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Emerging evidence suggests that DNA methylation affects
transcriptional regulation and expression perturbations of
long non-coding RNAs (lncRNAs) in cancer. However, a
comprehensive investigation into the transcriptional control
of DNA methylation-mediated dysregulation of transcription
factors (TFs) on lncRNAs has been lacking. Here, we integrated
the transcriptome, methylome, and regulatome across 21 hu-
man cancers and systematically identified the transcriptional
regulation of DNA methylation-mediated TF dysregulations
(DMTDs) on lncRNAs. Our findings reveal that TF regulation
of lncRNAs is significantly impacted by DNA methylation.
Comparative analysis of DMTDs on mRNAs revealed a
conserved pattern of TFs involvement. Pan-cancer Methylation
TFs (MethTFs) and Methylation LncRNAs (MethLncRNAs)
were identified, and were found to be closely associated with
cancer hallmarks and clinical features. In-depth analysis of
co-expressed mRNAs with pan-cancer MethLncRNAs unveiled
frequent disruptions in cancer immunity, particularly in the
context of inflammatory response. Furthermore, we identified
five immune-related network modules that contribute to im-
mune cell infiltration in cancer. Immune-related subtypes
were subsequently classified, characterized by high levels of im-
mune cell infiltration, expression of immunomodulatory
genes, and relevant immune cytolytic activity score, major his-
tocompatibility complex score, response to chemotherapy, and
prognosis. Our findings provide valuable insights into cancer
immunity from the epigenetic and transcriptional regulation
perspective.

INTRODUCTION
Gene expression is regulated by transcription factors (TFs).1,2 There-
fore, it is important to identify the target genes of TFs and further
explore their regulatory pathways and underlying mechanisms.
With the development of high-throughput sequencing technology,
it is possible to identify genome-wide TF binding sites (TFBSs) by
chromatin immunoprecipitation sequencing (ChIP-seq).3–5 It is
well known that abnormalities of transcription regulation are closely
related to carcinogenesis; however, the underlying molecular mecha-
nism remains to be elucidated.
Molecular The
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DNAmethylation, as a type of important epigenetic modification, can
silence a wide range of genes in various cancer types.6–9 Increasing ev-
idence suggests that DNA methylation in TFBSs can regulate the
expression of target genes by affecting TF-binding efficiency10 and
many TFs have been discovered that bind CpG methylated se-
quences.11 If the regulatory activity of a TF to its given target was
affected by the DNA methylation of the target gene, this regulation
was considered as a DNA methylation-mediated transcriptional dys-
regulation (DMTD). Considering the widespread changes to DNA
methylation and transcriptional regulation across cancers, identifying
DMTDs is crucial for human diseases. TFs whose regulatory activity
are affected by DNAmethylation are also defined as MethTFs. In our
previous study, widespread regulation disruptions of TFs on mRNAs
by DNAmethylation were discovered, and we showed that they regu-
lated several hallmarks of cancer.12 Moreover, the cooperative regula-
tion modules of MethTFs were closely related to their prognostic
potential.

DNA methylation also has been shown to repress the expression of
long non-coding RNAs (lncRNAs), and extensive methylation abnor-
malities occurring in the promoter region of lncRNAs have been
discovered across cancers.13–15 Here, methylation-mediated lncRNAs
were defined as MethLncRNAs. There has been no systematic study
on DNA methylation-mediated lncRNAs at the pan-cancer level. In
contrast, current studies have shown that lncRNAs act as critical reg-
ulators in cancer immunity, but their precise role and the underlying
regulation of tumor immune response have not been fully eluci-
dated.16,17 The MethLncRNA EPIC1 was found to suppress tumor
rapy: Nucleic Acids Vol. 34 December 2023 ª 2023 The Authors. 1
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cell antigen presentation, leading to resistance to anti-programmed
cell death protein 1 treatment.18 These findings support the idea
that some lncRNAs regulate the human immune response in the tu-
mor microenvironment; however, most functions of MethLncRNAs
and their role in tumor immunity are still unknown.

To systematically investigate DMTDs on lncRNAs in cancers, we in-
tegrated the transcriptome, methylome, and regulatome across 21 hu-
man cancers and systematically screened for theDMTDs on lncRNAs.
The DMTD regulation patterns on lncRNAs were compared with
those on mRNAs across cancers. Functional analysis was further per-
formed and we found that DMTDs were closely correlated with hall-
marks of cancer, especially cancer immunity. In addition, we identified
co-regulatory immune modules, which were validated in independent
verification sets. Thus, comprehensive analysis of methylation-medi-
ated regulation between MethTFs and MethLncRNAs will contribute
to our enhanced understanding of the complex transcriptional regula-
tory mechanism in cancer. Our analysis highlights the importance of
methylation-mediated transcription regulation to lncRNA expression
and also reveals critical roles of lncRNAs in cancer immunity.

RESULTS
DNA methylation widely mediated the transcriptional regulation

on lncRNAs across cancers

Several studies have found that transcriptional regulation could be
mediated by DNA methylation in the promoter regions of target
genes. We have previously found that DMTDs for mRNAs are prev-
alent across cancers and the regulation patterns are complex.12

lncRNAs are an important type of regulatory RNA and with a com-
parable amount as mRNA. Thus, we further systematically identified
DMTDs for lncRNAs across 21 cancers. The detailed sample number
is shown in Figure S1. Sample sizes varied from 121 in THYM to 189
in BRCA. Based on the proposed computational framework, we iden-
tified DMTDs for lncRNAs ranging from 114 to 849 DMTDs in 21
cancers, suggesting that DNA methylation could also influence the
transcriptional regulation of lncRNAs (Figure 1A). Moreover,
DMTDs for lncRNAs in each cancer formed a connecting and com-
plex regulatory network, indicating the complex regulation patterns
of DNA methylation (Figure S2).

We compared the transcriptional dysregulation patterns of lncRNAs
mediated by DNA methylation to those of mRNAs, which were ob-
tained from our previous studies.12 After comparing with DMTDs
on mRNAs in 20 cancer types, we found a significant positive corre-
Figure 1. Identification of DMTDs in cancer

(A) The number of DMTDs, MethTFs, and lncRNAs in each cancer type. (B) The number

DMTD that regulates mRNA and lncRNA in cancer, respectively. (C) The number of TFs in
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TCF12 in BRCA (right). The boxplots showing the distribution of expression across cance

low (blue) methylation levels of target lncRNAs.
lation (Figure 1B) (R = 0.71; p = 0.00044). If there were more DMTDs
for mRNAs in a cancer type, DNA methylation was more likely to
mediate the regulation of lncRNAs. Similar results were found for
the number of lncRNAs/mRNAs, as well as the number of targets
for TFs (Figure S3). These results suggested that DMTDs were exten-
sive and conserved in cancer, and the regulation patterns of DMTDs
for lncRNAs were similar to mRNAs across cancers.

We further calculated the DMTD number of MethTFs across cancers
and found that DNA methylation-mediated transcriptional regula-
tion of mRNAs and lncRNAs are comparable across 20 cancers (Fig-
ure 1C) and exhibit strong positive correlation (Figure 1D) (R = 0.77;
p < 2.2e-16), such as TEAD4, TAL1, and KDM5B. Similar results
were observed in individual cancers (Figure S4). To remove the effects
of promoter length, we re-identified the DMTDs of mRNAs by
defining mRNA promoters as ±1 kb around transcription start sites
(TSSs). As described above, the results also indicate that DNA
methylation widely mediated transcriptional regulation on both
mRNAs and lncRNAs across cancer types, and the regulation patterns
of DMTDs on lncRNAs were similar to those of mRNAs (Figure S5).

In addition, some MethTFs tended to regulate more lncRNAs than
mRNAs, including ESR1, ERG, HIF1A, and FOXM1. For instance,
ESR1 regulated about 169 lncRNAs, whereas only 56 mRNAs were
regulated. Taken together, these results indicated that the regulatory
roles of these TFs should not be ignored from the viewpoint of lncRNAs.

It has been demonstrated that MethTFs have different binding motifs
when the target sequence is methylated versus when it is not,19 and
DMTDs for mRNAs tend to enrich in methylated motifs. To analyze
the transcriptional regulation of lncRNAs mediated by DNA methyl-
ation, we also assessed whether DMTDs for lncRNAs tend to be regu-
lated by known methylated motifs, which were obtained from Me-
dReaders.20 As shown in Figure 1E, an average of approximately
63.6% of DMTDs for lncRNAs showed binding by at least one meth-
ylated motif, and 7 of 10 MethTFs with the highest number of target
genes had known methylated motifs, which regulate a considerable
number of target genes across cancers. For example, TCF12 has one
methylated motif, and all regulations were influenced by its methyl-
ated motif, whose overexpression in ovarian cancer is associated
with higher histological grade and metastasis.21 Additionally, we
found that, in BRCA, the regulatory activities of TCF12 and IRF1
on their target lncRNAs varied between hypomethylated and hyper-
methylated groups (Figure 1F). Finally, we found that 91.9% of
of DMTDs in each cancer. The horizontal and vertical axes represent the amount of

volved in various cancers. The blue bar plot represents the number of TFs generated

regulating mRNA. (D) TFs regulate the number of target genes. The horizontal axis

the number of lncRNAs regulated by TFs. (E) The top of the figure represents the
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epresents mRNA and the lower triangle represents lncRNA. The red letters represent
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DMTDs were only observed in one cancer (Figure S6A), and the high
heterogeneity was also observed between cancer pairs (Figure S6B).
These results indicate a strong cancer-specific regulation. Taking
into account the heterogeneity between different cancer subtypes,
we further compared the DMTDs in two breast cancer subtypes,
including LuminaA and triple-negative breast cancer (TNBC). As a
result, only 11.09% of DMTDs were shared. For example, the changes
of regulatory activities of ETV4 or MYBL1 on their target lncRNAs
were just observed in TNBC, which have been validated to be critical
in TNBC.22,23 Moreover, although a small proportion of DMTDs was
observed in more than three cancer types, they formed a connecting
regulatory network, suggesting a conserved “neuronal” DMTD
network for lncRNAs that may maintain the network architecture
across cancers. These results highlighted that systematic analysis of
DMTDs for lncRNAs across cancers could further deepen our under-
standing about transcriptional dysregulations of lncRNAs mediated
by DNA methylation.

Pan-cancer MethTFs play important roles in carcinogenesis

It has been found that regulatorswithmore targets tend to localize at the
center of the regulatory network and have important biological func-
tions. As described above, a few MethTFs indeed regulated hundreds
of lncRNAs; thus, we attempted to identify these MethTFs across can-
cers. The pan-cancer MethTFs were defined as those observed in
more than 15 cancer types and regulated more than 32 target genes.
In total, 58 pan-cancer MethTFs were identified, accounting for
17.5% of MethTFs (Figure 2A). In contrast, 97 cancer-specific
MethTFs were identified, which were only identified in no more than
two cancers. Moreover, 45.6%–73.7% of DMTDs for lncRNAs were
regulated by pan-cancer MethTFs, and these pan-cancer MethTFs
were likely to regulatehighernumbers of lncRNAs comparedwith other
MethTFs in each cancer type (Figure 2B).We also found that high pro-
portions of pan-cancerMethTFs regulated at least four lncRNAs in each
cancer, particularly in BLCA, STAD, HNSC, and LGG, indicating that
lncRNAs regulated by pan-cancerMethTFs tend to havemoreDMTDs
(Figure 2C). Moreover, we found that approximately 40% pan-cancer
MethTFs were significantly enriched in known cancer genes (p =
0.0009175, Fisher’s exact test) (Figure 2D). We further discovered
that the pan-cancerMethTFs showed significant differential expression
in cancers, suggesting that expression perturbations might further
change their regulation of lncRNAs (Figure 2E). For example, pan-can-
cerMethTFMYBL2 inMyb/SANT familywas significantly upregulated
in all analyzed cancers (Figure S7); this was consistent with previous
findings that upregulation of MYBL2 was associated with poor prog-
nosis in a variety of cancers.24,25 In contrast, the pan-cancer MethTFs,
Figure 2. Characterization of MethTFs in cancer

(A) The number of TFs involved in regulatory relationships and the number of cancers. (

cancers, and the boxplot on the right shows the number of lncRNAs regulated by three

each cancer. (D) Proportion of TFs in known cancer genes across the three TF catego

heatmap shows the differential expression of pan-cancer MethTFs and the bar plot re

expression and blue represents low expression. (F) Hallmarks of cancer enriched by pan-

Colored cells in outer circle denote significant events. Colored bars in middle circle deno

in the following categories: grade, stage, subtype, and survival, respectively.
NR2F2, and PGR in the nuclear receptor family were significantly
downregulated in most cancers. Previous studies have found that
NR2F2 was a tumor suppressor, which can effectively regulate a variety
of signaling pathways, and control tumor cell growth and angiogenesis
in the tumor microenvironment.26 Overall, these results suggest that
pan-cancer MethTFs can be used as cancer diagnostic biomarkers.

We further found that most pan-cancerMethTFs are significantly asso-
ciated with cancer as revealed by their contribution to functions and
clinical relevance. For example, the immune-related hallmark was
significantly regulated by HIF1A and IRF1, whereas the differentia-
tion-related hallmark was significantly regulated by the pan-cancer
MethTF MYC (Figure 2F). We also observed that many immune-
related functions were affected, such as inflammatory response, inter-
feron gamma response, and interferon alpha response. Inflammation
in the tumor microenvironment promotes tumor growth by increasing
malignant cell proliferation and survival, stimulating angiogenesis and
metastasis, and altering adaptive immune responses.27 Type I inter-
ferons (IFN-a and IFN-b) have numerous direct and indirect effects
on tumors.28 HIF1A upregulation also has been shown to be associated
with enhanced tumor immunity and stromal characteristics in 10 can-
cers, as well as aggressive phenotypes in human cancers.29 By analyzing
the functions of specific MethTFs, we found that specific MethTFs in
different cancers participate in different functions. For example,
SARCmainly participates in theUVresponse andUPand tumornecro-
sis factor-a signaling via the nuclear factor-kB pathway. LGG mainly
participates in the unfolded protein response and transforming growth
factor-b (TGF-b) signaling, whereas KIRP only participates in TGF-b
signaling (Figure S8). Studies have found thatTGF-b signaling regulates
cell function and plays a key role in cell development and carcinogen-
esis.30 In contrast, a notable statistically significant link between the
expression of pan-cancer MethTFs and clinically relevant events was
also found (Figure 2G). For example, the expression of IRF1 was signif-
icantly correlated with clinical features of multiple cancers, including
different expressions across different stages or different subtypes; it
was also a factor linked to patient survival (Figure S9). Similarly,
STAT4 is another example that was closely associated with clinical
features (Figure S10). Taken together, our comprehensive analysis of
pan-cancer MethTFs indicates the overall changes and their potential
prognostic value in cancer.

Pan-cancer MethLncRNAs regulate cancer hallmarks and are

closely correlated with clinical features

Since pan-cancer MethLncRNAs are well known regulators in cancer,
we next explored the functions of pan-cancer MethLncRNAs
B) The bar plot on the left represents the proportion of three types of TFs in different

types of TFs. (C) Pan-cancer MethTFs regulate the proportion of lncRNA numbers in

ries. Known cancer genes were obtained from the Cancer Gene Census. (E) The

present the number of cancers with high and low expression; red represents high

cancer MethTFs. (G) Clinically relevant pan-cancer MethTFs across human cancers.

te number of significant cases. Red, blue, green, and yellow denote significant cases
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regulated by MethTFs in cancer, which were required to be observed
in more than eight cancer types and regulated more than eight genes.
In total, 65 pan-cancer MethLncRNAs were identified (Figure 3A),
accounting for 3.7% of all lncRNAs and 6.3%–28.6% of all DMTDs.
After annotating the biological types of pan-cancer MethLncRNAs,
we found that most were antisense lncRNAs, and the proportion
was significantly higher when compared with the whole genome
(32/65; p = 0.012). Indeed, previous studies have reported that anti-
sense lncRNAs were affected by DNA methylation in tumor progres-
sion,31–33 and further disruptions of transcriptional regulation by
DNA methylation on lncRNAs were revealed here. In addition, 496
cancer-specific MethLncRNAs were also newly identified in one can-
cer (Table S1). We also found that pan-cancer MethLncRNAs were
likely to be more regulated by TFs compared with other lncRNAs
in individual cancers (Figure 3B). Moreover, about 57% of pan-cancer
MethLncRNAs are known cancer genes derived from Lnc2Cancer,33

Cancer LncRNA Census,34 and LncRNADisease2.035 (Figure 3C). In
addition, we found that an average of 49.8% of target lncRNAs were
known cancer genes in 21 cancers. The lncRNAs were differentially
expressed in a variety of cancers, especially in BRCA, COAD,
LUSC, and LUAD, suggesting that the target lncRNAs in the
DMTDs we identified could serve as potential targets or biomarkers
(Figure S11). We also found that higher proportions of pan-cancer
MethLncRNAs were regulated by relatively more TFs in each cancer
(Figure 3D). In addition, we found that pan-cancer MethLncRNAs
tended to be differentially expressed, which might be acted as onco-
genes or tumor suppressors (Figure 3E). Notably, the expression
levels of pan-cancer MethLncRNAs were significantly negatively
correlated with their corresponding methylation levels. Compared
with all lncRNAs, the negative correlation ratios of pan-cancer
MethLncRNA reached 86.6%, on average, which was significantly
higher than all lncRNAs (Figures S12A and S12B). Moreover, a
considerable percentage of pan-cancer MethLncRNAs negatively
correlated with DNA methylation were likely to be differentially ex-
pressed; however, the directions of expression changes were different
across cancer types (Figure S12C). For example, the proportions of
downregulated lncRNAs were high in COAD and UCEC, while a
large proportions of lncRNAs were upregulated in BLCA, KIRC,
LIHC, and LUAD. These results indicate that DNA methylation
might affect the expression of pan-cancer MethLncRNAs.
MethLncRNA FIRRE was upregulated in most cancers, which was
consistent with previous findings; it was highly differentially ex-
pressed in colorectal cancer,36 and higher levels of FIRRE, which
acts as an oncogene in DLBCL by promoting cell proliferation and
reducing apoptosis, were associated with poorer overall survival.37
Figure 3. Characterization of MethLncRNAs in cancer

(A) The number of lncRNAs involved in regulatory relationships and the number of ca

Proportion of lncRNAs in known cancer lncRNAs across the three lncRNAs categorie

Census, and LncRNADisease2.0. (D) The bar plot below represents the proportion of

quantity obtained by regulating the three types of lncRNA. (E) The heatmap shows the

number of cancers with high and low expression. Red represents high expression a

MethLncRNAs. Both the size and color of the dots represent the number of cancers en

expression and molecular function for each pan-cancer MethLncRNA.
In addition, we found that RP11�135A1.2, LINC01012, and
CTA�384D8.34 were also upregulated in most cancers. LINC01354
is accompanied by downregulation of hypermethylation, which is
associated with a poor prognosis. Moreover, LINC01354 may play
an important role in predicting the prognosis of LUAD, thereby
acting as a tumor suppressor gene regulated by DNA methylation.
In contrast, FGF14�AS2, AC007228.11, RP11�968O1.5, and
LINC01354 were significantly downregulated in most cancers. Previ-
ous studies have found that the lncRNA FGF14-AS2 was significantly
downregulated in breast cancer and patients with lower FGF14-AS2
expression had advanced clinical stage.38,39

To assess the function of pan-cancerMethLncRNAs, we first performed
a functional enrichment analysis of cancer hallmarks for each pan-can-
cer MethLncRNA based on its co-expressed mRNAs. Then, functional
annotation was also performed on individual TFs, which regulated the
same lncRNA, and the overlapping functions were removed to rule out
the influenceof thosegenes that have a coincident correlative expression
pattern. As shown in Figure 3F, pan-cancerMethLncRNAswere signif-
icantly enriched in cancer hallmarks. The LINC00944 expression had a
strong relationship with immune signaling pathways and positively
correlated with tumor-infiltrating T lymphocytes and pro-apoptotic
markers, in agreement with a previous study.40 In addition, the other
study found that MIR31HG overexpression was evidently correlated
with high immune infiltrate levels of CD8+ T cells, macrophages, neu-
trophils, myeloid dendritic cells, and B cells in thyroid cancer.
KCNQ1OT1 was shown to regulate cancer cell proliferation, cell cycle,
migration and invasion, metastasis, glucose metabolism, and immune
evasion, in a previous study.41 Abnormal expression of ADAMTS9-
AS2 in different tumors was found to be closely related to tumor prolif-
eration, invasion, migration, and apoptosis inhibition. ADAMTS9-AS2
is involved in DNA methylation, mediates the phosphatidylinositol
3-kinase/Akt/mammalian target of rapamycin signaling pathway, and
regulates miRNAs and proteins, indicating its important therapeutic
potential in cancer.42 In contrast, specific MethLncRNAs were also
significantly enriched in cancer hallmarks. We found specific
MethLncRNAs involved in the same function in some cancers. Specif-
ically, in most cancers they are mainly involved in immune, develop-
mental, and signal-related functions. Some specific MethLncRNAs
involved in specific functions in cancers, such as THYMmainly partic-
ipates in proliferation-related functions (Figure S13). Moreover, the
expression of pan-cancer MethLncRNAs was associated with clinically
relevant events across cancers (Figure S14). LINC00944 is considered to
be an important gene involved in cancer immunity.16,38 As an example,
we observed that the high expression of LINC00944 was significantly
ncers. (B) The number of TFs obtained by regulating lncRNAs in each cancer. (C)

s. Known cancer lncRNAs were obtained from the Lnc2Cancer, Cancer LncRNA

three types of lncRNAs in different cancers, and the boxplot above shows the TF

differential expression of pan-cancer MethLncRNAs. The bar plot represents the

nd blue represents low expression. (F) Cancer hallmarks enriched by pan-cancer

riched. (F) Shares the gene names with (E) to visualize the links between differential
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correlatedwith tumor stage, grade, and tumor subtype, aswell as patient
survival (Figures S15A–S15D). Indeed, it has been reported that
LINC00944 was involved in cancer immunity and participated in
several immune-related pathways.16,38 In addition, although the p value
of survival analysis is not statistically significant by analyzing all patients
of primary skin cutaneous melanoma (SKCM), a weak significance was
found by just considering patients with relatively low TNM stages (Fig-
ure S15D). Its expression was also upregulated in SKCM patients with
metastasis (Figure S15E). Moreover, when analyzing an immuno-
therapy cohort of SKCM(PRJEB23709), we found that the expression
of LINC00944 was downregulated in responded patients compared
with no-responded ones (Figure S15F). Notably, SKCM patients with
high LINC00944 expression levels had significantly worse overall sur-
vivals (Figure S15G). These results suggest that there was an underlying
correlation of LINC00944 expression with cancer immunity, as well as
immunotherapy response.At the same time,we foundsimilar results for
CTA-384D8.34 (Figure S16). Therefore, these results indicate that pan-
cancer MethLncRNAs plays important roles in carcinogenesis.

Pan-cancer genes are closely involved in cancer immunity

Tumor cells live in a complex tumor microenvironment that is neces-
sary for tumor growth and survival. Previous studies have shown that
DNA methylation is an important epigenetic mechanism involved in
controlling T cell responses.43 To further investigate the relationship
between pan-cancer MethTFs/MethLncRNAs and the immune
microenvironment, we first used CIBERSORT to calculate the pro-
portions of 22 immune cell types based on RNA-seq data across can-
cer types. Furthermore, we calculated the correlation between these
pan-cancer MethLncRNAs/MethTFs and the infiltration degrees of
different immune cells and found that the majority of pan-cancer
genes involved in DNA methylation-mediated regulations were
significantly correlated with immune cells, especially in THYM.
This was consistent with previous studies that showed that the
thymus is a central lymphatic organ responsible for many immune
functions, including the production of mature, functional T cells
and the induction of self-tolerance.44 In addition, we found a signif-
icant positive correlation between pan-cancer gene expression and
immune cell infiltration in various cancers. Meanwhile, in most can-
cers, genes were significantly positively correlated with CD4 memory
resting T cells, CD4 memory activated T cells, M1 macrophages, and
resting mast cells, while genes were significantly negatively correlated
with regulatory T cells (Tregs) (Figure 4A).

Previous studies have discovered that some immune cells act as risk
factors in cancer, while some act as protective factors. We also found
that cell types associated with pan-cancer MethLncRNAs/MethTFs
are potential prognostic markers. For instance, the M1 macrophage,
has been identified as a protective factor in BRCA (p = 0.013; b =
Figure 4. Immune infiltration of pan-cancer genes in cancer

(A) Correlation between pan-cancer MethTFs and pan-cancer MethLncRNAs and 22

relations, blue represents the number of negative correlations (|corr| > 0.3; p < 0.05). The

(B–D) The expression of IRF1 was correlated with macrophageM1, MHC score, and CYT

patients in different risk groups is also provided. (F–I) The similar result for lncRNA LINC
�4.19, Cox regression analysis). Macrophages can be influenced by
a variety of factors that change their phenotype and, thus, affect their
function, including pan-cancer MethTFs IRF1 and STAT4, whose
expression were significantly increased in the group with a high infil-
tration score of M1 macrophages (Figures 4B and S17A). Moreover,
the expression increases of IRF1 and STAT4 were found in the group
with high major histocompatibility complex (MHC) (Figures 4C and
S17B) scores or CYT scores (Figures 4D and S17C), and significant
positive correlation were also revealed (Table S2). Activated macro-
phages are usually divided into two categories, M1-like macrophages
and M2-like macrophages. Both M1 macrophages and M2 macro-
phages are closely related to inflammatory responses, but M1 macro-
phages are mainly involved in pro-inflammatory responses, while M2
macrophages are mainly involved in anti-inflammatory responses.45

Indeed, it has been found that IRF1 is an important tumor suppressor
in breast cancer and plays a major role in controlling the transcrip-
tional program of macrophages both at the basal level and after
IFN-g activation.46 Our research provides evidence that upregulated
IRF1 and STAT4 are associated with better overall survival (OS) in
BRCA (Figures 4E and S17D). Previous studies also discovered that
overexpression of STAT4 mRNA was significantly associated with a
favorable OS in breast cancer patients.47 In addition, the pan-cancer
MethLncRNAs, LINC00944 was significantly positively correlated
with M1 macrophages in BRCA (Figure 4F). Studies have shown
that the expression of LINC00944 is strongly correlated with immune
signaling pathways, tumor-infiltrating T lymphocytes, and pro-
apoptotic markers,40 and the low expression of LINC00944 was corre-
lated with poor prognosis in breast cancer patients. Here, we discov-
ered that high expression of LINC00944 not only significantly
contributed to high immune infiltration scores of M1 macrophages,
but also higher MHC scores and CYT scores (Figures 4G and 4H).
LINC00944 was found to be a protective factor for OS in BRCA (Fig-
ure 4I). Similar results were discovered for another pan-cancer
MethLncRNA CTA-384D8.34 (Figures S17E–S17H). In addition,
M2macrophages have been identified as a risk factor in breast cancer,
and we found that M2 macrophage-related upregulation of ESR1 is
associated with poorer OS in BRCA (Figures S17I–S17L), with evi-
dence that ESR1 is an important prognostic marker in BRCA.48–50

These results support the contention that pan-cancer genes play crit-
ical roles in cancer immunity.

Pan-cancer MethTF-LncRNA modules related to tumor

immunity

As one of themain factors of cancer development, we further explored
pan-cancer MethTFs/MethLncRNAs that cooperatively contributed
to the immune system dysregulation. First, we used pan-cancer genes
to perform unsupervised clustering on the intersection divided by a
maximum of significantly correlated immune cells. As a result, five
types of immune cells in each cancer. Red represents the number of positive cor-

red border represents risk factors and the blue border represents protective factors.

score. (E) Association between IRF1 expression and patient survival. The number of

00944.
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co-regulatory immunemodules were detected, including 12 to 24 pan-
cancer MethTFs/MethLncRNAs (Figure 5A), and these regulations
occurred in multiple cancers (Figures 5B–5G), especially module 3.
In module 3, there were 10 TFs and 9 lncRNAs that cooperatively
regulate 22 types of immune cells (Figures 5F and 5G). Notably, mac-
rophagesM1/M2, CD4+, andCD8+T cells were regulated by almost all
genes in this module in no less than one cancer type. Pan-cancer
MethTF IRF1 and STAT1 tended to regulate M1 macrophages in 20
cancers. IRF1 involves regulatory molecular networks that play a
key role in M1 macrophage inflammatory responses and viral de-
fense.51 Intratumoral CD4+ T cells are believed to be responsible for
the production of antitumor immune responses and inflammatory
mediators that induce tumor growth, invasion, angiogenesis, and
metastasis.52,53 We found that there are 50 pan-cancer MethTFs and
46 pan-cancer MethLncRNAs associated with CD4 memory resting
T cells in 17 cancers. For example, KLF9 inmodule 1, TCF7L2 inmod-
ule 2, NR2F2,NR3C1, and ELK3 inmodule 4; andNFAT5 inmodule 5
tended to regulate CD4 memory resting T cells in multiple cancers
(Figure S18). The above results indicated that these pan-cancer
MethTFs and MethLncRNAs synergistically regulate some immune
cells in cancers.

Pan-cancer MethTF/MethLncRNA modules help classification

of cancer subtypes

In addition to identifying key genes associated with immune infiltra-
tion in cancer, cancer subtyping is key to improving personalized
treatment.54–56 Therefore, we classified tumor molecular subtypes ac-
cording to pan-cancer MethTF-LncRNA modules. Considering the
maximumnumber of genes, module 3was used to classify cancer sam-
ples into four subtypes based on the expression of pan-cancer
MethTF/MethLncRNA in module 3 by consensus cluster method
(Figure S19; Table S3). Notably, the majority of module 3 genes, im-
mune checkpoint genes, and immunology regulons were highly ex-
pressed in C3 patients and underexpressed in C1 patients. Moreover,
the immune subtype C3 we identified also had higher immune cell
infiltration scores estimated by both TIMER and xCell algorithms
(Figure 6A). Next, we identified the molecular functions related to
different subtypes by gene set variation analysis. We found that pa-
tients in the C3 subtype exhibited higher T cell and Treg activities,
which were lower in C1 patients (Figure 6A). It is well-known that
Treg cells are key regulatory cells in inflammation and act as immune
suppressor T cells, which prevent tissue damage caused by excessive
autoimmunity through their inhibitory function.57 Further, we map-
ped samples of TCGAontoTME subtypes based onprevious studies,58

and found C3 subtypes tended to be enriched in immune enriched,
fibrotic and immune enriched, non-fibrotic, whereas C1 subtypes
tended to be enriched in desert. Next, the immune microenvironment
of four subtypes were compared, and indeed C3 patients showed
Figure 5. Co-regulatory immune modules in cancer

(A) Pan-cancer MethTFs and pan-cancer MethLncRNAs co-regulate immune modu

MethLncRNAs that were significantly associated with immune cells in the number of pa

represents co-regulatory immunemodule networks; the size of the immune cell spot corr

the number of cancers involved.
higher infiltration of immune cells, such as B cells, CD4 T cells, CD8
T cells, and macrophages (Figure 6B). Moreover, we found that the
C1 subtype had a better prognosis than the C3 subtype (p = 0.0047),
as well as a relatively high response rate (p = 0.0001153) to radio-
therapy and chemotherapy (Figure S20). In addition, CYT scores
and MHC scores were higher in C3 patients (Figure 6B). In addition,
the other four immune modules were analyzed and cancer samples
were classified into different groups. Interestingly, we found that
many subtypes corresponded with one main subtype classified by
module 3 (Figure S21). For example, samples in the subtype C1 of
module 2 was mainly grouped in the subtype C1 of module 3. These
results indicate an underlying consistency of subtypes distinguished
by different immune modules of pan-cancer MethTF/MethLncRNA.
Moreover, more stringent samples in high- or low-immunity subtypes
remained based on the subtypes grouped by other modules.We found
that the results were consistent with those of module 3, and the differ-
ence between the two subtypes was even more obvious (Figure S22).

We finally validated the efficiency of module 3 to identify the immune
subtype in two independent datasets, including the IMvigor210
cohort and GSE91061 (Figures 7A and 7B). The immune-related
sample clusters were discovered and closely associated with the tumor
microenvironment, with the highest proportion of patients who re-
sponded well to immune checkpoint blockade therapy (Figures 7C
and 7D). We also found that C3 had a better survival rate than the
other two clusters (Figures 7C and 7D). Considering the underlying
correlation between expression and activity, we evaluated whether
pan-cancer MethTFs/MethLncRNAs tended to be expressed to a
greater extent in immune cells than in malignant cells by analyzing
17 single-cell datasets. We found that the expression of pan-cancer
MethTFs/LncRNAs in module 3 was higher in immune cells than
in malignant cells (Figures 7E and 7F). These results indicated that
pan-cancer MethTFs/LncRNAs tend to have high activity in immune
cells. Taken together, these results suggested that the immune-related
co-regulatory genes identified here can provide valuable insights into
tumor classification and have independent prognostic value.

DISCUSSION
TFs, cofactors, and chromatin regulators control gene expression pro-
grams, and misregulation of gene expression programs can lead to a
number of diseases.59 Our study proposed a three-step method to
identify the DMTDs in cancer. We identified DMTDs in 21 cancers
and discovered that transcriptional regulation of both mRNAs and
lncRNAs was widely affected by DNA methylation, and a consider-
able proportion of DMTDs occur in multiple cancers. In particular,
the regulation of known cancer TFs tend to be affected by DNA
methylation, which also regulated more lncRNAs, indicating that
the identified pan-cancer MethTFs played central roles in cancer.
les. (B–G) The heatmap above represents pan-cancer MethTFs and pan-cancer

rticipating cancers for co-modulated immune modules. The network diagram below

esponds to the number of associated genes; the thickness of the line corresponds to
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Moreover, we found that pan-cancer MethTFs involved in multiple
cancers tended to be differentially expressed and involved in many
carcinogenesis-related biological processes, such as immune and can-
cer hallmarks. As amaster regulator in TNBC, IRF1 has been reported
to be important for immune suppression by inducing effectors.60 In
our study, we found that HIF1A and IRF1 were also involved in in-
flammatory response, IFN-g response, IFN-a response, and other
immune-related hallmarks. These pan-cancer MethTFs were also
significantly correlated with clinical features, including tumor prog-
nosis. However, it is difficult to determine the causal relationship be-
tween DNA methylation and TF binding. The candidate DMTDs
identified in this study need to be validated in further experiments.

As important factors regulating gene expression, lncRNAs have been
proven to have carcinogenesis-related or tumor suppressor effects.61

In this study, we identified pan-cancer MethLncRNAs whose regula-
tions were mainly mediated by DNA methylation, and their expres-
sion tended to be significantly different across cancers. To evaluate
the associations between DMTDs and prognosis, we performed uni-
variate Cox regression analyses for each DMTD in cancers, where the
integrative risk score of a DMTD was calculated as in previous
studies.62,63 As results, large proportions of DMTDs were related to
cancer prognosis (Figure S23). After multivariate Cox analysis by
considering tumor mutation load, tumor purity, and immune check-
point inhibitors, many DMTDs as independent prognostic factors
were found. Indeed, many pan-cancerMethLncRNAs are known can-
cer genes. In the case of LINC01012, it was shown to be differentially
expressed in 12 cancers in our study and has also been previously
confirmed to play a role in colon cancer.64 These differentially ex-
pressed pan-cancer MethLncRNAs were discovered to be involved
in cancer and act as immune hallmarks, as well as prognostic factors.

Based on their strong association with immune functions, we further
found their role in immune cell infiltration, and five key modules
composed of pan-cancer MethTFs/MethLncRNAs were detected
that cooperatively regulated immune functions. Finally, these key
modules could effectively distinguish cancer subtypes with high im-
mune activity, and were highly correlated with various immune indi-
cators.We propose here that these modules might shed light on future
cancer immunotherapies.

In this study, we comprehensively integrated gene expression profiles
and DNA methylation profiles to identify DMTDs on lncRNAs across
cancer types. The developed computational framework can be
extended to other complex diseases, which will provide insights into
the underlyingmechanisms of epigenetic regulation.Moreover, our an-
alyses revealed the regulatory patterns of DMTDs across various cancer
types.We found that pan-cancerMethTFs involved inmultiple cancers
tended to be differentially expressed and involved in numerous cancer-
Figure 6. Pan-cancer MethTF-LncRNA modules differentiate cancer subtypes

(A) The heatmap shows the expression of genes in module 3, the expression of immune

immune-related signatures, and the immune cell infiltration levels of TIMER and xCell. An

of samples in TCGA cohort. (B) CYT scores, MHC scores, and estimates for different c
related biological processes. In particular, five critical modules
composed of pan-cancer MethTFs/MethLncRNAs were detected that
cooperatively regulated immune-related functions. These key modules
could effectively distinguish cancer subtypes with high immune activity
and were highly correlated with various immune indicators. This study
provides valuable insights that deepen our understanding of the
complex epigenetic regulation in the tumor microenvironment and
provides potential new candidates that may be useful in cancer immu-
notherapy. The identified lncRNAs, TFs, and target genes provide valu-
able candidates for future experimental validation.

In conclusion, we have systematically identified DMTD on lncRNAs
in human cancer types, and further revealed critical regulatory mod-
ules involved in tumor immunity and immunology subtypes. Our
study provides valuable insights that deepen our understanding of
the complex epigenetic regulation in the tumor microenvironment
and provides new candidates that that may be useful in cancer
immunotherapy.

MATERIALS AND METHODS
Sample-paired gene expression profiles and DNA methylation

profiles across 21 cancer types

Genome-wide gene expression profiles and DNA methylation profiles
across 21 cancers were downloaded from The Cancer Genome Atlas
(TCGA,https://portal.gdc.cancer.gov).The expression levelswerequan-
tified as fragments per kilobase permillion reads, and genes with expres-
sion in at least 30% samples were retained. In total, 462 TFs and 12,113
lncRNAs were considered for further analysis. DNA methylation data-
sets were assayed by the Illumina Infinium HumanMethylation450
BeadChip array. Similarly, probes with b-values of greater than 0 in at
least 30% samples were reserved. The remaining probes were mapped
to gene promoter regions, which were defined as ±1-kb regions around
the TSSs.65–67 Next, the level of DNA methylation of each gene was the
average b-values of probes mapped to its promoter region. We only re-
tained cancers with at least 150 samples for subsequent analysis.

Clinical information

The clinical information of cancer patients was also downloaded from
the TCGA project, including survival status, tumor stage, grade, sur-
vival time, and response to chemotherapy. Survival analysis was per-
formed using R-package survival (Version 3.2–13) and survminer
(Version 0.4.9).

Identification of DMTDs on lncRNAs across cancer types

We used a three-step computational framework similar to one of our
previous studies on the identification of cancer-context transcrip-
tional dysregulation mediated by DNA methylation, to further iden-
tify the DMTDs on lncRNAs. Briefly, we intersected the ChIP-Seq
peak regions (1 kb upstream to 1 kb downstream of the TSS) of 471
checkpoint genes, the single sample gene set enrichment analysis scores of eight

notation bars indicate sample subtypes, cancer types, and immunoenrichment types

ells in the four clusters.
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TFs from ChIPBase v2.0 with lncRNA promoter regions, the corre-
sponding lncRNAs with peaks were identified as candidate targets
of TFs.68 There were 1,745,038 transcriptional regulatory pairs for
15,549 lncRNAs. Next, we used univariate linear regression to identify
cancer-context TF-lncRNA transcriptional regulations. TF-lncRNA
regulation with a Benjamini and Hochberg-adjusted p value of less
than 0.01 was obtained. A goodness-of-fit test was further used to
assess the TF-lncRNA regulations, and TF-lncRNA regulation with
a coefficient of greater than 0.95 was retained as the cancer context
TF-lncRNA regulatory pair. Finally, the DNA methylation mediated
TF-lncRNA dysregulation was identified based on the TF-lncRNA
regulation alterations in different DNA methylation levels, and the
same thresholds were used similar as a previous study.12

Identification of differentially expressed genes in cancer

Differentially expressed MethTFs and lncRNAs in each cancer type
were identified by limma (Version 3.46.0) R packages, and genes
with at least 4-fold changes and a p value of less than 0.05 were re-
garded as differentially expressed. Here, 14 cancer types with at least
5 normal samples were analyzed.

Functional analysis

To predict the biological functions of pan-cancer MethLncRNAs,
mRNAs were first ranked based on their Spearman correlation coeffi-
cients with each pan-cancer MethLncRNA. Functional gene sets were
obtained from the MSigDB database, and we particularly analyzed
gene sets associated with cancer hallmark and immune-related func-
tions. Functional enrichment analysis was realized by the fgsea package
(Version1.16.0). In addition, the cancermarkers denoted bypan-cancer
MethTFs were obtained via functional annotation.

Quantitative analysis of immune cell infiltration

CIBERSORT was used to estimate tumor immune infiltration in each
cancer sample, and 22 immune cell types were analyzed, including B
cells, T cells, natural killer cells, and macrophages. In addition,
TIMER69 and xCell70 algorithms were used to calculate the global
infiltration levels of immune cells. Then, the Spearman correlation
coefficient was calculated between the expression level of genes and
infiltration levels of each immune cell type. The gene cell pair was
reserved if its absolute value of correlation coefficient was greater
than 0.3 and the p value was less than 0.05.

Statistical analysis

ANOVA was used to assess the statistical significance of clinically
relevant events, including cancer subtype, stage, and grade. In addi-
Figure 7. Pan-cancer MethTF-LncRNA modules differentiate cancer subtypes

(A) The heatmap shows the expression of genes in module 3, the expression of immune

immune-related signatures in Imv210 cohort. Annotation bars indicate sample subtyp

module 3, the expression of immune checkpoint genes, and the single sample gene set

Annotation bars indicate sample subtypes, cancer types, and response of samples. (C

Proportion of response samples in three clusters and survival of three clusters; bar plot

module 3 are enriched in single-cell data (gene rank is fold change value expressed in im

gene in single cell datasets.
tion, we used the Cox regression model to evaluate the association be-
tween survival time and the expression level of genes of interest.
Fisher’s exact test was used to evaluate the bias of MethLncRNAs, bio-
types, negative correlation between DNAmethylation and expression
of panMethLncRNA, and whether patients of C3 subtype responded
to radiotherapy and chemotherapy.
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