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Abstract

Gene transcription is a noisy process, and cell division cycle is an important source of gene

transcription noise. In this work, we develop a mathematical approach by coupling transcrip-

tion kinetics with cell division cycles to delineate how they are combined to regulate tran-

scription output and noise. In view of gene dosage, a cell cycle is divided into an early stage

S1 and a late stage S2. The analytical forms for the mean and the noise of mRNA numbers

are given in each stage. The analysis based on these formulas predicts precisely the fold

change r* of mRNA numbers from S1 to S2 measured in a mouse embryonic stem cell line.

When transcription follows similar kinetics in both stages, r* buffers against DNA dosage

variation and r* 2 (1, 2). Numerical simulations suggest that increasing cell cycle durations

up-regulates transcription with less noise, whereas rapid stage transitions induce highly

noisy transcription. A minimization of the transcription noise is observed when transcription

homeostasis is attained by varying a single kinetic rate. When the transcription level scales

with cellular volume, either by reducing the transcription burst frequency or by increasing

the burst size in S2, the noise shows only a minor variation over a wide range of cell cycle

stage durations. The reduction level in the burst frequency is nearly a constant, whereas the

increase in the burst size is conceivably sensitive, when responding to a large random varia-

tion of the cell cycle durations and the gene duplication time.

Author summary

Gene transcription in single cells is inherently a stochastic process, resulting in a large var-

iability in the number of transcripts and constituting the phenotypic heterogeneity in cell

population. Cell division cycle has global effects on transcriptional outputs, and is thought

to be an additional source of transcription noise. In this work, we develop a hybrid model

to delineate the combined contribution of transcription activities and cell divisions in the

variability of transcript counts. By working with the analytical forms of the mean and the

noise of mRNA numbers, we show that if the transcription kinetic rates do not change

considerably, then the average mRNA level is increased about 1 to 2 folds from earlier to

later cell cycle stages. When transcription homeostasis is attained by varying a single

kinetic rate between the two cell cycle stages, we find no significant changes in the
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transcription noise, and the homeostasis nearly minimizes the noise. In our continuous

study on the transcript concentration homeostasis that the transcription level scales with

the cellular volume, we find only minor variations of the noise if the homeostasis is main-

tained either by reducing the transcription burst frequency or by increasing the burst size

in late cell cycle phase, in the face of a large cell cycle stage duration variation. The reduc-

tion in the burst frequency is relative robust, while the increase in the burst size is conceiv-

ably sensitive, to the large random variation of the cell cycle durations and the gene

duplication time.

Introduction

Single cell studies over last decades have shown that gene transcription is inherently a stochas-

tic process in a bursting fashion [1–5]. The transcriptional bursting, whereby a gene promoter

transits randomly between short periods of mRNA production and long periods of no produc-

tions, has been widely studied and invoked to explain how the fluctuation of mRNA molecules

arises among single cells of identical genes [6–8]. Early studies on the origin of variability in

gene expression found that the noise is not solely due to the randomness in reactions intrinsic

to gene expression [9].

Recent experiments have suggested that cell division cycle is an important source of gene

expression noise [10–13]. In virtually all cells, from bacteria to mammalian cells, a conserved

class of genes is involved in cell cycle stage-specific gene expression. For instance, SWI5 and

CLB2 are responsible for mitotic progression, whose transcripts are stable during the inter-

phase, but exhibit a 30-fold increase in degradation in the mitosis phase [12]. In budding yeast,

acetylation of histone 3 suppresses transcription activity to buffer changes in DNA dose for

expression homeostasis of other genes during DNA replication [13]. During cell division pro-

cesses, genome duplication involves DNA dosage increase at discrete times in S phase, and

introduces considerable variations in gene copies [13–15]. Moreover, the time spent between

two successive cell-division events [11], the DNA replication catalyzed by DNA polymerases

[16, 17], the variation in transcription kinetics between different cell cycle stages [9, 15, 18],

and the partition of molecules between two daughter cells [19], are all observed to be stochastic

and may contribute to cell-to-cell variability in transcript counts.

It remains largely unexplored how these random events govern mRNA outputs and their

fluctuation among individual cells [1]. In this work, we initiate a mathematical approach by

coupling the classical two-state model with cell division cycles to delineate the combined con-

tribution of transcription activities and cell divisions in the variability of transcript counts [4,

6, 20]. In view of gene dosage, a cell cycle is divided into S1 and S2 stages. In each stage, the tar-

get gene transits randomly between active and inactive states with constant rates. As usual, we

use the mean, the noise, and the noise strength to characterize stochastic gene transcription.

For a given random variable N, we denote by E[N], E[N2], and Var[N] = E[N − E[N]]2 its

mean, the second moment, and variance, respectively. Its noise and the noise strength are

defined by

Z2ðNÞ ¼
Var½N�
ðE½N�Þ2

¼
E½N2� � ðE½N�Þ2

ðE½N�Þ2
; and FðNÞ ¼

Var½N�
E½N�

: ð1Þ

We will formulate the master equations for the model and derive the differential equations

of the mean and the second moment. The analytical forms of the mean, the noise, and the

noise strength at steady-state will be given.

Cell cycle coupled gene transcription
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We measure the fold change of mRNA copy numbers from S1 to S2 by r� ¼ m�
2
=m�

1
, where

m�
1

and m�
2

are the mean transcription levels at the two stages. Although r� may take any pre-

scribed value in theory, we find that when the transcription kinetic rates are similar in the two

stages, the fold change buffers against the DNA dosage variation and stays within (1, 2), as

observed in yeast [12] and mammalian cells [15]. Furthermore, if stage transitions are consid-

erably slower than transcription state transitions and mRNA turnover, then r� � 2. The accu-

racy of our theoretical results is tested by numerical examples that generate nearly the same

fold change measured in a mouse embryonic stem cell line [15]. Increasing either of the cell

cycle durations up-regulates transcription with less noise, and rapid transitions between cell

cycle stages are a major source of highly noisy transcription. Our numerical examples also

demonstrate that transcription homeostasis does not bring significant changes in transcription

noise. If transcription homeostasis is attained by varying a single kinetic rate in the two cell

cycle stages, then the homeostasis nearly minimizes transcription noise. Motivated by increas-

ing evidences that many cellular processes depend mainly on the concentration rather than

the absolute number of enzymes [18, 21, 22], we continue to study the noise profile when the

transcript concentration homeostasis is maintained. Our analysis reveals an interesting phe-

nomenon that the transcription noise is relatively stable when the concentration homeostasis

is maintained, either by reducing the transcription burst frequency or by increasing the burst

size in late cell cycle phase, over a wide range of cell cycle stage durations. The reduction

degree in the burst frequency is nearly a constant, while the increase in the burst size is con-

ceivably sensitive, when responding to a large random variation of the cell cycle durations and

the gene duplication time.

Models

Coupling transcription with cell division cycle

In past two decades, the two-state model has been a prevailing tool to characterize stochastic

gene transcription in single cells, from bacteria, yeast, to mammalian cells [4–6, 8, 20, 23]. In

the model, as depicted in the diagram

gene OFF⇄
l

g
gene ON→n mRNA→d

;; ð2Þ

it is postulated that the gene promoter transits randomly between inactive (gene OFF) and

active (gene ON) states with constant activation rate λ> 0 and inactivation rate γ> 0. The

transcripts are produced only when the gene is active with a synthesis rate ν> 0, and are

turned over with a degradation rate δ> 0. Apparently, as the four rates are all assumed to be

constants, the transcription described by the model is independent of many important cellular

processes such as cell growth and cell division.

Actively dividing eukaryote cells go through several stages known collectively as the cell

division cycle, including Gap 1 phase (G1) for cell growth, the synthesis phase (S) for DNA rep-

lication, Gap 2 phase (G2) for DNA repairing, and the mitotic phase (M) for cell division; see

Fig 1. During S phase, each gene is duplicated into two copies that are transcribed indepen-

dently in the same cell [15]. During M phase, a cell is divided into two daughter cells and

residual mRNA molecules are randomly partitioned. Cell division cycle has global effects on

mRNA and protein synthesis, and is also an important source of gene expression noise [10–

13]. In recent years, many real-time monitoring methods, such as single molecule fluorescent

in situ hybridization (smFISH), have been developed to estimate mRNA copy numbers in dif-

ferent cell cycle stages. In mouse embryonic stem cells, nascent Oct4 and Nanog mRNAs were

measured in different phases using smFISH method [15]. It was found that the ratio of the
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average number of mRNA copies in G2 phase to the average in G1 phase is 1.28 ± 0.09 for Oct4

mRNA, and 1.51 ± 0.15 for Nanog mRNA. In yeast cells, CLB2 mRNAs accumulate apace in

late S phase and are degraded almost completely before cytokinesis [12]. From the measure-

ments of [12], we estimated that the median of cytoplasmic CLB2 mRNA copy numbers

is*10 in G2/M phase, and *5 in S phase. It remains an essential and widely open question to

quantify how the transition of cell cycle phases, the variation of DNA content and transcrip-

tion kinetics in different phases, and the random partition of mRNAs in daughter cells affect

the dynamics and noise of gene transcription.

In this work, we initiate a quantitative approach to this important question by developing a

model that couples gene transcription with cell cycles. During DNA replication in S phase, the

two complementary strands in each double helix are separated and serve as templates for the

production of their counterparts. After the completion of the whole DNA replication process,

which takes hours in some cells [24], each gene copy is doubled with two copies. Normally, the

duplication of a single gene takes much shorter time and is completed within seconds to min-

utes [17, 25]. For instance, the genome of Escherichia coli K12 has * 4.64 million base pairs

with * 4375 genes [26], and is replicated at *470 ± 180 bp/s [17]. The average duplication

time of each gene takes 1.63 * 3.66 seconds. In our model, we treat the short duplication pro-

cess of our target gene as instantaneous, and accordingly, divide a cell cycle into two stages:

• S1 stage, consisting of the whole G1 phase and the early S phase until the gene of our interest

is duplicated.

• S2 stage, consisting of the late S phase after the gene is duplicated, and G2/M phases.

We make the following assumptions to complete the description of the model:

Fig 1. Coupling gene transcription with cell cycle. Actively dividing eukaryote cells go through G1, S, G2 andM phases in one cell cycle. In our model,

we divide one cycle into two stages: S1 (from last division to gene duplication) and S2 (from gene duplication to next division). Cells orderly rotate

between S1 and S2 stages with constant rates κ1 and κ2. The promoter transits randomly between active and inactive states, and the transcription

kinetics changes with the cell cycle stages. During S1 stage, the kinetics is parameterized by activation rate λ1, inactivation rate γ1, synthesis rate ν1, and

mRNA degradation rate δ1. After DNA replication, the gene is duplicated into two identical copies that are transcribed independently with constant

rates λ2, γ2, ν2 and δ2 in the same cell during S2 stage.

https://doi.org/10.1371/journal.pcbi.1007017.g001
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i. The durations T1 in S1 stage and T2 in S2 stage are independently and exponentially dis-

tributed with respective rates κ1 > 0 and κ2 > 0.

ii. At the beginning of each stage, the transcription activity is turned off and the gene

remains in the OFF state.

iii. In S1 stage, the transcription of the single gene copy is described by the two-state model

with constant rates λ1, γ1, ν1 and δ1.

iv. In S2 stage, the two identical copies of the gene are transcribed separately and indepen-

dently, and the transcriptions are described by the two-state model with constant rates λ2,

γ2, ν2 and δ2.

v. At the end of S2 stage, each mRNA molecule has an equal probability to be distributed to

the two daughter cells; see Fig 1.

We do not assume constant durations in S1 and S2 stages in (i), because the time spent in

each cell cycle phase is often not fixed, and the timing for the duplication of the target gene is

random. The cell cycle duration in mouse embryonic stem cells measured by flow cytometry

varies in 11 * 16 hours [27, 28], that are roughly distributed in G1 (26%), S (52%), and G2/M
(22%) estimated by the percentage of cells in these phases [28]. The times spent in cell cycle

phases were also measured by time-lapse microscopy and single cell tracking in T and B lym-

phocytes from reporter mice, and the total division time data were found to be well approxi-

mated by the sum of consecutive independent exponential and Gaussian distributions [11].

We assume that the transcription is turned off at the beginning of each stage, as DNA synthesis

is catalyzed by DNA polymerase in nucleosomes, and during late S2 stage, the chromatin

shrinks into chromosome [29–31]. In either case, transcription factors and RNA polymerase II

are usually prevented from reaching to gene promoters to initiate transcription [32]. Assump-

tion (v) is equivalent to the binomial distribution of mRNA molecules in the two daughter

cells, which has been assumed in most theoretical models, and supported by recent experi-

ments. The partition in Escherichia colimeasured by the MS2-GFP reporter strongly supports

the assumption that each mRNA copy goes to one of the two daughter cells with equal proba-

bility [33].

The master equations

The transcription state of a gene of our interest in a single cell at a time t� 0 can be character-

ized by the number of active gene copies, the cell cycle stage, and its mRNA copy number.

Without loss of generality, we assume that the gene has exactly one copy in S1 stage, and two

copies in S2 stage, in any single cell of an isogenic cell population. We let I(t) denote the num-

ber of active genes in a cell. In S1 stage, I(t) = 0 if the gene is OFF, and I(t) = 1 if it is ON. In S2

stage, I(t) = 0 if the two gene copies are OFF, I(t) = 2 if both are ON, and I(t) = 1 in the remain-

ing cases. We let U(t) specify the cell cycle stage, with U(t) = 1 in S1 stage, and U(t) = 2 in S2

stage. Let M(t) denote the mRNA copy number for the gene in one cell. Then the transcription

state can be fully quantified by the following joint probabilities

P1ði;m; tÞ ¼ ProbfIðtÞ ¼ i;MðtÞ ¼ m;UðtÞ ¼ 1g; i ¼ 0; 1;m ¼ 0; 1; 2; � � � ; ð3Þ

P2ði;m; tÞ ¼ ProbfIðtÞ ¼ i;MðtÞ ¼ m;UðtÞ ¼ 2g; i ¼ 0; 1; 2;m ¼ 0; 1; 2; � � � : ð4Þ

For clarity and simplicity in the following calculations, we assume that all cells in the iso-

genic population are synchronized at the beginning of S1 stage, and count only newly
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produced mRNA molecules from time zero. Accordingly, we have the initial condition

P1ð0; 0; 0Þ ¼ 1; P1ð0;m; 0Þ ¼ 0; m > 0;

P1ð1;m; 0Þ ¼ P2ð0;m; 0Þ ¼ P2ð1;m; 0Þ ¼ P2ð2;m; 0Þ ¼ 0; m � 0:
ð5Þ

By using the standard procedure in stochastic process, we calculate the time evolutions of

these probabilities based on the basic assumptions (i)-(v) in our model and derive the master

equations:

P0
1
ð0;m; tÞ ¼ g1P1ð1;m; tÞ � ðmd1 þ l1 þ k1ÞP1ð0;m; tÞ

þðmþ 1Þd1P1ð0;mþ 1; tÞ þ k2

X1

n¼m

1

2

� �n n
m

� �
P2ðn; tÞ;

ð6Þ

P0
1
ð1;m; tÞ ¼ l1P1ð0;m; tÞ � ðn1 þmd1 þ g1 þ k1ÞP1ð1;m; tÞ

þ n1P1ð1;m � 1; tÞ þ ðmþ 1Þd1P1ð1;mþ 1; tÞ;
ð7Þ

P0
2
ð0;m; tÞ ¼ k1P1ðm; tÞ � ðmd2 þ 2l2 þ k2ÞP2ð0;m; tÞ

þðmþ 1Þd2P2ð0;mþ 1; tÞ þ g2P2ð1;m; tÞ;
ð8Þ

P0
2
ð1;m; tÞ ¼ 2l2P2ð0;m; tÞ þ 2g2P2ð2;m; tÞ þ ðmþ 1Þd2P2ð1;mþ 1; tÞ

þ n2P2ð1;m � 1; tÞ � ðn2 þmd2 þ l2 þ g2 þ k2ÞP2ð1;m; tÞ;
ð9Þ

P0
2
ð2;m; tÞ ¼ l2P2ð1;m; tÞ � ð2n2 þmd2 þ 2g2 þ k2ÞP2ð2;m; tÞ

þ 2n2P2ð2;m � 1; tÞ þ ðmþ 1Þd2P2ð2;mþ 1; tÞ:
ð10Þ

The last expression P2(n, t) in (6), defined by

P2ðn; tÞ ¼ P2ð0; n; tÞ þ P2ð1; n; tÞ þ P2ð2; n; tÞ;

gives the probability that the cell resides on S2 stage with n transcripts, and P1(m, t) in (8),

defined by P1(m, t) = P1(0,m, t) + P1(1,m, t), represents the probability that the cell resides on

S1 stage with m copies of mRNA molecules. The technical steps leading to (6)–(10) are given

in S1 Text.

The determination of the moment functions

The transcription dynamics of a gene in a cell population is best characterized by the mean

value m(t) = E[M(t)] of the random process M(t) that counts the number of its mRNA cop-

ies. The second moment μ(t) = E[M2(t)] is essential in the calculation of its noise that quanti-

fies the fluctuation of mRNA copy numbers among individual cells. More importantly, as

the cell division cycle is integrated into our model, we can extend m(t) and μ(t) to the two

cell cycle stages S1 and S2. The comparison of these quantities in the two stages can help

us understand how the gene duplication contributes to the variation of transcription

levels and noises. To start with, we give the formal definitions of these concepts and present

the differential equations that provide a framework from which they can be solved

analytically.

For this purpose, we need various probabilities by adding the joint probabilities Pj(i, m, t)
introduced in (3)–(4) when i, j, or m runs through all possible values. We use a conventional

simplification of notations: If any of i, j and m is removed from Pj(i, m, t), then the new

Cell cycle coupled gene transcription
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probability is defined by summing Pj(i, m, t) over the range of the removed index. For

instance,

P1ðm; tÞ ¼ P1ð0;m; tÞ þ P1ð1;m; tÞ;

P2ðm; tÞ ¼ P2ð0;m; tÞ þ P2ð1;m; tÞ þ P2ð2;m; tÞ
ð11Þ

are the respective probabilities that the cell resides on S1 and S2 stages with m copies of mRNA

molecules, without specifying the promoter state. A further summation of the two probabilities

in (11) defines

Pðm; tÞ ¼ P1ðm; tÞ þ P2ðm; tÞ ð12Þ

as the probability that there are m copies of mRNA molecules in the cell. Similarly, we can

define P1(i, t) and P2(i, t). To avoid the confusion with these probabilities defined in (11), we

change them to P1i(t) and P2i(t) with

P1iðtÞ ¼
X1

m¼0

P1ði;m; tÞ; P2iðtÞ ¼
X1

m¼0

P2ði;m; tÞ: ð13Þ

By adding the probabilities in (13) we have

P1ðtÞ ¼ P10ðtÞ þ P11ðtÞ; P2ðtÞ ¼ P20ðtÞ þ P21ðtÞ þ P22ðtÞ ð14Þ

as the respective probabilities that the cell resides on S1 and S2 stages. By adding the master

Eqs (6)–(10) inm, we obtain a closed system of P1i(t) and P2i(t),

P0
10
ðtÞ ¼ k2P2ðtÞ þ g1P11ðtÞ � ðl1 þ k1ÞP10ðtÞ;

P0
11
ðtÞ ¼ l1P10ðtÞ � ðg1 þ k1ÞP11ðtÞ;

P0
20
ðtÞ ¼ k1P1ðtÞ þ g2P21ðtÞ � ð2l2 þ k2ÞP20ðtÞ;

P0
21
ðtÞ ¼ 2l2P20ðtÞ � ðl2 þ g2 þ k2ÞP21ðtÞ þ 2g2P22ðtÞ;

P0
22
ðtÞ ¼ l2P21ðtÞ � ð2g2 þ k2ÞP22ðtÞ:

8
>>>>>>>>>><

>>>>>>>>>>:

ð15Þ

The initial condition for this system can be derived by a summation of the initial data given

in (5). This linear system of ordinary differential equations with constant coefficients can be

solved analytically, and its solution subject to the corresponding initial condition determines

uniquely P1i(t) and P2i(t).
Due to the technical complexity, we break down the process of determining m(t), μ(t), and

their extensions in S1 and S2 in several steps, and move most involving calculations to S1 Text.

Step 1: The determination of the mean level m(t): With P1(m, t), P2(m, t), and P(m, t)
defined in (11) and (12), we have

mðtÞ ¼ E½MðtÞ� ¼
X1

m¼0

mPðm; tÞ ¼ n1ðtÞ þ n2ðtÞ; ð16Þ

where

n1ðtÞ ¼
X1

k¼0

kP1ðk; tÞ; and n2ðtÞ ¼
X1

k¼0

kP2ðk; tÞ: ð17Þ

Cell cycle coupled gene transcription
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As we show in S1 Text, n1(t) and n2(t) satisfy the following system of inhomogeneous linear

ordinary differential equations with constant coefficients:

n0
1
ðtÞ ¼ � ðd1 þ k1Þn1ðtÞ þ

k2

2
n2ðtÞ þ n1P11ðtÞ;

n0
2
ðtÞ ¼ k1n1ðtÞ � ðd2 þ k2Þn2ðtÞ þ n2½P21ðtÞ þ 2P22ðtÞ�:

8
><

>:
ð18Þ

As P11(t), P21(t), and P22(t) can be solved uniquely from (15), we can find n1(t) and n2(t) by

solving (18) subject to the initial condition n1(0) = n2(0) = 0, and find m(t) by (16).

Step 2: The determination of the second moment μ(t): Similar to the definition of m(t) in

(16), we have

mðtÞ ¼ E½M2ðtÞ� ¼
X1

m¼0

m2Pðm; tÞ ¼ o1ðtÞ þ o2ðtÞ; ð19Þ

where

o1ðtÞ ¼
X1

k¼0

k2P1ðk; tÞ; and o2ðtÞ ¼
X1

k¼0

k2P2ðk; tÞ: ð20Þ

As we show in S1 Text, the time evolutions of ω1(t) and ω2(t) are given by the system

o0
1
ðtÞ ¼ � 2d1 þ k1ð Þo1ðtÞ þ

k2

4
o2ðtÞ þ d1n1ðtÞ

þ
k2

4
n2ðtÞ þ n1 2n11ðtÞ þ P11ðtÞ½ �;

o0
2
ðtÞ ¼ k1o1ðtÞ � ð2d2 þ k2Þo2ðtÞ þ d2n2ðtÞ

þn2½P21ðtÞ þ 2P22ðtÞ þ 2n21ðtÞ þ 4n22ðtÞ�;

8
>>>>>>>>><

>>>>>>>>>:

ð21Þ

where

n1iðtÞ ¼
X1

m¼0

mP1ði;m; tÞ; i ¼ 0; 1; n2iðtÞ ¼
X1

m¼0

mP2ði;m; tÞ; i ¼ 0; 1; 2; ð22Þ

and

n1ðtÞ ¼ n10ðtÞ þ n11ðtÞ; n2ðtÞ ¼ n20ðtÞ þ n21ðtÞ þ n22ðtÞ:

Apparently, (21) is not a closed system, and finding ω1(t) and ω2(t) requires the following

system of n1i(t) and n2i(t):

n0
10
ðtÞ ¼

k2

2
n2ðtÞ � ðd1 þ l1 þ k1Þn10ðtÞ þ g1n11ðtÞ;

n0
11
ðtÞ ¼ l1n10ðtÞ þ n1P11ðtÞ � ðd1 þ g1 þ k1Þn11ðtÞ;

n0
20
ðtÞ ¼ k1n1ðtÞ þ g2n21ðtÞ � ðd2 þ 2l2 þ k2Þn20ðtÞ;

n0
21
ðtÞ ¼ 2l2n20ðtÞ þ 2g2n22ðtÞ þ n2P21ðtÞ � ðd2 þ l2 þ g2 þ k2Þn21ðtÞ;

n0
22
ðtÞ ¼ l2n21ðtÞ þ 2n2P22ðtÞ � ðd2 þ 2g2 þ k2Þn22ðtÞ;

8
>>>>>>>>>>>><

>>>>>>>>>>>>:

ð23Þ

This system is obtained by multiplying (6)–(10) with m and then taking sums. As P11(t),
P21(t), and P22(t) can be solved from (15), it is a closed system of n1i(t) and n2i(t). By

Cell cycle coupled gene transcription
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substituting its unique solution subject to the zero initial condition into (21), we can determine

ω1(t) and ω2(t), and therefore the second moment μ(t).
Step 3: The moment functions on S1 and S2 stages: To extend the definitions of m(t) and

μ(t) to the two cell cycle stages S1 and S2, we define the conditional probabilities

p1ði;m; tÞ ¼ ProbfIðtÞ ¼ i;MðtÞ ¼ m j UðtÞ ¼ 1g ¼
P1ði;m; tÞ
P1ðtÞ

; ð24Þ

p2ði;m; tÞ ¼ ProbfIðtÞ ¼ i;MðtÞ ¼ m j UðtÞ ¼ 2g ¼
P2ði;m; tÞ
P2ðtÞ

; ð25Þ

for the probabilities P1(t) and P2(t) defined in (14). Then

p1ðm; tÞ ¼ p1ð0;m; tÞ þ p1ð1;m; tÞ; p2ðm; tÞ ¼ p2ð0;m; tÞ þ p2ð1;m; tÞ þ p2ð2;m; tÞ

are the probabilities that there arem copies of mRNA molecules when the cell resides on S1 or

S2 stage. The average transcription levels in S1 and S2 stages are defined by

m1ðtÞ ¼
X1

k¼0

kp1ðk; tÞ; m2ðtÞ ¼
X1

k¼0

kp2ðk; tÞ; ð26Þ

and the second moments are defined by

m1ðtÞ ¼
X1

k¼0

k2p1ðk; tÞ; m2ðtÞ ¼
X1

k¼0

k2p2ðk; tÞ: ð27Þ

By comparing (26) with the definition of n1(t) and n2(t) in (17), and (27) with the definition

of ω1(t) and ω2(t) in (20), we find the simple relation

m1ðtÞ ¼
n1ðtÞ
P1ðtÞ

; m2ðtÞ ¼
n2ðtÞ
P2ðtÞ

; m1ðtÞ ¼
o1ðtÞ
P1ðtÞ

; m2ðtÞ ¼
o2ðtÞ
P2ðtÞ

: ð28Þ

As a cell is either on S1 or on S2 stage, we have P1(t) + P2(t)� 1. From the basic assumption

(i), the two stages S1 and S2 transit each other by constant rates κ1 and κ2. It implies that P1(t)
and P2(t) are simply related by

P0
1
ðtÞ ¼ k2P2ðtÞ � k1P1ðtÞ ¼ k2 � ðk1 þ k2ÞP1ðtÞ:

This simple equation can also be derived by adding equations in (15). By the assumption

that all cells are synchronized on S1 initially, we have P1(0) = 1. Hence

P1ðtÞ ¼
k2

k1 þ k2

þ
k1

k1 þ k2

e� ðk1þk2Þt; P2ðtÞ ¼
k1

k1 þ k2

�
k1

k1 þ k2

e� ðk1þk2Þt: ð29Þ

Our methods for finding n1(t) and n2(t) in Step 1, and ω1(t) and ω2(t) in Step 2, combined

with (28) and (29), constitute a complete analytical approach for computing the mean values

m1(t) and m2(t), and the second moments μ1(t) and μ2(t), in the two cell cycle stages.

Results

Analytic expressions of the first and the second moments

Our discussion in the previous section offers a clear analytical approach for finding the mean

value m(t) and the second moment μ(t) of mRNA number M(t), along with their extensions to

the two cell cycle stages S1 and S2. However, neither of these functions has a simple analytical
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expression. For simplicity, we will only present their steady-state values in exact forms, and

use their temporal forms in numerical simulations. Although the steady-state values are much

simpler than the temporal forms, they are still rather complex and capture the delicate involve-

ment of the system parameters as shown by the next two theorems. For a function f(t) that has

a finite limit as t!1, we let f� denote its limit.

Theorem 1 If the transcription of a gene obeys the model described in Fig 1, then the mean
transcription level of the gene in a population of isogenic cells at steady-state is

m� ¼ m�
1
�

k2

k1 þ k2

þm�
2
�

k1

k1 þ k2

; ð30Þ

a linear combination of the mean levels m�
1
in S1 stage and m�2 in S2 stage, and

m�
1
¼

2n1l1ðd2 þ k2Þðl2 þ g2 þ k2Þ þ 2n2l2k1ðl1 þ g1 þ k1Þ

½2ðd1 þ k1Þðd2 þ k2Þ � k1k2�ðl1 þ g1 þ k1Þðl2 þ g2 þ k2Þ
; ð31Þ

m�
2
¼

2n1l1k2ðl2 þ g2 þ k2Þ þ 4n2l2ðd1 þ k1Þðl1 þ g1 þ k1Þ

½2ðd1 þ k1Þðd2 þ k2Þ � k1k2�ðl1 þ g1 þ k1Þðl2 þ g2 þ k2Þ
: ð32Þ

Theorem 2 If the transcription of a gene obeys the model described in Fig 1, then the second
moment of its mRNA copy number M(t) at steady-state is

m� ¼ m�
1
�

k2

k1 þ k2

þ m�
2
�

k1

k1 þ k2

; ð33Þ

where m�
1
and m�

2
are the second moments in S1 and S2 stages given by

m�
1
¼ m�

1
þ

8n1ðk2 þ 2d2Þ �m�s1 þ 2n2k1 �m�s2
4ðk1 þ 2d1Þðk2 þ 2d2Þ � k1k2

; ð34Þ

m�
2
¼ m�

2
þ

8n1k2 �m�s1 þ 8n2ðk1 þ 2d1Þ �m�s2
4ðk1 þ 2d1Þðk2 þ 2d2Þ � k1k2

; ð35Þ

with

m�s1 ¼
ðd1 þ l1 þ k1Þm�1 � k1m�2=2

d1 þ l1 þ g1 þ k1

; ð36Þ

m�s2 ¼
ðd2 þ k2 þ 2l2Þm�2 � k2m�1 þ 2n2p�22

d2 þ l2 þ g2 þ k2

; ð37Þ

and p�
22
¼ 2l

2

2
=½ðk2 þ l2 þ g2Þðk2 þ 2l2 þ 2g2Þ�.

The proofs of Theorems 1 and 2 are given in S1 Text. By using definition (1), combined

with the analytical expressions (31) and (32) of the stationary mean transcription levels, and

(34) and (35) for the second moments, we derive the noise strengths of mRNA copy numbers
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in S1 and S2 as

F�
1
¼ 1 � m�

1
þ

1

m�
1

�
8n1ðk2 þ 2d2Þ �m�s1 þ 2n2k1 �m�s2
4ðk1 þ 2d1Þðk2 þ 2d2Þ � k1k2

; ð38Þ

F�
2
¼ 1 � m�

2
þ

1

m�
2

�
8n1k2 �m�s1 þ 8n2ðk1 þ 2d1Þ �m�s2
4ðk1 þ 2d1Þðk2 þ 2d2Þ � k1k2

: ð39Þ

The noises Z2�
1

and Z2�
2

are given by

Z2�
1
¼

1

m�
1

� 1þ
1

ðm�
1
Þ

2
�
8n1ðk2 þ 2d2Þ �m�s1 þ 2n2k1 �m�s2
4ðk1 þ 2d1Þðk2 þ 2d2Þ � k1k2

; ð40Þ

Z2�
2
¼

1

m�
2

� 1þ
1

ðm�
2
Þ

2
�
8n1k2 �m�s1 þ 8n2ðk1 þ 2d1Þ �m�s2
4ðk1 þ 2d1Þðk2 þ 2d2Þ � k1k2

: ð41Þ

The fold change of transcripts

The broad range of the fold change. We use r� ¼ m�
2
=m�

1
, the ratio of the mean transcrip-

tion levels in the two stages, as a measure to quantify the fold change of gene transcription

from S1 stage to S2 stage [12, 15, 34]. Our formulas (31) and (32) imply

r� ¼
m�

2

m�
1

¼
n1l1k2ðl2 þ g2 þ k2Þ þ 2n2l2ðd1 þ k1Þðl1 þ g1 þ k1Þ

n1l1ðd2 þ k2Þðl2 þ g2 þ k2Þ þ n2l2k1ðl1 þ g1 þ k1Þ
: ð42Þ

All ten system parameters are involved in this formula. If the transcripts are turned over

extremely fast in S1 stage such that δ1 dominates all other parameter values, then r� can be

made arbitrarily large. On the contrary, if the transcripts are turned over extremely fast in S2

stage, then r� can be made sufficiently small. Thus r� could take any arbitrary positive number

as parameter values vary, and the range of the fold change predicted by (42) is the whole set (0,

1) of positive numbers.

In many bacterial cells, it has been observed that the transcription kinetic rates of some

genes remain the same in the whole cell cycle [35], that is,

ni ¼ n; di ¼ d; li ¼ l; gi ¼ g; i ¼ 1; 2: ð43Þ

If (43) holds, then (42) can be simplified to

r� ¼
2ðdþ k1Þðlþ gþ k1Þ þ k2ðlþ gþ k2Þ

k1ðlþ gþ k1Þ þ ðdþ k2Þðlþ gþ k2Þ
: ð44Þ

What is the range of r� in this case? During S/G2/M phases, a cell contains twice as many

copies of each gene as that in G1 phase. Intuitively, one may envisage that the number of

mRNA copies in S2 stage doubles the number in S1 stage and so r� � 2. Our next theorem

shows that r� can deviate from 2 largely, and surprisingly, the constraint (43) does not reduce

the range of r�.
Theorem 3 For any constant C> 0, there exist system parameters under the constraint (43)

to make r� = C.

This counter-intuitive result predicts that, even when the transcription kinetic rates do not

change in different cell cycle phases, the fold change of transcription levels from S1 to S2

can be made, in theory, arbitrarily large or small. A complete proof of this result is given in
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S1 Text. In the proof, we specify the stage transition rates κ1 and κ2 in terms of the kinetic

rates to make r� = C for C� 1, C 2 (1, 3/2], C 2 (3/2, 2), and C� 2 separately. For instance,

when C� 1, we take

lþ g ¼ k1; k2 ¼
4k1

C
; d ¼

ð16 � 12C � 2C3Þk1

C3
> 0: ð45Þ

Substituting these parameters into (44) gives

r� ¼
2½ð16 � 12C � 2C3Þk1=C3 þ k1�ðk1 þ k1Þ þ 4k1C � ðk1 þ 4k1=CÞ
k1ðk1 þ k1Þ þ ½ð16 � 12C � 2C3Þk1=C3 þ 4k2=C�ðk1 þ 4k1=CÞ

¼
4ð16 � 12C � C3Þk2

1
=C3 þ 4ðC þ 4Þk2

1
=C2

2k2
1
þ ðC þ 4Þð16 � 12Cþ 4C2 � 2C3Þk2

1
=C4
¼ C:

We note that (45) requires κ1 = λ + γ and κ2� 4κ1 = 4(λ + γ), which corresponds to faster

cell cycle stage transitions comparing to gene promoter transitions, and a much shorter S2

stage than S1 stage. These conditions may not hold regularly in real cells, and a fold change

r� < 1 has been rarely observed under the constraint (43). However, there have been measure-

ments reporting a slightly larger than 1-fold change. In 2016, Skinner et al. [15] quantified

mature and nascent mRNA levels of Oct4 in individual mouse ES cells, and found that the

increase from earlier cell cycle stage to later stage was only about 1.3-fold.

Cell cycle stage transitions are often slower than gene promoter state transitions, implying

κ1 < λ + γ and κ2 < λ + γ. If we divide the numerator and denominator in (44) by δ(λ + γ),

then we may change (44) to

r� ¼
2þ 2k1=ðlþ gÞ þ ð2k1 þ k2Þ=dþ ð2k

2
1
þ k2

2
Þ=½dðlþ gÞ�

1þ k2=ðlþ gÞ þ ðk1 þ k2Þ=dþ ðk
2
1
þ k2

2
Þ=½dðl þ gÞ�

:

It is evident that r� � 2 if κ1, κ2 are considerably smaller than δ and λ + γ. It indicates that

when the transcription kinetics are unchanged in the two cell cycle stages, and the stage transi-

tion is considerably slower than the transcription state transition and mRNA turnover, the

mRNA number in S2 stage doubles the number in S1 stage at steady-state. This doubling prop-

erty has been observed in several experimental measurements. In 2004, Vintersten et al. [34]

reported a strong expression of a developed RFP variant, DsRed.T3, in mouse ES cells, and

found that the nascent mRNA level exhibited a 2-fold increase from S1 stage to S2 stage. In

2011, Trcek et al. [12] measured the cytoplasmic mRNA level of CLB2 in yeast and also found

an approximate 2-fold increase from late G2/M phases to S phase.

Next, we characterize the dependance of r� on the stage transition rates κ1 and κ2. To

emphasize its dependance on these parameters, we write r� = r�(κ1, κ2).

Theorem 4 Let (43) hold. Then we have

a. When κ1 increases from 0 to1, r� increases from r�(0, κ2)< 2 until it peaks uniquely and
then decreases to approach 2 at1. In particular, r� > 2 if and only if

k1 > k2 þ
k2ðk2 þ lþ gÞ

2d
: ð46Þ
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b. When κ2 increases from 0 to1, r� decreases from r�(κ1, 0) > 2 until it bottoms out
uniquely and then increases to approach 1 at1. In particular, r� < 1 if and only if

k2 > 2k1 þ lþ gþ
k1ðlþ gþ k1Þ

d
: ð47Þ

c. When κ1� κ2, r� has an upper bound strictly less than 2.

Theorem 4 gives a precise description on the nonlinear dependance of the fold change r�

on the stage transition rates κ1 and κ2. Conditions (46) and (47) give the respective sufficient

and necessary conditions for r� > 2 and r� < 1. The complete proof of this theorem is given in

S1 Text.

Discussion

The fold change r� and its dependance on the stage durations

The accuracy of estimating the fold change. We use a set of experimental data to test

how accurately our formula (42) may help estimate the fold change r� of mRNA copy numbers

from the early cell cycle stage S1 to the later stage S2. In mouse embryonic stem cells, it was

observed that the mean OFF duration in the transcription of Oct4 increased from 108 min in

S1 stage to 173 min in S2 stage, and the mean ON duration lasted about 56 min in the two

stages [15], suggesting

l1 ¼ 0:5556 hr� 1
; l2 ¼ 0:3468 hr� 1

; g1 ¼ g2 ¼ 1:0714 hr� 1
: ð48Þ

In [15], Skinner found that the average duration of S1 stage lasted about *560 min by

using smFISH. Cartwright et al. [36] measured the cell division time in the same cell line

under similar growth conditions, and estimated the average time for one cell cycle at *13 hr.

These data suggest an average S2 stage duration at *220 min. As the mean life of newly tran-

scribed Oct4 mRNA before being converted to mature RNA was found to be close to 3.5 min,

we estimate the other parameters as follows:

d1 ¼ d2 ¼ 17:14 hr� 1
; k1 ¼ 0:1071 hr� 1

; k2 ¼ 0:2727 hr� 1
: ð49Þ

As the synthesis rate remains about the same in the two cell cycle stages, we can simplify

(42) to

r� ¼
l1k2ðl2 þ g2 þ k2Þ þ 2l2ðd1 þ k1Þðl1 þ g1 þ k1Þ

l1ðd2 þ k2Þðl2 þ g2 þ k2Þ þ l2k1ðl1 þ g1 þ k1Þ
: ð50Þ

Substituting (48) and (49) into (50) gives r� = 1.2791, which matches precisely the experi-

mental measurement r� = 1.28 ± 0.09 observed in [15].

The condensation of r� within [1, 2]. Although Theorem 1 predicts that r� could take

any positive value even if the transcription kinetic rates remain the same in all cell cycle phases,

we use numerical simulation to demonstrate that it is more likely to observe r� 2 [1, 2] in

some cells. As suggested by [15] in the transcription of Oct4 gene in mouse embryonic stem

cells, we fix

l ¼ 0:5556 hr� 1
; g ¼ 1:0714 hr� 1

; n ¼ 1:89 min� 1; d ¼ 0:14 hr� 1
: ð51Þ

The mean OFF and ON durations are *108 min and *56 min, respectively, and the mean

mRNA lifetime is *7.14 hr. To characterize the dependance of the ratio r� on the stage
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durations, we let the mean S1 stage duration 1/κ1 and the S2 stage duration 1/κ2 vary from 10

to 1, 000 min. The contours of r� on stage durations are shown in Fig 2, where the durations

are rescaled in logarithm in Fig 2A. Very interestingly, the contours show that the ratio r� is

within the narrow range [1, 2] over almost all the durations, in a good agreement with many

experimental measurements [9, 13, 15, 34]. It is also seen that for fixed S2 stage duration, r�

decreases and tends to a stable value (� 1) when the S1 stage duration increases. On the other

hand, for fixed S1 stage duration, r� increases and tends to a larger stable value (� 2) when the

S2 stage duration increases.

To see more clearly how r� changes in the limit cases, we enlarged the left upper corner of

Fig 2A in Fig 2B, and the right lower corner of Fig 2A in Fig 2C. The contours in Fig 2B and

2C exhibit some minor deviations from our observation above for Fig 2A. In Fig 2B, where the

S1 stage duration is far greater than the S2 stage duration, r� < 1 and is very close to 1. Also,

for fixed large S1 duration, r� displays a non-monotone growth as claimed by Theorem 4(b)

when the S2 duration increases from 10 min to 10.6 min. In Fig 2C, where the S2 duration is

far greater than the S1 duration, r� > 2 and is very close to 2. For fixed large S2 duration, r� dis-

plays a non-monotone growth as claimed by Theorem 4(c) when the S1 duration increases

from 20 min to 45 min.

The dependance of the fold change on the timing of gene duplication. In the discussion

above, the cell cycle duration changes synchronously when the durations of S1 or S2 change.

In some cases, the cell division time may not change significantly, while the variation of S1 and

S2 durations is mainly caused by the random timing of gene duplication that may occur in the

early S phase or at the end of S phase. During S phase, DNA synthesis is catalyzed by DNA

polymerases [17, 37], and the genome is replicated at a stable rate on leading and lagging

Fig 2. The condensation of r� within [1, 2] and its dependance on the stage durations. All kinetic rates are estimated from [15] in

the transcription ofOct4 gene in mouse embryonic stem cells. (A) For almost all the S1 and S2 stage durations ranging from 10 to 1,

000 min, r� is within a narrow range [1, 2]. When 1/κ1� 1/κ2 (or 1/κ1� 1/κ2), r� varies slowly over a narrow region around 1 (or

2). When the two durations are close, r� changes rapidly over (1.1, 2). (B) When the S1 stage duration is far greater than the S2 stage

duration, r� < 1 and is very close to 1. (C) When the S2 stage duration is far greater than the S1 stage duration, r� > 2 and is very

close to 2.

https://doi.org/10.1371/journal.pcbi.1007017.g002
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strands [25]. In cell cycle-synchronized budding yeast, the total cell division time is *70 min,

comprising by*35 min G1 phase, *18 min S phase and *17 min G2/M phase [13]. We

examine how the mean levels m�
1
, m�

2
and the ratio r� change when the gene duplication time

increases from the start of S phase at 35 min to the end of S phase at 53 min, and transcripts

are produced and turned over with the rates:

n1 ¼ 2:52 min� 1; n2 ¼ 2:14 min� 1; d1 ¼ d2 ¼ 1:18 hr� 1
:

We simplify our approach by taking λ1, λ2!1 and obtain from (31) and (32)

m�
1
¼

2n1ðd2 þ k2Þ þ 2n2k1

2ðdþ k1Þðdþ k2Þ � k1k2

; m�
2
¼

2n1k2 þ 4n2ðdþ k1Þ

2ðdþ k1Þðdþ k2Þ � k1k2

:

It follows that

r� ¼
n1k2 þ 2n2ðdþ k1Þ

n1ðdþ k2Þ þ n2k1

:

As shown in Fig 3A, although the mean transcription levelm�
2

in S2 decreases in the gene

duplication time as we expect, it is surprisingly to see that the mean levelm�
1

in S1 remains

almost a constant. Very interestingly, as shown in Fig 3B, the ratio r�, which changes moder-

ately in a narrow range from 1.31 to 1.53, decreases almost linearly in the duplication time.

The effect of cell cycles on transcription noise

Our gene transcription model coupling with cell division cycles offers six quantities to charac-

terize the fluctuations of mRNA numbers in single cells: The noise η2� and the noise strength

F� in cells without referring to cell cycle stages, along with Z2�
1

and F�
1

in S1 stage, and Z2�
2

and

F�
2

in S2 stage. Theorems 1 and 2 provide the basic formulas by which these quantities can be

computed from the system parameters.

Fig 3. The dependance of the mean mRNA copy numbers m�
1
, m�

2
and the ratio r� on the timing of gene

duplication during S phase. (A) The mean levelm�
1

stays nearly at a constant level, whilem�
2

decreases linear as the

gene duplication time increases from 35 min to 53 min in S phase. (B) The ratio r� decreases almost linearly from 1.53

to 1.31 as the gene duplication time increases.

https://doi.org/10.1371/journal.pcbi.1007017.g003
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The relations between these quantities are far more complicated than our intuition may

envisage. We use simple example to demonstrate the delicacy of their relations: Assume (43)

and fix the kinetic rates as in (51), and take the stage transition rates κ1 = κ2 = 1/1250 hr−1.

Then applying Theorem 2, (38) and (39) gives F�
1
¼ 43:2008 and F�

2
¼ 43:8410. Since F�

1
and

F�
2

are nearly equal, one might expect by intuition that F� is about equal to each of F�
1

and F�
2
,

which is in conflict with

F� ¼ 89:3329 > F�
1
þ F�

2

obtained by using Theorems 1 and 2. Moreover F� = 89.3329 given here is significantly higher

than F� � 1 reported in various single cell measurements, including the classical studies by

Taniguchi et al. [38] and Yu et al. [39]. In these studies, the genes were active most of time, so

thatm� and η2� exhibited a strict reciprocal relation, implying F� � 1. The stochastic switching

between gene promoter ON and OFF states, combined with transitions between cell cycle

stages, may induce much noisier transcriptions.

Due to the wide range of the six noise measures and their complex relations, we will discuss

their profiles in three special cases below:

1. The transcription kinetic rates remain constants in all cell cycle phases.

2. The transcription homeostasis is maintained that m�
1
¼ m�

2
.

3. The concentration homeostasis is maintained that the mean transcription levels scale with

the average volumes in the two stages.

The noise profile with constant kinetic rates. DNA replication during cell division cycles

induces a doubling of gene copy numbers from S1 to S2. In bacteria, the transcription kinetic

rates of many genes do not change considerably in different cell cycle phases [13]. In this case,

mRNA production follows gene dosage with a rapid increase after DNA replication. In a sharp

contrast, the response of the transcription noises to the temporal variation of gene dosage is

rather complicated and few results have been given to elucidate the complexity. Let the tran-

scription kinetic rates remain constants in all cell cycle phases and fix the rate constants as in

(51). We use numerical simulations based on our analytical formulas to depict the profiles of

the transcription noise measures and their relations by varying the cell cycle durations over the

large time interval (10 min, 104 min).

In Fig 4A, the contours of the mean transcription level m� in cells display a simple and

monotonic variation over the stage durations. It increases in both stage durations and the

increase is more sensitive on the second stage duration. Similarly, the contours of the noise η2�

also display a simple and monotonic variation over the stage durations. However, it decreases

in both stage durations and the dependance on the two durations are nearly symmetric. Such

an inverse relation between m� and η2� has been observed in many living cell measurements

and theoretical studies [23, 35], and a strict reciprocal relation between them has been

observed in Taniguchi et al. [38] and Yu et al. [39] with F� � 1. Nevertheless, as the transcrip-

tion specified by (51) is frequently interrupted by long OFF periods, the contours of the

noise strength F� in Fig 4C indicate thatF� is significantly higher than 1 with F� 2 [20, 100].

Moreover, F� displays a highly nonlinear, non-monotonic variation over the cell cycle stages.

Intriguingly, among the durations shown in Fig 4C, F� peaks in a small region when S1 stage

lasts between 10 and 100 minutes on average, and S2 stage lasts between 125 and 250 minutes.

In Fig 4D–4F, the fold changes m�
2
=m�

1
, Z2�

2
=Z2�

1
, and F�

2
=F�

1
from S1 to S1 all vary within a

narrow range with m�
2
=m�

1
, F�

2
=F�

1
2 ½1; 2�, and Z2�

2
=Z2�

1
2 ½0:5; 1�. The right upper corners in
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Fig 4D–4F seem to suggest that, as both stage durations become large,

m�
2
=m�

1
� 2; Z2�

2
=Z2�

1
� 1=2; F�

2
=F�

1
� 1: ð52Þ

Indeed, (52) can be supported by simple mathematical calculations. By taking limits in (31)

and (32), we obtain

lim
k1!0

m�
1
ðk1; k2Þ ¼

nl

dðlþ gÞ
¼

1

2
lim
k2!0

m�
2
ðk1; k2Þ:

and verify the first part of (52). Taking limits in (34) and (35) gives

lim
k1!0

m�
1
ðk1; k2Þ ¼

nl

dðlþ gÞ
1þ

nðdþ lÞ

dðdþ lþ gÞ

� �

;

and

lim
k2!0

m�
2
ðk1; k2Þ ¼

2nl

dðlþ gÞ
1þ

n

d
�

l

lþ g
þ

dþ l

dþ lþ g

� �� �

:

By the definition of the noise strength in (1), we find

lim
k1!0

F�
1
ðk1; k2Þ ¼ lim

k2!0
F�

2
ðk1; k2Þ ¼ 1þ

ng

ðlþ gÞðdþ lþ gÞ
ð53Þ

and verify the third part in (52). Consequently, the second part in (52) is also verified since the

noise equals the noise strength divided by the mean.

The approximate identities in (52) indicate that when the cell cycle stage transitions are suf-

ficiently slow, the mean transcription levels are doubled and the noises are halved from S1 to

S2, while the noise strengths remain about the same. However, this simple statement is invalid

Fig 4. The nonlinear behavior of the transcription noises. The transcription kinetics are specified by (43) and (51),

and the stage durations vary from 10 to 104 min. (A) The meanm� increases in the cell cycle durations. (B) The noise

η2� is about equally sensitive to the variation of the stage durations and decreases from 3 to 0.5 as the stage durations

increase. (C) The noise strengthF� varies widely from 20 to 100 with a highly nonlinear dependance on the stage

durations. (D)-(F) The ratiosm�
2
=m�

1
,F�

2
=F�

1
2 ½1; 2�, and Z2�

2
=Z2�

1
2 ½0:5; 1� over most durations. (G)-(I)F� is larger

than bothF�
1

andF�
2

but less thanF�
1
þF�

2
over most durations.

https://doi.org/10.1371/journal.pcbi.1007017.g004

Cell cycle coupled gene transcription

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007017 April 29, 2019 17 / 27

https://doi.org/10.1371/journal.pcbi.1007017.g004
https://doi.org/10.1371/journal.pcbi.1007017


in general as shown by the contours in Fig 4D–4F, where Z2�
2
=Z2�

1
and F�

2
=F�

1
display highly

nonlinear and wild variations.

In Fig 4G–4I, we compare F� with F�
1
, F�

2
, and F�

1
þ F�

2
. In most of time,

F�
1
< F� < 2F�

1
; F�

2
< F� < 2F�

2
; ðF�

1
þ F�

2
Þ=2 < F� < F�

1
þ F�

2
:

However, these estimates do not hold universally. For instance, Fig 4H indicates thatF�=F�
2

can be as low as 0.8 and so F� < F�
2

in some cases. Also, we have shown one example early

thatF� > F�
1
þ F�

2
may hold. Overall, F� is rarely identical to either F�

1
or F�

2
, and stays

between maxfF�
1
;F�

2
g and F�

1
þ F�

2
most of time.

The noise profile in gene transcription homeostasis. It has been observed repeatedly

that gene transcription in eukaryotic cells, ranging from yeast to mammals, has a limited

dependency on DNA dosage [13]. Cells have a DNA dosage-compensating mechanism to pre-

cisely reduce mRNA production in late cell cycle stage, resulting in a gene transcription

homeostasis that overall transcription remains constant across S1 and S2 stages [18]. Various

compensating mechanisms for gene transcription homeostasis have been found [12, 13, 15,

18], including reducing transcription activation or mRNA synthesis rates, and increasing inac-

tivation or mRNA degradation rates in S2 stage. For all of the genes measured in foreskin

fibroblast cells, Padovan-Merhar et al. [18] found that the number of active sites per gene copy

in S2 stage was approximately half of that in S1. In mouse embryonic stem cells, Skinner et al.

[15] found that the activation rates of Oct4 and Nanog genes were reduced from 0.5556 hr−1

and 0.1124 hr−1 in S1 stage to 0.3468 hr−1 and 0.08 hr−1 in S2 stage, respectively. In cell cycle-

synchronized budding yeast, Voichek et al. [13] found the reduction of mRNA synthesis rate

during S phase. In yeasts, Trcek et al. [12] found a 30-fold increase in the mRNA degradation

rates of SWI5 and CLB2 during prometaphase/metaphase.

Mathematically, we define the gene transcription homeostasis bym�
1
¼ m�

2
that the mean

transcription levels in S1 and S2 stages remain the same. If the homeostasis is brought by vary-

ing a single pair of corresponding kinetic rates, then substituting (31) and (52) into m�
1
¼ m�

2

yields the relations of the two varied rates as follows:

n2 ¼ n1 �
dðlþ gþ k2Þ

ð2dþ k1Þðlþ gþ k1Þ
; ð54Þ

d2 ¼ d1 �
2ðlþ gþ k1Þ

lþ gþ k2

þ
k1ðlþ gþ k1Þ

lþ gþ k2

; ð55Þ

1

l2

¼
1

l1

�
ð2dþ k1Þðgþ k1Þ

dðgþ k2Þ
þ

dþ k1

dðgþ k2Þ
: ð56Þ

g2 ¼ g1 �
2dþ k1

d
þ
dlþ 2dk1 þ lk1 þ k

2
1
� dk2

d
; ð57Þ

In (54)–(57), the parameters with no subscripts are assumed to be independent of cell cycle

stages. It is seen that ν2 and ν1 change proportionally, whereas δ2 and δ1, γ2 and γ1, and the two

OFF durations depend linearly.

We test how the noise η2� and the noise strength F� respond when the parameter pair

defined in each of (54)–(57) change linearly to maintain the homeostasis. We again fix the

parameters with no subscripts in (54)–(57) as in (51), and let

k� 1
1
¼ 560 min; k� 1

2
¼ 220 min; ð58Þ
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that are approximately the average duration of S1 and S2 stages in a mouse embryonic stem

cell line [15, 36]. In Fig 5A–5D, we vary ν1, δ1, λ1, and γ1 near the corresponding parameter

values specified in (51), with ν1 2 [1, 4] in (A), δ1 2 [2 × 10−3, 5 × 10−3] in (B), λ1 2 [0.005,

0.02] in (C), and γ1 2 [0.01, 0.03] in (D), all sharing the same unit min−1. The linear relations

of ν1 and ν2, δ1 and δ2, 1/λ1 and 1/λ2, and γ1 and γ2 defined by (54)–(57) are depicted in the

inserts of these panels. It is easily seen that both η2� and F� vary monotonically on these inter-

vals. Interestingly, η2� and F� change in opposite directions in Fig 5A, 5B and 5D, and they

both decrease in the activation rate λ1 in Fig 5C. The noise η2� takes small values near 0.30 in

all panels and shows only insignificant variations. The noise strength F� takes considerably

larger values but the variation is also insignificant, except in Fig 5A where it increases from

about 30 to 120 when ν1 increases from 1 to 4. Overall, these data suggest that if the transcrip-

tion homeostasis is induced by varying a single pair of corresponding kinetic rates, then the

variation of the rates does not bring significant changes in transcription noise.

We examine the relation between the transcription noise η2� and transcription homeostasis

further by varying ν2/ν1, δ2/δ1, λ2/λ1, and γ2/γ1 from 0.1 to 10 in Fig 6A–6D. All other parame-

ters are kept as in (51) and (58). We label the points at which transcription homeostasis is

reached as H, and the noise minimizing points as Z. In all panels from (A)-(D), it is seen that

the two points stay very close. It suggests that if transcription homeostasis is attained by vary-

ing a single kinetic rate in the two cell cycle stages, then the homeostasis nearly minimizes

transcription noise.

The noise profile in transcript concentration homeostasis. Cells reproduce by cell divi-

sion. During cell mitosis, newly divided daughter cells are naturally smaller than their parent

cells. Thus, a cell in S2 stage is normally larger than itself in S1 stage, although it has also been

reported that cellular volumes are weakly related to cell cycle phases [18]. If the transcription

Fig 5. The noise profile in gene transcription homeostasis. The inserts in (A)-(D) depict the linear relations (54)–(57), where ν1,

δ1, λ1, and γ1 have the same unit min−1 and vary near the corresponding values specified in (51). Both η2� andF� change

monotonically on these intervals in opposite directions, except in (C) where they both decrease in λ1. The noise η2� takes small

values near 0.30 in all panels and has only insignificant variations. The noise strengthF� takes large values but also shows

insignificant variations except in Fig 5A.

https://doi.org/10.1371/journal.pcbi.1007017.g005
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homeostasis is maintained as we discussed above, then the transcript concentration in a cell

decreases as it grows from S1 to S2 stage. However, in agree with the paradigm that biochemi-

cal reaction rates are determined mostly by the concentration of reactants and enzymes,

increasing evidences have shown that many cellular processes depend on the concentration of

gene expression products rather than their absolute numbers [18, 21, 22]. In cell populations

with a large variability in cellular volumes, the numbers of most molecules need to scale with

volumes to maintain a stable concentration for proper cellular functions [18, 21].

Let V1 and V2 denote the average volumes of individual cells on S1 and S2 stages, respec-

tively, and let

rv ¼ V2=V1

denote the fold change of the volumes on the two stages. Recall that r� ¼ m�
2
=m�

1
is the fold

change of the mean transcription levels at steady-state. We define the transcript concentration

homeostasis by

r� ¼ r�v ; ð59Þ

that is, the mean transcription levels scale with the volumes on both cell cycle stages.

We need to find an analytical formula of rv in terms of the cell cycle stage transition rates κ1

and κ2. By combining it with the expression of r� in (42) and the identity (59), we obtain an

explicit relation of the system parameters for the transcript concentration homeostasis. The

expression of rv depends on how cells grow and how the two cell cycle stage durations distrib-

ute. Various cell growth models have been proposed [22, 40–42], including the prevailing

exponential growth model that cell volumes grow exponentially. Assume that a newly divided

cell has a volume V0 = 1 at time t = 0. Then the cellular volume V(t) during the first cell cycle is

Fig 6. Transcription homeostasis nearly minimizes transcription noise. The ratios ν2/ν1, δ2/δ1, λ2/λ1, and γ2/γ1 increase from 0.1

to 10 in (A)-(D), whereas other parameters are kept as in (51) and (58). In (A)-(D), the point H at which transcription homeostasis is

reached and the noise minimizing point Z stay very close.

https://doi.org/10.1371/journal.pcbi.1007017.g006
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given by

VðtÞ ¼ eat; ð60Þ

for a constant growth rate a> 0. Let (0, T1) be the duration of S1, and (T1, T1 + T2) be the

duration of S2. We assume that the cell volume is doubled at the end of the cell cycle. Then V
(T1 + T2) = 2. Recall that T1 and T2 are independently and exponentially distributed with rates

κ1 and κ2. With these specifications, we have

a ¼
k1 þ k2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

1
þ k2

2

p

2
; rv ¼

k2

k2 � a
¼

2k2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

1
þ k2

2

p
� k1 þ k2

: ð61Þ

We note that a increases in both κ1 and κ2, and rv 2 (1, 2). When κ1! 0, the cell stays suffi-

ciently long in S1 and has little growth in S2. In this case, (61) gives rv! 1 as we expect. On

the other hand, rv! 2 as κ2! 0.

To prove (61), we begin with the observation that

rv ¼
E½VðT1 þ T2Þ�

E½VðT1Þ�
;

where E denotes expectation. We omit the detail of deriving this identity, which follows from

the independent exponential distributions of T1 and T2, the renewal theory in stochastic pro-

cesses, and Proposition 3.4.5 in [43]. From (60), we obtain

E½VðT1Þ� ¼

Z 1

0

VðtÞk1e
� k1tdt ¼

Z 1

0

k1e
ða� k1Þtdt ¼

k1

k1 � a
:

The distribution function of T1 + T2 is given by

FðtÞ ¼ ProbfT1 þ T2 � tg

¼

Z t

0

ProbfT1 � t � xgdProbfT2 � xg

¼

Z t

0

ð1 � e� k1ðt� xÞÞk2e
� k2xdx

¼ 1 �
k2

k2 � k1

e� k1t �
k1

k1 � k2

e� k2t;

when κ1 6¼ κ2 [5, 8]. By taking limits, it applies to the case κ1 = κ2 as well. Thus

E½VðT1 þ T2Þ� ¼

Z 1

0

VðtÞdFðtÞ ¼
k1k2

ðk1 � aÞðk2 � aÞ
:

Since it also holds that E[V(T1 + T2)] = 2, we derive

k1k2

ðk1 � aÞðk2 � aÞ
¼ 2

from which the expression of a in (61) is obtained. The second part in (61) can be verified by

dividing the expressions of E[V(T1 + T2)] and E[V(T1)] directly.

We apply our mathematical formulas (42) and (61) to examine how the transcript concen-

tration homeostasis is attained by varying the transcription frequency λi, or the burst size νi/γi,
i = 1, 2, in different cell cycle phases, and how the noise responds to the variation. In a recent

interesting study elucidating the mechanism underlying the concentration homeostasis, Pado-

van-Merhar et al. [18] found a DNA-linked cis-acting factor in mammalian cells, that can lead
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to the reduction of transcription frequency of each gene copy in G2 phase, and therefore an

overall balanced burst frequency in all cell cycle stages. Motivated by this observation, we

reduce λ2 in (51) from 0.5556 to 0.3445, which is approximately a 38% reduction, and keep

other kinetic rates as in (51). As the stage durations vary from 10 min to 1, 000 min, the con-

tours of the fold change r� for the mean transcription levels and the fold change rv for the vol-

umes are shown in Fig 7. Very interestingly, the contour of r� in Fig 7A and the contour of rv
in Fig 7B are very similar over most area of the stage durations. This surprising similarity sug-

gests that the concentration homeostasis could be reached by merely reducing the transcrip-

tion burst frequency in G2 phase, in a uniform reduction degree that is robust against a large

variation of cell stage durations and the randomness of gene duplication time.

To test further the robustness in the reduction of the transcription burst frequency in S2

against the variation of cell cycle stage durations, we fix the kinetic rates except λ2 as in (51),

the duration of S2 at k� 1
2
¼ 220 min as in (58), but let the duration of S1 vary from 2 to 10

hours. By applying (42) and (61) to r� = rv, we determine a unique λ2 corresponding to each S1

duration for the transcript concentration homeostasis. The curve of λ2 versus the S1 duration

1/κ1 is shown in Fig 8A. It is interesting to see that λ2 exhibits only a minor variation within a

narrow interval (0.315, 0.355) over a large span of the S1 duration from 2 to 10 hours. As λ1 =

0.5556, this corresponds to a stable reduction, between 36% and 42%, of the transcription fre-

quency from S1 to S2. We note also that λ2 = 0.3445 fixed in Fig 7 is within (0.315, 0.355).

More interestingly, the transcription noise sketched in Fig 8B, corresponding to the λ2 values

of Fig 8A, also exhibits a minor variation within the narrow range (0.28, 0.48).

Fig 7. The transcript concentration homeostasis by reducing the transcription burst frequency in G2 phase. The burst frequency λ2 is reduced from

0.5556 in (51) to 0.3445, and other kinetic rates are taken from (51). (A) The contours of the fold change r� for the mean transcription levels from S1 to

S2. (B) The contours of the fold change rv for the volumes from S1 to S2. The two sets of contours in (A) and (B) display a large similarity, indicating

that the transcript concentration homeostasis is almost reached by reducing the frequency uniformly over most area of the stage durations.

https://doi.org/10.1371/journal.pcbi.1007017.g007
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In Fig 8A and 8B, the transcription burst size νi/γi does not change in S1 and S2 stages.

However, Caveney et al. [21] and Padovan-Merhar et al. [18] found that the transcription

burst size increases in larger cells, while the burst frequency in S2 shows no dramatic changes.

These findings suggest that the increase in the burst size could be responsible for the concen-

tration homeostasis. We are motivated to test how the burst size increase induces the concen-

tration homeostasis by reducing the gene OFF rate γ2. We set λ1, γ1, and the mRNA synthesis

and degradation rates as in (51), and define λ2 = λ1/2 to equalize the burst frequency on the

two stages. As in Fig 8A and 8B, we fix k� 1
2
¼ 220 min, and let the average duration of S1 vary

from 2 to 10 hours. For each S1 duration 1/κ1, there is a unique γ2 determined by the concen-

tration homeostasis identity r� = rv as shown in Fig 8C. Again, γ2 displays only a minor varia-

tion within the narrow interval (0.78, 0.92) in Fig 8C where the S1 duration increases from 2 to

10 hours. However, in contrast to the minor variation of γ2, the corresponding increase in the

bust size is noticeable. As γ1 = 1.0714, the increase in the burst size in S2, given by (γ1 − γ2)/γ2

ranges from 16.45% to 37.35%. Very interestingly, the corresponding transcription noise

sketched in Fig 8D does not show a noticeable variation but stays within the narrow range

(0.29, 0.56).

The minor variation of η2� in Fig 8B and 8D suggests that the transcription noise is rela-

tively stable when the transcript concentration homeostasis is maintained, either by reducing

the transcription burst frequency or by increasing the burst size in late cell cycle phase, in the

face of a large cell cycle stage duration variation. By comparing the profiles of η2� in Fig 8B

and 8D it is also seen that the burst size variation creates a slightly larger noise than reducing

the burst frequency, similar to the observation by Caveney et al. [21] in cell-free synthetic

Fig 8. Minor variations of λ2, γ2 and η2� versus the large variation of the cell cycle durations in the concentration homeostasis. (A) The

transcription frequency for the concentration homeostasis stays within (0.315, 0.355) over a large span of the S1 duration from 2 to 10 hours;

k� 1
2
¼ 220 min, and other kinetic rates are taken from (58). (B) The noise corresponding to (A) remains within (0.28, 0.48). (C) The inactivation rate γ2

for the concentration homeostasis with the parameters in (A) except λ2 = λ1/2 to equalize the burst frequency in S1 and S2. (D) The noise corresponding

to (C) remains within (0.29, 0.56).

https://doi.org/10.1371/journal.pcbi.1007017.g008
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reaction chambers. Furthermore, our simulations in Figs 7 and 8A and 8C show that the

reduction degree in the burst frequency for the transcript concentration homeostasis is relative

robust, while the increase in the burst size is conceivably sensitive, to the random variation of

the cell cycle durations.

Conclusion

Gene transcription involves inherently various probabilistic steps that create fluctuations in

mRNA and protein counts [1–3]. The random transitions between the active and inactive pro-

moter states have been widely invoked to explain the fluctuation of mRNA numbers among

individual cells of identical genes [6, 7]. Recent experimental studies have revealed that the cell

division cycle has global effects on transcriptional outputs, and is thought to be an additional

source of transcription noise [10–13].

In this work, we integrated cell division cycles into an extended two-state model to delin-

eate the combined contribution of transcription activities and cell divisions in the variability of

transcript counts [4, 6]. In the model, a cell division cycle is divided into S1 stage before the

duplication of a target gene and the late stage S2, on which the durations are independently

and exponentially distributed with rates κ1 and κ2. When a cell divides, each mRNA molecule

has an even chance of being partitioned to one of the two daughter cells. We defined two joint

probabilities to quantify the system state, and derived the master equations of their time evolu-

tions. From the master equations we obtained the differential equations of the mean and the

second moment of mRNA numbers in single cells. By solving these equations we presented in

Theorem 1 the steady-state mean transcription levelm� in cells, together with the means m�
1

and m�
2

on the two stages. The analytical forms of the second moments are presented in Theo-

rem 2, which in turn help us determine six noise measures: the noise η2� and the noise strength

F� without referring to cell cycle stages, along with Z2�
1

and F�
1

in S1, and Z2�
2

and F�
2

in S2. The

fold change of mRNA counts from S1 to S2 is quantified by r� ¼ m�
2
=m�

1
. As a cell contains

twice as many copies of each gene in S2 as that in S1, one may envisage by intuition that r� � 2.

However, our Theorem 3 shows that r� can take any prescribed value in theory, although we

also found that r� � 2 when the transcription kinetics are unchanged in the two stages, and

stage transitions are considerably slower than mRNA turnover and transcription state transi-

tions. The dependance of r� on κ1 and κ2 is examined deeply in Theorem 4, where the neces-

sary and sufficient conditions for r� < 1 or r� > 2 are identified. In particular, it is proved that

r� has an upper bound strictly less than 2 when κ1� κ2.

We tested the accuracy of our analytical results against various experimental data. For a

gene in a mouse embryonic stem cell line, our result predicts r� = 1.2791, which offers a good

match with r� = 1.28 ± 0.09 measured in [15]. The analysis also indicates that if the transcrip-

tion kinetics do not change considerably in the two cell cycle stages, then the average mRNA

counts increase about 1 to 2 folds from S1 stage to S2 stage as observed in mouse embryonic

cells [15] and yeast [12]. The mean m� increases while the noise η2� decreases in each of the

cell cycle durations. Rapid transitions between cell cycle stages were identified as a major

source of highly noisy transcription. Eukaryotic cells have a DNA dosage-compensating mech-

anism to reduce mRNA production in late cell cycle stage, resulting in gene transcription

homeostasis that overall transcription remains constant across S1 and S2 stages [13, 18]. Our

analysis reveals that transcription homeostasis does not bring significant changes in transcrip-

tion noise. If transcription homeostasis is attained by varying a single kinetic rate in the two

cell cycle stages, then the homeostasis nearly minimizes transcription noise. As many cellular

processes depend on the concentration of enzymes rather than their absolute numbers for

proper cellular function [18, 21, 22], we also studied the noise profile when the transcript
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concentration homeostasis is maintained that the mean transcription level scales with the cel-

lular volume in S1 and S2. We found that the transcription noise is relatively stable when the

transcript concentration homeostasis is maintained, either by reducing the transcription burst

frequency or by increasing the burst size in late cell cycle phase, in the face of a large cell cycle

stage duration variation. The reduction degree in the burst frequency is relative robust, while

the increase in the burst size is conceivably sensitive, to the large random variation of the cell

cycle durations and the gene duplication time.

This work provides one of the first theoretical explorations on how the coupling of stochas-

tic promoter state transitions and cell cycle progressions regulates transcription abundance

and noise. It presents a core model for further inclusion of more complex transcription kinet-

ics and cell cycle progressions. The kinetic rates may display large variations in different cell

cycle phases or within the same phase, or oscillate periodically in the cell cycle progression

[44]. With the expansion of the model, motivated and tested by more upcoming experimental

data, the approach initiated here is expected to be developed further to help understand the

role played by the cell cycle dependent gene expression in cell functions and cell fate decision

[45, 46].

Supporting information
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