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Dendritic cells in IBD pathogenesis: an area of therapeutic
opportunity?
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Abstract
Dysfunction of the mucosal immune system plays an important role in inflammatory bowel disease (IBD)
pathogenesis. Dendritic cells are emerging as central players based on both our increasing understanding of
how genetic susceptibility impacts the mucosal immune system and the key role of dendritic cells in regulating
response to gut microflora. We discuss areas of therapeutic opportunity in this evolving landscape.
 2013 The Authors. Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain
and Ireland.
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Introduction

The inflammatory bowel diseases (IBDs) are a het-
erogeneous group of disorders which have two major
phenotypic forms, Crohn’s disease and ulcerative col-
itis, characterized by chronic relapsing and remitting
intestinal inflammation [1–4]. Ulcerative colitis is the
most common of the IBDs [5] and is characterized
by a continuous pattern of inflammation beginning
in the rectum and extending progressively further
into the colon with increasing disease severity. By
contrast, Crohn’s disease patients frequently develop a
discontinuous pattern of inflammation which can occur
anywhere in the gastrointestinal tract, although the
distal small intestine and colon are the most common
locations [6].

In ulcerative colitis, inflammatory infiltrates are con-
fined to the mucosa and consist primarily of lym-
phocytes and plasma cells plus granulocytes in crypt
abscesses and present in the mucosa during disease
flares. Ulceration is common during active disease
and colonic epithelial cell changes such as goblet
cell depletion, distorted crypt architecture, and epithe-
lial dysplasia are associated with chronic disease [7].
Transmural inflammation is a characteristic feature of
Crohn’s disease and this deeper tissue involvement
in the inflammatory process appears to be responsi-
ble for many of the serious complications associated
with Crohn’s disease such as fibrostenotic disease,
abscesses, and fistula formation [8,9]. Epithelioid gran-
ulomas are also associated with Crohn’s disease and
provide diagnostic differentiation from ulcerative col-
itis when identified histologically. Epithelioid cells,
so named for a resemblance to epithelial cells, are

activated histiocytes with homogeneous eosinophilic
cytoplasm, and a working definition of an epithelioid
granuloma is a collection of at least five epithelioid
cells with or without accompanying multinucleate giant
cells [10]. However, these granulomas are found in
only about 20–40% of biopsies and 60% of surgical
resection specimens [11] and, when present, must be
differentiated from those associated with infectious dis-
eases such as tuberculosis.

When Crohn’s disease inflammation is confined
to the mucosa and no granulomatous lesions are
present, it cannot be definitively differentiated from
ulcerative colitis by histological evaluation. A subset of
patients present with clinical and histological features
of disease which do not clearly segregate into one of
the established phenotypic forms. These patients are
often diagnosed as having indeterminate colitis [12,13].
Some of these patients will eventually develop lesions
more characteristic of one of the major forms of IBD.

Accurately determining the prevalence of inflamma-
tory bowel disease is a challenging proposition given
that IBD is not a reportable disease and that patients
can have a multi-decade disease course. Prevalence
estimates have been drawn based on either in-depth
regional data [14] or administrative data from health
plan databases [15,16]. Based on these data, there are
between 1 and 1.5 million individuals with ulcerative
colitis or Crohn’s disease in the United States alone.
Clinical manifestations of disease develop during child-
hood in up to 25% of patients [2], and disease preva-
lence in children under 20 years of age is 43 per 100
000 for Crohn’s disease and 28 per 100 000 for ulcera-
tive colitis [16]. As expected with a chronic disease, the
prevalence increases with age to about 201 per 100 000
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for Crohn’s disease and 238 per 100 000 for ulcerative
colitis. The incidence of Crohn’s disease and ulcerative
colitis in the United States increased after 1940; how-
ever, those rates appear to have stabilized over the past
few decades [14]. Despite some uncertainty about the
total number of IBD patients, it is clear that large num-
bers of patients exist and that many of these patients
can anticipate the need for treatment over a span of
decades. While the advent of biological therapies has
improved the clinical situation, IBD remains a major
unmet medical need.

Current models hypothesize that IBD arises from
and is sustained by interactions between genetically
susceptible hosts and the gut microflora as well as,
potentially, other environmental triggers. While the
pathogenesis of IBD remains incompletely understood,
it is clear that dysfunction of the mucosal immune
system plays an important role. Dendritic cells are a
key player in the mucosal immune system, serving as
a bridge between the innate and the adaptive immune
response [17]. In this review, we will discuss the
evidence for dendritic cells in IBD pathogenesis with
emphasis on genetics and microbial interactions. The
innate immune system is emerging as a potentially
attractive therapeutic target in IBD and we will review
some of the current information in this area.

Genetics of IBD

It is well established that host genetic susceptibil-
ity plays an important role in IBD pathogenesis. The
first Crohn’s disease susceptibility gene, nucleotide
oligomerization domain receptor 2 (NOD2 ), which is
encoded by the CARD15 gene, was identified in 2001
[18,19]. In the intervening years, tremendous progress
has been made using genome-wide linkage and associa-
tion studies to reveal additional genetic polymorphisms
associated with susceptibility to ulcerative colitis or
Crohn’s disease. Currently there are more than 160 IBD
susceptibility genes or loci recognized [20]. A num-
ber of susceptibility genes are shared between ulcera-
tive colitis and Crohn’s disease [21,22], suggesting the
presence of shared or interlinking pathways in inflam-
matory bowel disease pathogenesis. While the func-
tional role of many loci or specific single nucleotide
polymorphisms (SNPs) is incompletely understood,
many of the genes are associated with aspects of
mucosal immunity including innate immune response
to microbial pathogens [20] (Figure 1).

The importance of microbial recognition and the
response of the innate immune system is underscored
by the association between Crohn’s disease and NOD2,
which is a member of the NLR (NOD, leucine-
rich repeat-containing protein) family of intracellular
pathogen-associated molecular recognition receptors
(PRRs) [23,24]. This association includes three NOD2
polymorphisms which occur with greatest frequency in
individuals of European descent but are not found in

Asian populations [25]. Approximately 30% of patients
of European ancestry will have one or more of these
mutations and these patients are at increased risk for
ileal involvement and fibrostenotic disease [26]. Indi-
viduals heterozygous for a NOD2 polymorphism have
an increased Crohn’s disease risk of 2.4-fold, while
homozygous individuals have a 17.1-fold increase [25].
These are the highest relative risks associated with any
IBD-risk gene.

NOD2 is expressed by a variety of immune and
non-immune cell types including dendritic cells and
is upstream of the nuclear factor-κB (NF-κB) and
mitogen-activated protein (MAP) kinase signalling
pathways which drive pro-inflammatory cytokine pro-
duction [27]. It encodes an intracellular sensor of
peptidoglycan, a component of bacterial cell walls,
and Crohn’s disease-associated mutations are mainly
located in the leucine-rich repeat region which inter-
acts with the peptidoglycan muramyl dipeptide (MDP)
motif, leading to altered bacterial recognition [28,29].
How NOD2 polymorphisms predispose to Crohn’s dis-
ease development remains incompletely understood,
despite significant research effort in this field. Because
the intestinal tract has continuous bacterial exposure,
chronic activation of NOD2 signalling should result in
immune cell hyporesponsiveness to subsequent NOD2
or Toll-like receptor (TLR) ligand stimulation [30,31].
While the NOD2-mediated mechanisms which down-
regulate pro-inflammatory cytokines during exposure
to commensal bacteria are not fully characterized, it
is clear that the process is defective in patients with
Crohn’s disease-associated NOD polymorphisms [31].
One hypothesis is that NOD2 normally acts to attenuate
TLR signalling, resulting in reduced activation of NF-
κB, and thereby prevents excessive activation of den-
dritic cells and subsequent pathogenic T-cell response
[32].

There is increasing evidence that PRR signals
intersect with other pathways that coordinate bacte-
rial responses. For example, NOD2 interaction with
autophagy pathways has recently been recognized
[33,34]. Autophagy is the process by which cytoplas-
mic components are sequestered into double membrane
vacuoles which then fuse with lysosomes, and this pro-
cess is important in microbial defence processes such
as capture of intracellular bacteria during phagocyto-
sis, antigen presentation, and inflammasome activation
[35]. ATG16L1 encodes an autophagy protein which
is part of a complex responsible for proper subcellu-
lar localization of the autophagy machinery [36,37].
The ATG16L1 polymorphism is associated with an
increased risk of Crohn’s disease [38] and similar to
NOD2, shows an association with terminal ileal disease
[38,39]. Interestingly, the affected domain of ATG16L1
is non-conserved and is not required for all of its
functions [40].

In human dendritic cells, autophagy is induced
through NOD2 stimulation, and dendritic cells isolated
from Crohn’s disease patients with ATG16L1 and/or
NOD2 polymorphisms have defective autophagy
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Figure 1. Impact of IBD genetic polymorphisms on dendritic cell function. Polymorphisms in IBD susceptibility genes in dendritic cells
can be broadly categorized as either inhibiting the ability to effectively clear pathogens or contributing to excessive immune response.
Dendritic cells play an important role in autophagy and presentation of bacterial antigens. SNPs associated with this pathway, including
Nod2 and ATG16L1, can contribute to failure to deal with pathogens. Additionally, dectin-1 is important for the clearance of fungal
pathogens by enabling dendritic cell recognition of β-1,3-glucans in fungal cell walls. A number of IBD susceptibility genes are linked to
the excessive immune response which is characteristic of both Crohn’s disease and ulcerative colitis. Nod2 in dendritic cells is upstream
of MAPK and NF-κB, which are important regulators of pro-inflammatory cytokines. Impaired regulation of the inflammatory response
caused by polymorphisms in Nod2, IL12B or TNFSF15 may result in excessive and prolonged pro-inflammatory T-cell responses. In addition,
dendritic cells regulate the immune response through production of the anti-inflammatory cytokine IL-10. SNPs in IL-10 may result in loss
of regulatory T cells, leading to excessive immune response.

induction in addition to altered antigen presentation
and bacterial handling [33] (Figure 1). Interestingly,
promoter polymorphism in the autophagy gene IRGM
has also been associated with increased risk of devel-
oping Crohn’s disease [41], although characterization
of the specific effects on dendritic cells is still prelim-
inary. In aggregate, these data suggest that autophagy
may be an attractive drug target area for modifying
dendritic cell function in the treatment of Crohn’s dis-
ease. Preliminary evidence in support of this concept
has been generated using rapamycin, an antibiotic
which triggers autophagy by forming a complex with
FKB12, which then inhibits mTOR and is commonly
used to up-regulate autophagy in cell culture [42].
Rapamycin has been used successfully to treat a
patient with severe refractory Crohn’s disease and
has also shown protection in a murine colitis model,
suggesting that this therapeutic approach may be
promising [43,44].

Genome-wide association studies (GWAS) have
shown strong associations of polymorphisms in the
IL23R and IL12B gene loci with Crohn’s disease and
ulcerative colitis [45,46]. IL12B encodes the IL-12p40
subunit, which is a component of both the IL-12 and
the IL-23 cytokines, while IL23R encodes one of two
subunits of the IL-23R [47]. IL-23 is induced in den-
dritic cells (DCs) by PPR stimulation and can promote
a wide range of pathological responses in the intestine,
mediated either through T cells or through excessive
innate immune cell activation [48,49] (Figure 1). DC
IL-23 production, which is augmented under condi-
tions of endoplasmic reticulum stress and activation
of the unfolded protein response (UPR), is an impor-
tant component of anti-microbial defence linking innate
and adaptive immune responses [50]. However, exces-
sive or inappropriate DC IL-23 production favours pro-
inflammatory T-cell responses including enhanced pro-
liferation of effector T cells, reduced differentiation of
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forkhead box P3 (FOXP3)-positive regulatory T cells,
and emergence of the IL-17- and IFN-γ-producing cells
associated with chronic intestinal inflammation [49].
Conversely, IL-23R polymorphisms, which are associ-
ated with protection from IBD risk, have been func-
tionally characterized and result in reduced T-cell acti-
vation [51–53]. Studies in mouse colitis models have
shown that IL-23 plays an important role in chronic
intestinal inflammation [54]. In addition, the anti-IL-
12p40 monoclonal antibody ustekinumab has demon-
strated some clinical efficacy in a subset of Crohn’s
disease patients who were resistant to TNF antagonists
[55].

Some dendritic cell processes linked to IBD genetic
susceptibility have been identified as potential ther-
apeutic targets. For example, blocking interactions
between dendritic cells and T cells has been proposed
as a means of decreasing activity of the IL-23/IL-17
pro-inflammatory pathway important in IBD pathogen-
esis [56]. Activated dendritic cells express the TNF
family cytokine TL1A (TNFSF15), which interacts
with the DR3 receptor (TNFRSF25) on lymphocytes
[57,58] (Figure 1). Polymorphisms in the TNFSF15
gene have been shown to contribute to the risk of
both ulcerative colitis and Crohn’s disease [59,60].
Increased expression of TL1A has been shown in
Crohn’s disease tissue [61], and antibody to TL1A
prevents colitis development in mouse models [62].
In addition, mice overexpressing TL1A develop spon-
taneous intestinal inflammation [63,64]. These results
suggest that TL1A may be a viable dendritic cell target
in IBD.

A role for IL-10 in IBD pathogenesis was first
identified in mice deficient in either IL-10 or the IL-10
receptor 2 (IL-10R2) subunit, as these mice develop
spontaneous colitis [65,66]. This has more recently
been extended into humans, with the association of
very early onset IBD with IL-10 or IL-10 receptor
(IL-10R) deficiencies [67–69]. Patients with IL-10/IL-
10R loss-of-function mutations present, often in the
first 3 months of life, with severe and progressive
colitis complicated by perianal disease [70]. While IL-
10 and IL-10R deficiencies are fortunately rare, GWAS
findings suggest that IL-10 may play a broader role in
IBD pathogenesis. IL-10 SNPs have been associated
with both ulcerative colitis and Crohn’s disease in
paediatric and adult populations [71–73].

IL-10 is secreted by a variety of immune cell types
including dendritic cells [74] and plays an important
anti-inflammatory role through interactions with
regulatory T cells, leading to inhibition of effector
T-cell response [75] (Figure 1). This effect of IL-10
on T cells is mediated primarily by antigen-presenting
cells such as dendritic cells and macrophages [76].
This suggests that dendritic cells may be important in
the pathogenesis of IL-10 SNP-related IBD. IL-10 has
been explored as a potential therapeutic in inflamma-
tory bowel disease with limited success [77] and is
currently of most interest in association with probiotic
therapeutic strategies [78].

Recently, an association has been identified between
polymorphism in the dectin-1 gene (CLEC7A) and
severe ulcerative colitis [79]. The risk haplotype was
strongly associated with the development of medi-
cally refractory ulcerative colitis and overrepresented
in patients requiring colectomy. Dectin-1 is a C-
type lectin receptor expressed by dendritic cells and
macrophages which recognizes β-1,3-glucans found in
fungal cell walls [80]. Dectin-1 deficiency had pre-
viously been associated with increased susceptibility
to fungal disease in humans and mice [81,82]. The
mechanisms by which dectin-1 influences fungal con-
trol and IBD pathogenesis are still being delineated,
but evidence is emerging that it may be necessary to
enable dendritic cell antigen presentation to T cells
[83]. Therapeutic strategies for enhancing the control of
microflora in IBD, except for antibiotics and probiotics,
are largely unexplored.

Microbiota in IBD

Intestinal microbes represent the largest microbial com-
munity in the body, where up to 100 trillion (1014)
microbes may exist in a commensal relationship with
the human host [84–86]. This relationship is facilitated
by the intestinal mucus layer which creates a physi-
cal boundary between the host and microbe, by spe-
cific characteristics of the microbial community which
reduce their immune cell-activating properties, and by
direct influence on the immune cells. The intestinal
microflora develops in early life and then the compo-
sition remains largely stable under healthy conditions
[87–90]. Despite the large number of individual organ-
isms, the number of bacterial species is estimated to
be about 1000 per individual and represents only a
small fraction of the existing phyla, which supports
the idea that the commensal relationship is the product
of a tight co-evolutionary history between the host and
microbiota [86].

Shifts in the bacterial makeup on human intestinal
microflora have been documented in IBD using 16S
rRNA sequencing. These studies show that a subset
of Crohn’s disease and ulcerative colitis patients have
depletion of commensal bacteria, especially members
of the phyla Firmicutes and Bacteroidetes [91]. Overall
bacterial burden is typically lower in patients with
Crohn’s disease than in those with ulcerative colitis
but both are lower than healthy control individuals
[92]. Even within the same patient, bacterial diversity
is reduced in inflamed regions when compared with
non-inflamed regions. These data suggest that not only
is the host inflammatory response likely contributing to
the loss of diversity characteristic of IBD patients but
it is also providing a selective advantage to the subset
of microbiota which have an increased presence in the
disease state [93].

A role for microflora in IBD pathogenesis is sup-
ported by studies showing that exposure to the faecal
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stream is required for endoscopic and histological dis-
ease manifestations [94–96] and that faecal transplants
from healthy individuals can also have therapeutic ben-
efit [97,98]. In addition, antibiotic therapy has shown
some efficacy in clinical trials, with predominantly
symptomatic improvement but also some endoscopic
improvement and induction of remission, depending on
the antibiotic and on the trial design [99–101]. Exper-
imental colitis models also support the contention that
microflora is a key component, as most mouse models
of IBD require the presence of intestinal microbiota for
colitis to develop [102,103].

Enteric flora plays an important role in intestinal
immune cell development including dendritic cells.
Dendritic cells discriminate between pathogenic and
commensal bacteria by utilizing PRRs which recog-
nize specific pathogen-associated molecular patterns.
These include the toll-like receptors (TLRs) and C-
type lectins such as mannose receptor and dendritic
cell-specific intercellular adhesion molecule 3-grabbing
non-integrin (DC-SIGN) [104]. The microbial environ-
ment encountered by an immature dendritic cell can
determine the ability of the mature dendritic cell to
drive T-cell differentiation towards T helper 1 (TH1),
T helper 2 (TH2) or regulatory polarization [105–110].
This makes the dendritic cell a key player in determin-
ing whether a tolerant or protective immune response is
mounted at the mucosal surface in response to specific
microflora [111].

Tolerogenic properties of dendritic cells are poten-
tially attractive in a therapeutic setting. This is one
of the mechanistic tenants underlying the interest in
probiotic therapy. For example, probiotics might help
to restore normal microbial populations in the intestine
[112]; however, to date, these efforts have not gener-
ated consistently promising results in IBD, particularly
in Crohn’s disease [113–115]. Therefore, many inves-
tigators have turned to investigating the immunomod-
ulatory effects of specific bacteria or bacterial
components in murine models to identify promising
candidates. There is emerging evidence that alterations
of cell surface components of lactobacilli can alter
the immunoregulatory responses of dendritic cells,
and this might provide a better defined therapeutic
pathway in inflammatory diseases of the gastrointesti-
nal tract [116]. The feasibility of utilizing genetically
modified bacteria as a therapeutic agent has been
established [117].

Mucosal dendritic cells and IBD

The innate immune system exists to provide a rapid ini-
tial response to pathogens but it must also identify and
minimize immune response to commensal microflora.
Initiation of the gut mucosal immune response takes
place following antigen uptake by dendritic cells and
presentation to adaptive immune effector cells. How-
ever, in the absence of pathogen recognition, mucosal

dendritic cells primarily function to regulate immune
responsiveness [118]. While there is general consensus
that dendritic cells from a healthy intestinal tract are
hyporesponsive to commensal bacterial components,
the mechanisms by which this is achieved are not fully
understood. In fact, the scientific literature surrounding
this phenomenon is becoming increasingly more com-
plex. One example of this is the evolving understand-
ing of the role of CD103+ dendritic cells in mucosal
homeostasis.

Dendritic cell subsets are typically defined based on
expression of surface markers, especially CD11b (inte-
grin αM) and CD103 (αE integrin). The majority of
this work has been done in mice and dendritic cell
subsets are not identical between mice and humans.
CD103+ dendritic cells comprise a substantial subset of
murine mucosal dendritic cells and develop from clas-
sical precursors [119,120]. These have been considered
‘tolerogenic’ DCs in mice [121], which are believed to
be important in initiating T-cell responses including
induction of FOXP3+ regulatory T cells (Tregs), and
in the establishment of oral tolerance [122].

While CD103+ dendritic cells have been credited
with a major role in the maintenance of mucosal
hyporesponsiveness, in part due to their ability to pro-
duce retinoic acid necessary for the development of
FoxP3+ Tregs [123], there remains some controversy
on this point. Recently, Batf3 KO mice that lack a
CD103+ DC subset have been reported to have nor-
mal Treg populations in the lamina propria [124],
suggesting that other dendritic subsets have the poten-
tial to support Treg development. Also, recent work
has shown that CD103+ dendritic cells are capable of
directly sampling, transporting, and presenting luminal
antigens, and therefore are not restricted to a purely
immunoregulatory role in the mucosa [125,126]. More-
over, CD103+ mucosal dendritic cell populations are
heterogeneous and can be further subdivided into two
major populations of CD11b+ and CD11b− subsets,
which vary in terms of transcription factors required
for their development as well as in geographical distri-
bution within the intestinal mucosa [127,128].

Substantially less is known about the origin and
function of human intestinal dendritic cells. CD103+
dendritic cells have been identified in the human
colon [129] but, unlike in mice, these cells do not
constitute the dominant mucosal subset. This suggests
that other distinct dendritic cell subsets may contribute
to the tolerogenic intestinal mucosal environment.
Therefore, although the data suggest that a subset
of CD103+ dendritic cells may be very important
for maintaining mucosal immune hyporesponsiveness
in normal individuals, the scientific understanding
of these aspects of dendritic cell biology is still
evolving.

As noted previously, dendritic cells are implicated
in IBD pathogenesis by both genetics and their central
role in the control of microbial interactions. Acti-
vated dendritic cells accumulate at sites of intestinal
inflammation in human IBD and in murine models
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of intestinal inflammation [130–132]. These cells
express increased levels of a variety of activation
markers, enhanced TLR responsiveness, and are phe-
notypically distinct from the hyporesponsive dendritic
cells which help to mediate mucosal homeostasis
[119,120,133–135]. These activated dendritic cells
likely contribute to intestinal pathology and may
prove to be valuable therapeutic targets in IBD. As
our understanding of dendritic cell biology continues
to grow and with increasing definition of mechanistic
pathways, we expect to see the emergence of new
dendritic cell-related drug targets.
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26. Lesage S, Zouali H, Cézard J-P, et al. CARD15/NOD2 mutational

analysis and genotype–phenotype correlation in 612 patients with

inflammatory bowel disease. Am J Hum Genet 2002; 70: 845–857.

27. Abraham C, Cho JH. Functional consequences of NOD2

(CARD15) mutations. Inflamm Bowel Dis 2006; 12: 641–650.

28. Girardin SE, Travassos LH, Hervé M, et al. Peptidoglycan
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