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ABSTRACT

A current challenge in genomics is to interpret non-
coding regions and their role in transcriptional reg-
ulation of possibly distant target genes. Genome-
wide association studies show that a large part of
genomic variants are found in those non-coding re-
gions, but their mechanisms of gene regulation are
often unknown. An additional challenge is to reliably
identify the target genes of the regulatory regions,
which is an essential step in understanding their im-
pact on gene expression. Here we present the EPIRE-
GIO web server, a resource of regulatory elements
(REMs). REMs are genomic regions that exhibit vari-
ations in their chromatin accessibility profile associ-
ated with changes in expression of their target genes.
EPIREGIO incorporates both epigenomic and gene ex-
pression data for various human primary cell types
and tissues, providing an integrated view of REMs
in the genome. Our web server allows the analysis
of genes and their associated REMs, including the
REM’s activity and its estimated cell type-specific
contribution to its target gene’s expression. Further,
it is possible to explore genomic regions for their
regulatory potential, investigate overlapping REMs
and by that the dissection of regions of large epige-
nomic complexity. EPIREGIO allows programmatic ac-
cess through a REST API and is freely available at
https://epiregio.de/.

INTRODUCTION

Research on gene regulation has considerably grown dur-
ing the last years and is continuously expanding our under-
standing of how cellular identity and function are orches-
trated. Regulatory elements (REMs) such as enhancers, re-
pressors and promoters are non-coding DNA-regions reg-
ulating the expression of genes by serving as binding sites
for Transcription Factors (TFs). Enhancers can also be
transcribed to bi-directional enhancer RNA (eRNA) (1–4).
REMs can be located far away from their target genes and
affect them in an activating and/or a repressive manner (5–
7).

Identifying REMs is difficult, as there is no method yet to
locate them with absolute certainty. Instead, indirect epige-
nomic indicators are used in different combinations, leading
to a variety of REM annotation approaches (8–11). Con-
sequently, there are multiple publicly available REM plat-
forms. The Vista Enhancer Browser, for example, contains
tissue-specific REMs that were tested in vivo using trans-
genic mouse models. As the regulatory regions in the Vista
Enhancer Browser database are experimentally validated,
their number is limited (12). The FANTOM5 Human En-
hancers website identifies REMs as part of the FANTOM5
project by analysing Cap Analysis of Gene Expression
(CAGE) data to find eRNAs that show a bi-directional di-
vergent transcription (13). HACER looks for eRNA as well,
but additionally integrates GRO/PRO-seq (Global run-on
sequencing/Precision Run-On Sequencing) data (14). While
eRNAs are a clear indicator for the presence of a REM, they
cannot pinpoint REMs that are not transcribed but act as
TF binding sites (4).

Other REM resources include multiple different
datasets. For instance, GeneHancer incorporates data from
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four different public REM databases and removes the
redundant REMs (15). RAEdb interprets STARR-seq
(self-transcribing active regulatory region-sequencing)
and MPRA (Massively Parallel Reporter Assays) (16).
Enhancer Atlas 2.0 makes use of the broadest range of ex-
perimental methods with data from 12 techniques. With an
unsupervised learning approach, it determines consensus
REMs from the considered data types (17).

To understand the functionality of REMs, it is essential
to know their target genes. Out of the websites named above,
only GeneHancer, HACER, FANTOM5 Human Enhancers
and Enhancer Atlas 2.0 provide information on REM–gene
interactions. Others offer the option to look for REMs in a
defined window up- and downstream of a gene but do not
presume any associations (12) or report REMs that over-
lap with promoter regions of genes (16). GeneHancer com-
bines co-expression of eRNA, TFs, quantitative trait loci
and chromosome conformation data to find target genes
of REMs. HACER associates a REM to genes by inte-
grating multiple chromosome conformation capture tech-
nologies (14). FANTOM5 Human Enhancers determines the
pair-wise correlation between REM and gene expression
(13). Enhancer Atlas 2.0 uses the tool EAGLE to connect
REMs to genes. EAGLE determines putative REM–gene
interactions based on six different genomic features (17,18).
Other platforms like HEDD (19) or DiseaseEnhancer (20)
focus on the role of deregulated REMs in human dis-
eases by examining their associations to disease-related
genes.

EPIREGIO uses the STITCHIT algorithm which inter-
prets chromatin accessibility data with respect to variation
in gene expression (21). The algorithm identifies putative
REMs that explain variation of gene expression across sam-
ples. In contrast to existing approaches, it starts with a
gene and looks for REMs, not vice versa. It is important
to note that REMs can overlap with each other. Conse-
quently, REMs in close vicinity may act as coherent struc-
tures to regulate multiple different genes. To account for
overlapping and adjacent REMs, we assign them to Clus-
ter of REMs (CREMs) with a unique ID.

Further, STITCHIT’s approach to interpret epigenomic
variation in gene expression has the advantage of annotat-
ing regions that were observed in relation to actual gene ex-
pression changes, potentially leading to higher specificity.
The REMs identified by STITCHIT were shown to be better
for predicting gene expression than REMs obtained from
DNase1-seq peak calling. Different validation experiments
further supported the validity of STITCHIT’S REMs (21).
In addition, STITCHIT omits peak-calling as it is biased
by the cut-off value or by variations induced by cell-cycle
stages (22) and cell numbers (23). On top, EPIREGIO quan-
tifies a REM’s importance in a cell type-specific manner.

EPIREGIO has convenient features aiding in the use of
the website. Examples are available for every query to il-
lustrate the input and possible options. All created ta-
bles can be downloaded in different formats. The EPIRE-
GIO REST API gives programmatic access to computa-
tional applications. EPIREGIO is well documented and of-
fers links to external websites like the Ensembl Genome
Browser (24) or the UCSC Genome Browser (25) for further
details.

MATERIALS AND METHODS

System setup

Our web server is developed with the Python-based web
framework Django (v 2.2.10, Python 3.7). The result ta-
bles are created with the jQuery (v 1.19.1) library DataT-
ables (v 1.10.20). The REST API is based on Django’s
REST framework. Public access is provided by the Ng-
inx (v 1.17.9) proxy service with Gunicorn (v 20.0.0) as
the gateway interface. The source code is released under
the GNU v3 license and is accessible at https://github.
com/TeamRegio/EpiRegioDB. All necessary data behind
our EPIREGIO web server is stored as a MySQL (v 8.0.19)
database. We have also deposited a snapshot of the cur-
rent version of our database in Zenodo https://doi.org/10.
5281/zenodo.3750929 to ensure reproducible analyses using
EPIREGIO and version control.

Data processing

The data hosted by the web server was generated with
STITCHIT, an algorithm to identify REMs and simulta-
neously their target genes by interpreting epigenetic sig-
nal variation in relation to changes in gene expression.
STITCHIT was applied to human paired DNase1-seq and
RNA-seq data, namely 110 samples from the Roadmap
consortium (26) and 56 samples from the Blueprint con-
sortium (27). The considered samples comprise of 46 dif-
ferent tissues and cell types. While the Blueprint dataset
consists of various primary cell types and disease related
samples associated to the haematopoietic system, Roadmap
data provides a broader diversity of cell and tissue types.
All datasets have been uniformly preprocessed. DNase1-seq
was adjusted to sequencing depth and gene expression is
quantified in transcripts per million.

For every gene, STITCHIT inspects a user-defined region
around the gene to determine putative associated REMs.
For the data provided in EPIREGIO, we consider a window
of 100 000 bp upstream of a gene’s transcription start site,
the entire gene body and the window of 100 000 bp down-
stream of a gene’s transcription termination site. Hence,
even distant REMs are taken into account. A two-level ma-
chine learning approach is used to learn the associations
of REMs to a gene. After a linear regression using elastic-
net penalty for feature selection, an Ordinary Least Squares
(OLS) regression model determines a final regression coef-
ficient and its corresponding P-value. The P-value assesses
the contribution of an individual REM to the predictabil-
ity of a gene’s expression across the considered tissues and
cell types. For a detailed explanation of the computational
method of STITCHIT see (21).

EPIREGIO contains a total of 2 404 861 REMs associated
to 35 379 protein-coding and non-protein coding genes. The
average length of a REM is 229 bp (±235 bp). For each
REM, scores based on the regression coefficient and the
corresponding P-value obtained from the OLS model are
reported (for more detailed information see ‘Output’ sec-
tion).

Different REMs can overlap with each other. To allow
for the analysis of these REMs we introduce Cluster of
Regulatory EleMents (CREMs). Each CREM is formed
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Table 1. Quantitative characteristics of REMs and CREMs

Mean Std Min Max

REM length [bp] 228.9 234.7 4 1999
CREM length [bp] 533.6 460.0 11 8752
REMs per CREM 3.5 2.9 2 122
Associations to different genes 2.8 1.4 2 31

REMs per CREM refers to the number of REMs that form a CREM. As-
sociations to different genes shows to how many different genes the REMs
inside of a CREM are linked to.

by REMs that overlap (by at least 1 bp) or are adjacent
(0 bp in between two REMs) to each other and contains
a minimum of two REMs. As the REMs of a CREM are
known, it is possible to derive the regulatory potential of
each part of the CREM. Approximately half of all REMs
are part of a CREM. Together, they form 365 286 distinct
CREMs, which contain 3.5 REMs on average and span
534 bp (±460 bp), see Table 1. There are 9786 CREMs in
which all contained REMs overlap completely with each
other.

Further, EPIREGIO enables the comparison of REM
activity across different tissues and cell types based on
DNase1-seq data.

Input

The EPIREGIO web server allows three types of queries (see
Figure 1).

Gene query. Users can query for genes of interest by pro-
viding Ensembl IDs (GRCh38.p10) or gene symbols as in-
put. All REMs that link to the inspected genes will be pre-
sented as output.

Region query. Another option is to use genomic regions as
input to receive information on all overlapping REMs. The
amount of overlap can be selected by the user. By default
only REMs that overlap entirely with the targeted regions
will be returned.

REM query. The last query type accepts REM IDs as in-
put, in order to investigate REMs of interest directly. It is
meant for users who are already familiar with our nomen-
clature of REMs.

Each query provides the option to upload a csv- or txt-
file as input (e.g. a list of gene symbols) for a more effi-
cient workflow. The query for regions in Figure 1(ii) also
allows upload of files in BED-format. We provide example
files for each query in the Supplementary Material. Every
query can be further specified by a selection of tissue and
cell types to compute cell type-specific parameters, such as
the DNase1 signal. It is possible to set a threshold for the
Cell type DNase1 signals that restricts the query to REMs
that exceed this threshold in all of the selected cell types
or tissues. In addition, EPIREGIO includes a REST API
based on Django’s REST framework for more systematic
accessing options and the possibility to be included in au-
tomated computational processes. It can either be used in
the browser or via a program that is capable of making
HTTPS requests. An example for an easy-to-use tool to

Figure 1. Structure of EPIREGIO. Human paired DNase1-seq and RNA-
seq data of the Roadmap and Blueprint consortium were used to annotate
REMs and their target genes with STITCHIT. EPIREGIO allows for three
types of queries: users can either search for REMs associated to their genes
of interest, look for REMs in genomic regions or query REMs by their
ID directly. Every query results in an interactive table containing all the
parameter shown under Output.

build such a program is the Python package requests. A
detailed guide for each of the queries, as well as for the
use of the REST API is available in our documentation
(https://epiregiodb.readthedocs.io/en/latest/).

Output

The three main query types result in an interactive table
showing the REMs that match the user’s query settings. See
Figure 2 for an example output table of a Gene query. In the
following sections, the information provided per REM will
be explained in detail.

Gene ID (I), REMID (II), Genomic location (III). Ev-
ery row represents one REM with its ID, its associated gene

https://epiregiodb.readthedocs.io/en/latest/
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Figure 2. First two rows of an example result table of EPIREGIO’s Gene query for SSTR1.

(both ensembl ID and gene symbol) and the REM’s ge-
nomic location, specified by the chromosome, as well as the
start and end position.

Predicted function (IV). The column Predicted function
displays whether a REM was associated with an activation
or repression of its gene. It is based on the sign of the re-
gression coefficient. A regression coefficient above zero in-
dicates an activating effect. Hence, a negative coefficient im-
plies a repressive function of the REM.

Model score (V). The Model score is the normalized abso-
lute binary logarithm of the P-value (range [0, 1]) obtained
by testing the importance of a REM for the expression pre-
diction of its target gene. The closer the score is to 1, the
higher the predicted impact of the REM for its target gene.
This value is not cell type-specific, meaning that in some cell
types a REM with a high Model score can potentially be less
important than another one with a lower score.

Cluster of REMs (CREM) ID (VI) and Number of REMs
in the CREM (VII). If two or more REMs overlap or are
adjacent to each other, we assign them to a CREM with a
unique ID. Number of REMs shows the number of REMs
contained in a particular CREM. The column is empty if
a REM has no adjacent or overlapping REM. By clicking
on a CREM ID the user gets redirected to a table with all
REMs in the cluster.

Cell type score (VIII). In order to study the potential con-
tribution of a REM to its target gene in a given cell type, we
introduce the Cell type score. This score denotes a normal-
ized quantity in [ − 1, 1] that estimates the relative contri-
bution to the gene’s expression (positively or negatively) by
the REM r in cell type c:

Cell type score(r, c) := βr · DNase1-signalr,c∑

ri ∈R
|βri · DNase1-signalri ,c|

. (1)

The regression coefficient (�) describes the association be-
tween a REM and its gene’s expression. The DNase1-signal
is log-transformed and standardized for each REM over all
cell types (mean = 0, standard deviation = 1) and repre-
sents how active a REM is in a cell type c. R is defined as
the set of all REMs associated to a given gene, thus R = {r1,
. . . , rn}. The Cell type score normalizes the contribution of
REM r to its gene’s expression in this specific cell type as
predicted by the linear model. As there are sometimes mul-
tiple samples per cell type the Cell type score is averaged

over all samples. The regression coefficient is not cell type-
specific, but determined per REM-gene association. If mul-
tiple cell types are selected for one query, the score will be
calculated for each cell type separately, independent of the
other selected cell types. The Cell type score can be used to
rank the REMs according to their importance between cell
types for the same gene or to compare the importance of
different REMs within a cell type (see ‘Application Scenar-
ios’ section).

Cell type DNase1 signal (IX). The Cell type DNase1 sig-
nal is defined as log2(DNase1 signal). It serves as a mea-
sure of how accessible the chromatin is in the REMs and
indicates the activity of a REM. It is retrieved from the
Roadmap and Blueprint datasets. As mentioned before-
hand, we have multiple samples for each cell type. The signal
is averaged over all available samples of a cell type. When
performing a query with multiple cell types, the Cell type
DNase1 signal will be determined for each cell type sepa-
rately. Since the DNase1 signal is normalized for sequencing
depth, it allows for the comparison of chromatin accessibil-
ity between samples.

All result tables can be downloaded as excel- or csv-file.

APPLICATION SCENARIOS

In this section we illustrate how EPIREGIO can be used to
conduct more advanced analyses: We present two example
application scenarios, based on information obtained from
our web server.

Elucidation of disease pathways directly from a TF-ChIP ex-
periment

A common question in the analysis of TF-ChIP-seq data
is to identify the TF’s target genes using ChIP-seq peak re-
gions. Simple association approaches, like using a window
around gene start sites or associating a peak to the near-
est gene, are often inaccurate (28). Here, we illustrate how
to use TF-ChIP-seq binding regions to learn about the bio-
logical function of TF target genes.

We downloaded the binding locations of the TF
ARID3A from the ENCODE database (Accession:
ENCFF002CVL) as a BED file which contained 9026
TF-ChIP peaks. We searched for REMs overlapping at
least by 50% with the TF-ChIP peaks using the Region
query in the EPIREGIO webserver. The resulting REMs were
associated with 1721 unique genes. We subjected them to
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a functional enrichment analysis using g:Profiler (29) with
default parameters, except setting the significance threshold
to 0.05 using the Benjamini–Hochberg FDR method. The
g:Profiler analysis can be reproduced using the following
link: https://biit.cs.ut.ee/gplink/l/3i6bF7IGRS.

There were two KEGG metabolic pathways enriched in
the analysis: the systemic lupus erythematosus (SLE) dis-
ease pathway and genes associated with alcoholism. SLE
is an autoimmune disease affecting multiple organs, whose
cause is unknown till date. Interestingly, the disease severity
of SLE has been shown to increase with the expression of
ARID3A (30). Also, ARID3A has been identified in the hy-
permethylated network of genes in an association study of
alcohol use disorder (31). As we have used different data,
our experiment constitutes another independent associa-
tion of ARID3A and alcohol consumption.

Further, we identified chromatin assembly or disassembly
and nucleosome organization as the top two enriched biolog-
ical processes among ARID3A target genes. While it is un-
surprising to see a TF being involved in chromatin regula-
tion, the ARID family of genes was specifically shown to be
involved in chromatin regulatory complexes (32). These re-
sults exemplify how researchers can elucidate disease path-
ways with minimal downstream analyses of the output from
our server’s Region query search.

Identify enriched transcription factors of differentially ex-
pressed genes

In this application scenario, we show how EPIREGIO can
be used to explore which TF binding sites are enriched in
REMs of genes of interest. The aim is to identify key TFs
involved in functional mechanisms or gene regulation path-
ways of the analysed genes.

The following analysis is based on a single-cell RNA-
seq dataset from Glaser et al. (33), where Human Umbil-
ical Endothelial Cells (HUVECs) were treated with TGF-
� to trigger an endothelial-to-mesenchymal transition (En-
doMT). For this application, we analysed genes that are dif-
ferentially expressed (up- or down regulated) in the TGF-
�-treated cells in comparison to untreated HUVECs. To
compute the differentially expressed genes, we used Seu-
rat’s FindAllMarkers function, which performs a Wilcoxon
Rank Sum test (P-value ≤ 0.01). We identified 11 836 cor-
responding REMs for 304 differentially expressed genes
(see Supplementary Material) using EPIREGIO’s gene query
functionality.

Next, we applied PASTAA (34) as TF motif enrichment
tool, which requires the DNA sequences of the REMs and
a set of known TF binding motifs as input. We determined
the DNA sequences with bedtools (35) and downloaded 515
TF binding motifs from the JASPAR database (36). In addi-
tion, PASTAA asks for a ranking of regions. We sorted the
REMs based on the Cell type score. We chose heart as tissue,
as ≈ 10% of the endothelial cells within the heart undergo
EndoMT during cardiac development, as well as ≈ 1% in
the adult heart. Further, EndoMT takes place during my-
ocardial infarction (37).

We adjusted the resulting P-values from PASTAA us-
ing the Benjamini–Hochberg FDR procedure. We consid-
ered a motif of a TF as enriched with an adjusted P-value

≤ 0.05, which resulted in 230 different TFs (see Supple-
mentary Material). Within this result, we found several TFs
commonly known to play a crucial role in EndoMT, e.g.
SP1, NFKB1 (38,39), as well as Smad transcriptional regu-
lators like SMAD3 (40).

Overall, this analysis illustrates how researchers can use
EPIREGIO’s Gene query with a commonly used downstream
analysis to infer key TFs for various phenotypes and condi-
tions. This is a first step to unravel possible regulatory path-
ways of a gene set of interest.

DISCUSSION

EPIREGIO is unique with its approach to identify REMs. It
starts with a gene and looks for putative REMs that could
induce variation in gene expression across different samples.
This is different to related methods that first define a REM
by using CAGE or epigenomics data and then use varying
approaches for associating the REMs with genes, e.g. (13–
15). By using EPIREGIO, we can avoid simplistic methods
like linking a REM to its nearest gene.

In our first application scenario, we analysed ChIP-seq
data of the TF ARID3A to explore the functionality of
genes that show associations to the binding regions of
ARID3A. We were able to recapture findings from previ-
ous studies by showing that ARID3A is involved in regu-
lating a network of genes found in pathways of SLE and
alcoholism. In summary, combining EPIREGIO with stan-
dard analysis tools allows us to identify cellular pathways
that are affected by TFs of interest.

In a second application, we demonstrate how EPIRE-
GIO can be used to identify key TFs enriched in REMs
of differentially expressed genes in proliferating cells. For
this analysis we decided to use a TF motif enrichment tool
which additionally requires cell type-specific information.
Namely, we used PASTAA, which identifies TF binding
motifs that are significantly enriched in high ranked in-
put sequences compared to low ranked sequences. In or-
der to rank the obtained REMs we sorted them accord-
ing to their Cell type score. There is a plethora of differ-
ent TF motif enrichment tools available and each of them
is suitable for different tasks. Some tools identify enriched
TF motifs based on a set of DNA regions provided by the
user e.g. Clover (41), MotifCounter (42) or Homer (43).
Tools such as i-cisTarget (44) additionally incorporate pub-
licly available epigenomics data to identify enriched motifs
in user-provided DNA regions. Therefore, EPIREGIO pro-
vides the user with the flexibility to decide which TF mo-
tif enrichment tool is the most suitable for the analysis of
interest.

We would like to mention that the linear model used in
STITCHIT, which forms the basis for assessing the Cell type
score, is a simplification to the actual regulation of genes by
their REMs. The linear model considers the contribution
of each REM to be independent and additive, which is un-
likely to be true for all REMs and currently debated in the
field (45). We hope that through the use of these scores, we
can identify genes, where this approximation is helpful and
otherwise investigate the use of more sophisticated scoring
schemes.

https://biit.cs.ut.ee/gplink/l/3i6bF7IGRS
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CONCLUSION AND FUTURE DIRECTIONS

With EPIREGIO we built an easy-to-access tool to efficiently
retrieve regulatory regions and their associated genes. In our
presented application scenarios we showed that EPIREGIO
can be used for a range of different datasets and can be in-
cluded in various kinds of analyses.

The different interfaces of our web server are intuitive
to use and allow for various kinds of queries. Our REST
API enables users to access data programmatically. Exten-
sive unit testing ensures a stable functionality of the server.
EPIREGIO will be further refined and expanded. As con-
sortia like the International Human Epigenome Consor-
tium are continuously making more datasets available, we
are planning to include more species beside of human, as
well as more cell and tissue types. More functionalities will
be added to EPIREGIO to provide users a broader range of
tools and epigenome analyses.

We believe that EPIREGIO is a valuable tool in unravelling
the complex network of gene regulation. It can be the basis
for a variety of scientific questions and represents a source
of information that is relevant in many different scenarios,
like understanding the regulatory network of one or multi-
ple genes, finding target regions for experimental setups or
looking into putative target genes of TFs.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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