volume on the control parameters—such
as rates of flow. One may either use the equations here described
to find the squeezing regime for channels with a square cross
section, or, easier, use a T-junction with circular channels that
preclude leaking and present a very wide range of parameters that
result in squeezing.

Methods
Device fabrication. We fabricated the chips via direct milling in polycarbonate
(PC) sheets (Macroclear, Bayer, Germany) using a CNC milling machine (Ergwind,
Poland). This machine has a reproducibility of positioning of 5 μm. The milled
chips were bonded to a flat slab of polycarbonate using a hot press at 130 °C. No
further channel modifications were applied. The height and width of the rectan-
gular channels was 360 µm, except for the chips used to produce Fig. 4b, c, Sup-
plementary Fig. 5 (W= 2H= 800 µm) and Supplementary Fig. 4 (W=H= 200
µm). These dimensions, which may be larger than those typically encountered,
were chosen to enable reaching low Ca values, without being constrained by the
lower limit of the flow rate of the syringe pumps.

Experiments. We used a stereoscope equipped with a high-speed camera (PCO
HS1200) to record images of droplet formation. We analyzed the sequences of
images with a custom written script in MATLAB (Mathworks), which auto-
matically recognized droplets and measured their length. In order to obtain data
with a good precision, long sequences of droplets (typically > 30) were observed,
which for the low Ca values took up to 10 h.

In order to feed our system with liquids, we used Nemesis pumps (Cetoni
GmbH, Germany) with 100 μl glass syringes, connected to the chip using PE-60
tubing (Beckton-Dickinson, USA). In addition, we performed some
measurements with 1000 μl syringes to test whether the pumps generate
fluctuations in flow rates that could disturb the measurements59. The
measurements from both syringes were in good agreement (see Supplementary
Note 8 and Supplementary Fig. 7), confirming that there are no significant
fluctuations in our feeding system. Having confirmed that the syringe pumps
produce steady flows for our range of operating conditions, we have chosen their
use over, for example, pressure driven systems, as they allow direct control over
the flow rate.

We used fluorinated oil FC-40 (3M, USA) as DP and hexadecane (Sigma
Aldrich Co.) as CP for the measurements reported in the main article. We chose
this set after multiple attempts with different fluid combinations. The chosen fluid
system ensured the absence of wetting of the channel walls by the DP, without
further channel treatment or addition of surfactants. Dynamic effects resulting
from surfactant transport17 are hence not at play. Additional fluid systems used to
construct Supplementary Fig. 3 are further detailed in Supplementary Note 4 and
Supplementary Table 1.

Viscosities of the used liquids were estimated by measuring the time required
for a given volume to flow through a calibrated capillary for a known pressure drop
over the capillary, which was controlled using a pressure regulator and a precise
manometer. We repeated the measurements for different values of the pressure
drop obtaining a linear relation between pressure drop and calculated flow rate. A
linear fit provided the values of viscosities. This resulted in μC= 3.6 mPa s and
μD= 4.1 mPa s for hexadecane and FC-40, respectively. Values for the other fluid
systems are reported in Supplementary Table 2.

The interfacial tension between both liquid phases was estimated by the
pendant droplet method using a custom set-up enabling observation of the
interface of a pendant droplet of FC-40 immersed into hexadecane. We calculated
the interfacial tension by the use of a custom Matlab script applying the Laplace-
Young theorem to the droplet shape extracted from the acquired images. This
resulted in γ= 7.3 mN m−1 for the hexadecane—FC-40 fluid system. Values for
the other fluid systems are reported in Supplementary Table 3.

Data availability
The data that support the plots within this paper and other findings of this study are
available from the corresponding authors upon reasonable request.
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Fig. 5 Quantitative test of the S-number as the scaling factor of the formation of droplets in the squeezing regime. a Measurements of the dimensionless
distance d= D/W—the distance between the internal corner of the junction and the rear interface of the droplet immediately after breakup—as a function
of the S-number. Inset: shape of the neck prior to breakup (top) and immediately after breakup (bottom). The measured value of d corresponds to the
deformation of the shape of the neck. The overlap between transition L–S and squeezing corresponds to the fact that the transition between these regimes
is captured by a single value qCa for all curves, but not for a single value of the S-number. b Normalized length of droplets lD versus the S-number showing
that the transition from squeezing to jetting occurs at a single value for the S-number for all curves (Scrit ~ 0.017). For the series with q < 1 the length of the
droplets (except for the leaking regime) is below or close to lD= 2.5. In the case of such short droplets, a more accurate description should include shear
during the filling stage as in models for the dripping regime
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