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Abstract: Endophytes, microorganisms that live in the internal tissues and organs of the plants, are
known to produce numerous bioactive compounds, including, at times, some phytochemicals of
their host plant. For such reason, endophytes have been quoted as a potential source for discovering
bioactive compounds, particularly, of medical interest. Currently, many non-communicable diseases
are threatening global human health, noticeably: diabetes, neurodegenerative diseases, cancer,
and other ailment related to chronic inflammation and ageing. Intriguingly, the pathogenesis and
development of these diseases have been linked to an excessive formation and accumulation of
advanced glycation end products (AGEs). AGEs are a heterogeneous group of compounds that can
alter the conformation, function, and lifetime of proteins. Therefore, compounds that prevent the
formation and consequent accumulation of AGEs (AntiAGEs compounds) could be useful to delay
the progress of some chronic diseases, and/or harmful effects of undue AGEs accumulation. Despite
the remarkable ability of endophytes to produce bioactive compounds, most of the natural antiAGEs
compounds reported in the literature are derived from plants. Accordingly, this work covers 26 plant
antiAGEs compounds and some derivatives that have been reported as endophytic metabolites, and
discusses the importance, possible advantages, and challenges of using endophytes as a potential
source of antiAGEs compounds.

Keywords: diabetes; protein glycation; AGEs detoxification; carboxymethyl-lysine; RAGEs antago-
nists; methylglyoxal; endophytic metabolites

1. Introduction

Endophytes are microorganisms, mainly fungi and bacteria, that live at least during
part of their life cycle within the internal tissues and organs of plants [1]. Endophytes
are known to produce several bioactive compounds of pharmaceutical, agricultural, and
industrial importance [2,3].

According to the World Health Organization, approximately 56.8% of the annual global
deaths come from the most prevalent non-communicable diseases (NCDs): cardiovascular
and respiratory diseases, cancer, and diabetes [4]. The high incidence of these diseases has
prompted the search for novel alternatives for their prevention and treatment. Interestingly,
the pathogenesis and development of several NCDs have been linked to an excessive
formation and accumulation of advanced glycation end products (AGEs) [5,6]. AGEs
are a heterogeneous group of compounds whose synthesis frequently begins with the
non-enzymatic glycation of proteins [7]. The abnormal AGEs accumulation in human
body tissues produces deleterious effects involving protein dysfunction, which arises from
changes in their conformation (in some cases, AGEs may produce cross-links between
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proteins), function, and half-life. Furthermore, AGEs interaction with receptors (RAGEs)
can activate inflammatory pathways and lead to the generation of oxidative stress [8].

Consequently, the search for natural compounds that interfere with the AGEs forma-
tion and accumulation or that function as AGEs crosslink-breakers or RAGEs antagonists
(all of which are referred to as antiAGEs compounds in this review) may lead to the
discovery and development of novel therapies for diseases in which AGEs accumulate
excessively [9,10].

Most known natural antiAGEs compounds were originally found in plants and en-
compass various compounds such as polyphenols, polysaccharides, terpenoids, vitamins,
alkaloids, and peptides [11–17]. Despite the well-known ability of endophytes to produce
bioactive compounds and that sometimes they synthesize the same or similar compounds
produced by their host plant [18,19], they have been scarcely studied as producers of
antiAGEs compounds.

Thus, our aim was to review and highlight the potential of endophytes as natural
sources of antiAGEs compounds. Firstly, we briefly discuss the importance of searching
for this kind of compounds due to the suggested connection between excessive AGEs
accumulation and development of a large number of chronic diseases. Secondly, we
summarize some of the reported antiAGEs plant-derived compounds that have been also
found as metabolites of endophytes. Finally, we point out the advantages and challenges of
using endophytes instead of plants to discover and produce antiAGEs compounds.

2. Endophytes, an Exceptional Source of Bioactive Compounds

Endophytes comprise mainly fungi and bacteria, but it also includes archaea and
protists that live in the internal tissues and organs of plants (leaves, stems, flowers, fruits,
seeds, or roots). Some endophytes do not cause apparent signs of disease in their host
plants [20]; other may even be beneficial to their host [7], while some could become oppor-
tunistic pathogens under particular circumstances [1]. The above depends on the plant
and microbial genotype, quorum sensing, co-colonizing microbiota, and environmental
conditions [1,21,22]. Endophyte colonization may occur by horizontal transference through
different ways, such as soil-to-root, by phyllosphere (aerial spores) or through vectors
(pollinators, arthropods, or sap-feeders), and by vertical or mixed transfer via seeds [23].
Endophyte colonization could involve passive or active mechanisms. In the first one,
endophytes get access into a plant tissue through cracks, wounds, or hydathodes. On the
other hand, active mechanisms involve the secretion of cell-wall-degrading and other en-
zymes [1,24]. Once inside the plant, the competent endophytes may spread systematically
to reach other different plant tissues, mainly via the xylem vascular system [23].

The diversity and composition of endophytic communities in plants depend on biotic
factors such as genotype, developmental stage, and physiology of the host plant. Also, mi-
crobial strain type, the endophyte chemotaxis to plant–exudates production, and presence
of other microorganisms are involved. In addition, abiotic factors such as soil characteristics
(pH, moisture, nutrients, presence of pollutants) and environmental conditions (tempera-
ture and radiation) could modify the establishment of endophytic communities [1,25,26].

The endophyte–host plant relationship is diverse, complex, and, in many cases, not
totally understood. Endophytes could be mutualistic, commensal, and even opportunistic
pathogens [1]. In mutualistic endophyte–host plant relationship, the plant offers shelter and
nutrients for microorganism survival. In exchange, endophytes can promote plant growth,
induce a plant defense response, improve the nutrient’s availability, increase resistance to
biotic (salinity, drought, heat, and cold) and abiotic stress (caused by phytopathogens or
herbivores), and consequently, enhance the plant survival [26–28].

Some of the interactions mentioned above take place by eliciting host response or by
secondary bioactive metabolites produced by the endophytes [1,2,27]. Thus, endophytes
synthesize metabolites that may be useful for the host plant, e.g., antifungals, plant-growth
promoters, antibiotics, insecticides, antioxidants, and antiparasitic agents. Moreover, sev-
eral metabolites synthesized by endophytes have shown bioactivities that could be useful
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in industrial, agricultural, and medical fields, for example, lytic enzymes, antidiabetics,
anti-inflammatory, anticancer, immunosuppressives, antivirals, antiacetylcholinesterase,
antimalarial, analgesic, etc. [18,27,29]. Additionally, endophytes at times may be able to
produce some of the compounds produced by their host plant [19,29]. In summary, the
endophytes represent an interesting and environmentally friendly source of potentially
valuable bioactive compounds.

3. Non-Communicable Diseases, a Global Health Problem

For decades, unhealthy diet, sedentary lifestyle, tobacco usage, and alcohol consump-
tion in people around the world have become the main risk factors for the development of
non-communicable diseases (NCDs) [4,30]. In 2019, seven of the ten leading causes of death
in the world were NCDs or chronic diseases, and it is estimated that their prevalence will
continue rising [31]. Accordingly, the detection, treatment, prevention, and palliative care
of all these pathologies constitute a crucial challenge for public world health [4]. Moreover,
NCDs such as diabetes, cancer, cardiovascular and respiratory diseases are factor risks that
have contributed to the severity and rising number of deaths caused by the emergence of
the COVID-19 pandemic [32].

Since the pathogenesis and development of some of the main NCDs have been fre-
quently associated with an excessive formation or accumulation of AGEs or the interaction
of AGEs with AGEs receptor (RAGE) [33,34], the development of strategies to limit the
accumulation of AGEs may be a new potential alternative for the treatment of some NCDs.

4. Advanced Glycation End Products

AGEs are a heterogeneous group of molecules whose formation usually involves
non-enzymatic reactions of reducing sugars with proteins through the Maillard reaction [7].
The endogenous formation of AGEs is shown in Figure 1. Initially, the carbonyl group
of a reducing sugar reacts with amino groups of proteins, preferentially those of lysine
or arginine, to form Schiff bases [35,36]. Rearrangements of the Schiff bases lead to the
formation of more stable compounds known as Amadori products (ketoamines) [35,36].
Subsequently, the Amadori products via oxidation, deprotonation, and fragmentation
reactions form dicarbonyl compounds in the propagation phase [35]. Methylglyoxal and
other α-dicarbonyl compounds are the primary AGEs precursors. These precursors may
also originate from sugar autoxidation, lipid peroxidation, amino acid breakdown, and
acetone metabolism. Polyol pathway, glycolysis, and fructolysis are metabolic pathways
that may contribute to the triose phosphate pool and consequently to the methylglyoxal
formation [37–39]. Ultimately, reactions of cyclization, isomerization, retro-aldol cleavage,
hydrolytic and oxidative α-cleavage, and β-cleavage may generate a great variety of AGEs
in the final phase of AGEs formation [7,38].

Depending on the chemical structure and ability to emit fluorescence, AGEs can be
classified as fluorescent and cross-linked, (e.g., pentosidine, crossline, and vesperlysine), flu-
orescent and non-cross-linked, (e.g., argpyrimidine), non-fluorescent and cross-linked, (e.g.,
glyoxal-lysine dimer, methylglyoxal-lysine dimer, glyoxal-derived imidazolium cross-link,
methylglyoxal-derived imidazolium cross-link, etc.), and non-fluorescent, non-cross-linked
adducts, (e.g., carboxymethyl-lysine, carboxyethyl-lysine, pyrraline, and imidazolones) [40].
The cellular formation of AGEs is common under physiological conditions. However, it
may undesirably increase under conditions of hyperglycemia, hyperlipidemia, oxidative
stress, and inflammation, all of which are common in diabetes, chronic diseases, and age-
ing [41]. In addition to the endogenous formation of AGEs, exogenous sources such as
dietary AGEs (dAGEs) may be consumed from fried or processed foods [42]. Furthermore,
AGEs may be inhaled from tobacco smoke, which contributes to the AGEs circulating in
the body [43]. Increased rates of AGEs production or accumulation may have pernicious
health consequences because AGEs could prompt the formation of covalent cross-links
between proteins to form aggregates or may alter the conformation, activity, or function of
proteins, as well as their removal by proteolytic means [15,29]. Moreover, AGEs often trig-
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ger intracellular signaling processes through their attachment to AGEs receptors (RAGE),
so they may cause oxidative stress, inflammatory responses, immune dysfunction, and
DNA damage [44,45]. The interactions cited above may explain, at least in part, why AGEs
have been linked to a wide range of diseases.
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Figure 1. Endogenous AGEs formation in human body. AGEs are typically formed in three phases.
The early phase involves the Maillard reaction between sugar and proteins and concludes with
the formation of Amadori products. Subsequently, the propagation phase generates α-dicarbonyl
compounds such as methylglyoxal, glyoxal, and 3-deoxyglucosone. A great variety of AGEs emerge
during the final phase. In addition, other pathways that could exacerbate the quantity of AGEs
precursors comprise sugar autoxidation, aminoacids metabolism, lipids peroxidation, polyol pathway,
fructolysis, and glycolysis. Created with BioRender.com. Adapted from Zeng et al. [6].

4.1. High Levels of AGEs Accumulation Are Linked to Various Diseases

Diabetic patients recurrently show higher blood sugar concentrations than healthy
people, which fosters higher levels of AGEs accumulation and AGEs–RAGEs interactions.
This has been linked to the pathogenesis of diabetic complications such as retinopathy,
cataract, neuropathy, nephropathy, atherosclerosis, and heart diseases [46–48]. Addition-
ally, increasing AGEs levels contribute to the progression of neurodegenerative diseases,
e.g., Alzheimer’s, Parkinson’s, and Huntington’s diseases, and generates cross-links and
consequently prompts the formation of the aggregates with amyloid β and tau proteins,
α-synuclein, and huntingtin, respectively, as well as alterations via the AGEs–RAGEs
axis [49]. Furthermore, AGEs and p53 proteins have been linked to tumorigenesis in lung,
breast, colorectal, pancreatic, and melanoma cancer [50].

Other diseases that have been associated with high levels of AGEs or AGEs–RAGEs
interactions are cardiovascular diseases [51], sarcopenia [52], osteoporosis [53], inflamma-
tory diseases such as rheumatoid arthritis [54], lupus erythematosus [55], psoriasis [56],
chronic lower limb ischemia [57] and chronic obstructive pulmonary disease [58] (Figure 2).
Recently, it has been reported that activation of the RAGEs axis could exacerbate clinical
complications in COVID-19 patients with diabetes [59].
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4.2. Reducing AGEs Accumulation as a Potential Treatment Strategy for Some NCDs

The high incidence and prevalence of NCDs emphasize the importance of finding new
treatment alternatives. It has been proposed that the inhibition of formation or accumu-
lation of AGEs may help to delay or prevent the progression of some non-communicable
diseases [10,45,60]. In order to reduce the exogenous AGEs intake, it is often recommended
to consume fresh vegetables, fruits, and whole grains, as well as restrict sugary, processed,
or fried foods, and cook meals at low temperatures with high humidity. Similarly, having
a healthy diet and lifestyle, including exercise and not smoking, are important for the
prevention or management of most, if not all, NCDs [61].

Cells possess their own AGEs detoxification systems, e.g., glyoxalase. However, under
pathogenic conditions or with ageing, they often become insufficient to keep optimal
physiological conditions. Therefore, compounds that inhibit the formation or prevent an
excessive accumulation of AGES may represent a potential strategy to retard the onset of
detrimental health effects resulting from undue AGEs accumulation and, by doing so, may
delay the development of NCDs [10,60].

Due to the rather complex AGEs formation process, several mechanisms exist by which
a given compound may operate for this purpose. In this review, we refer to “antiAGEs
compounds” as those that may reduce the harmful consequences of AGEs accumulation by
at least one of the action mechanisms enlisted below (Figure 3):

• Blocking the carbonyl groups of reducing sugars or stabilizing the protein structure to
inhibit the Maillard reaction or the formation of Schiff bases and Amadori products;

• Scavenging of free radicals and chelating metal ions. Consequently, fewer reactive
carbonyl groups and fewer radical-based reactions occur;

• Blocking or breaking the AGEs cross-links to lessen the protein aggregation;
• Disrupting the AGEs–RAGE interaction, thus preventing inflammatory process and

oxidative stress;
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• Some indirect mechanisms may be stimulating the glyoxalase system and other dicar-
bonyl detoxification systems to reduce the available AGEs precursors. Inhibition of
polyol pathway enzymes (aldose reductase and sorbitol dehydrogenase) to reduce
fructose intake and hypoglycemic activity to reduce sugar availability, etc. [9,60].
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Figure 3. The mechanisms of action of antiAGEs compounds. The antiAGEs compounds could
restrict in different ways, shown with a red cross, the undue accumulation, and consequent harmful
effects of AGEs. These compounds may block sugar attachment to proteins, scavenge free radicals,
chelate ions, trap reactive dicarbonyl species, break AGEs cross-links, or block the AGEs–RAGEs
interaction. Hyperglycemic control and inhibition of aldose reductase or sorbitol dehydrogenase
may decrease the reducing sugars available and, therefore, the formation of AGEs. Created with
Biorender.com.

4.3. Synthetic AntiAGEs Compounds

Synthetic antiAGEs compounds include aminoguanidine, N-phenacylthiazolium bro-
mide (PTB), tenilsetam, pyridoxamine, pentoxifylline, benfotiamine, LR-90, alagebrium
chloride (ALT-711), edaravone, TM2002, pioglitazone and metformin [10]. The two last
compounds are widely used for diabetes treatment. Edaravone has been used to treat
amyotrophic lateral sclerosis [62], whereas pentoxifylline is used to improve blood flow
in patients with circulation problems. However, most of the other antiAGEs compounds
have failed in human clinical trials due to severe side effects or deficient effectiveness [10].
For that reason, natural antiAGEs compounds are being studied as a potentially safer and
environmentally friendly alternative.

Newman and Cragg [63] wrote: “Natural products still hold out the best options
for finding novel agents/active templates, which, when worked on in conjunction with
synthetic chemists and biologists, offer the potential to discover novel structures that can
lead to effective agents in a variety of human diseases”.

Several natural antiAGEs compounds have been found and identified as plant metabo-
lites, including polyphenols, polysaccharides, terpenoids, vitamins, alkaloids, and pep-
tides [11–17]. In contrast, there are scarce reports about antiAGEs compounds synthesized
by endophytes, despite the fact that in some cases, these organisms have the capacity to
generate the same or similar bioactive compounds as their host [29,64].

5. Plant AntiAGEs Compounds Also Are Found in Endophytes

Endophytes are a rich source of a wide variety of chemical compounds such as
alkaloids, phenols, tannins, amino acids, carbohydrates, saponins, terpenes, flavonoids, and

Biorender.com
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sterols [65]. Various metabolites and crude extracts of endophytes have shown antioxidant
activity, which is known as a possible mechanism for inhibiting the formation of AGEs [66,
67]. Gutiérrez-García et al. [68] explored the antiAGEs compounds produced by endophytes
from Piper auritum. They found that 2,4-diacetylphloroglucinol (DAPG) and congeners such
as 5-hydroxyferulic acid synthesized by endophytic Pseudomonas strains inhibit, in vitro,
the formation of Amadori products and fluorescent-AGEs.

Natural antiAGEs compounds have been studied and found primarily in plants.
However, some of these plant-derived antiAGEs compounds have also been found as
metabolites synthesized by endophytes [13,29,69,70]. Table 1 summarizes some plant
anti-AGEs compounds, their mechanism of action, the endophytes reported to be capable
of producing them, and the analytical techniques used to identify these compounds in
the endophytes. Table 1 was originally built from the examination of the four most-cited
reviews, and three recent reviews, on inhibition of advanced glycation end products by
natural products [11–17]. This led us to identify ~130 natural compounds with at least
one antiAGEs activity. Each compound was separately searched in the Web of Science
(Core Collection) using the compound name and the phrase “Advanced glycation end
products”. Next, the compounds with at least six outputs (62) were searched by name and
the input “endophyte”. We retrieved 382 outputs but only 70 were about the production of
the antiAGEs compounds by endophytes, and they included ~30 antiAGEs compounds.
Only the papers that included reliable spectrometric data and chemical information about
the compounds synthesized by endophytes were further considered. Table 1 summarizes
26 compounds plus some derivatives, 47 papers about the mechanisms of action involved
in the antiAGEs activity of the compounds cited, and 37 articles reporting endophytes that
synthesize at least one of the mentioned compounds.

Table 1. Anti-AGE compounds reported as metabolites synthesized by endophytes.

AntiAGEs
Compound Concentration/Study Model Action Mechanism Endophytic Source/Host

Plant

Analytical
Method of

Identification

Protocatechuic
acid

* 2–4% in powder diet of T2D
rats [71]

* 50–100 mg/kg p.o in T2D rats
with high fat diet [72]

Reduces formation of CML,
pentosidine and the
expression of aldose
reductase, sorbitol

dehydrogenase, and
RAGEs. Improves

glyoxalase I expression and
insulin sensibility. It has

antioxidant, hypoglycemic
and anti-inflammatory

activity [71,72]

-NID
endophytes/Newbouldia

laevis and Ocimum
gratissimum [73]
-Aspergillus sp.,

FVL2/Foeniculum vulgare [74]

-HPLC-PDA a

-1H, 13C, HSQC,
and HMBC

NMR a

Gallic acid

* 50–200 µg/mL in BSA-glucose
system [75]

* 25 mg/kg/day in rats [76]
* 100 µM in BSA-glucose,

BSA-ribose and BSA-MGO
system [77]

Diminishes fluorescent
AGEs formation and
RAGEs expression.

Chelates ion metals entrap
carbonyl species and have

antioxidant,
anti-inflammatory and
hypoglycemic activities

[75–77]

-Fusarium sp./Fritillaria
unibracteata [78]

-Alternaria spp., Penicillium
spp., Neurospora spp.,

Cladosporium spp., Phoma spp.
Fusarium spp., Phomopsis spp.

and Pleosporales spp./Acer
ginnala [79]

-Cladosporium velox/Tinospora
cordifolia [80]

-Fusarium spp./Ferula
assa-foetida [81]

-HPLC-DAD b

-HPLC-dual λ
detector *

-HPLC-DAD b

-HPLC-PDA *
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Table 1. Cont.

AntiAGEs
Compound Concentration/Study Model Action Mechanism Endophytic Source/Host

Plant

Analytical
Method of

Identification

Coumaric
acid

* 0.2 mM in rat hepatocytes [82]
* 20 mM in rat tail tendons [83]

Decreases collagen
cross-links and cytotoxicity
induced by GO and MGO

in hepatocytes, has
antioxidant and

anti-inflammatory activity
[82,83]

-Cladosporium velox/Tinospora
cordifolia [80]

-Fusarium spp./Ferula
assa-foetida [81]

-HPLC-DAD b

-HPLC-PDA *

Caffeic acid

* 0.5–2 mM in BSA-MGO and
histones-MGO system [84]

* 2.5–5% in powder diet of T2D
rats [85]

* 10 µM in human endothelial
cells system [86]

* 0.1–2.5 mM BSA-MGO,
HUVEC system [87]

Reduces the levels of CML,
fluorescent AGEs and

inflammatory hormones.
Inhibits aldose reductase,
sorbitol dehydrogenase

activity and RAGEs
expression, has antioxidant,

anti-inflammatory
activities [84–86] * There
are contradictory reports
about the beneficial effect
of caffeic acid. Wu et al.

[87] reported proglycation
effect of caffeic acid, which

leads to the elevation of
oxidative stress and

inflammation in
monocytes, macrophages
and vascular endothelial

cells *

-Four Fusarium
spp./Fritillaria unibracteata [78]

-Fusarium chlamydosporum
and Penicillium

canescens/Polygonum chinense
L. [88]

-Colletotrichum acutatum
S216/Camellia [89]

-Arcopilus cupreus/Schleichera
oleosa [90]

-Aspergillus fumiga-
tus/Moringa oleífera [91]

-Cladosporium velox/Tinospora
cordifolia [80]

-Fusarium spp./Ferula
assa-foetida [81]

-HPLC-DAD b

-HPLC-ESI-
MS/MS b

-UPLC-MS/MS
b

-OHR-LC-MS
(ESI and APCI)

a

-UHPLC-DAD b

-HPLC-DAD b

-HPLC-PDA *

Ferulic acid

* 50–200 µg/mL in BSA-glucose
system [75].

* 0.2 mM in rat hepatocytes [82]
* Equimolar or a 5-fold molar

excess with respect to the lysine
content of flour and egg white in

cake [92].
* 12.95 mM in BSA-fructose or

soy glycinin–fructose system [93]
* 5–20 mM in BSA-glucose
system; 0.1 and 0.2 mM in

HUVEC system [94]

Inhibits production of
CML, fluorescent AGEs,
dicarbonyl compounds,
CEL, and melanoidins.
Decreases cytotoxicity

induced by GO and MGO
in hepatocytes, reduces

protein cross-linking and
has antioxidant,

anti-inflammatory and
antihyperglycemic

activities [75,82,92–94]

-NID
endophytes/Newbouldia

laevis and Ocimum
gratissimum [73]
-Three Fusarium

spp./Fritillaria unibracteata [78]
-Fusarium chlamydosporum

and Penicillium
canescens/Polygonum chinense

L. [88]
-Alternaria tenuissima SBUp1,

Fusarium sp./Ferula
assa-foetida [81]

-HPLC-PDA a

-HPLC-DAD b

-HPLC-ESI-
MS/MS b

-HPLC-PDA *

Rosmarinic
acid

* 6.25–400 µg/mL in
BSA-glucose, BSA-GO and

BSA-MGO system [95]
* 10 µM in HSA–MGO

system [96]

Inhibits formation of
fluorescent AGEs, CML,
and CEL. Reduces MGO

levels, protein aggregation,
and fibril formation
induced by AGEs in

human serum albumin
[95,96]

-Two Fusarium
spp./Fritillaria unibracteata [78]
-Alternaria tenuissima SBUp1,

Fusarium sp./Ferula
assa-fotida [81]

-HPLC-DAD b

-HPLC-PDA b
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Table 1. Cont.

AntiAGEs
Compound Concentration/Study Model Action Mechanism Endophytic Source/Host

Plant

Analytical
Method of

Identification

Chlorogenic
acid

* 0.5–2 mM in BSA-MGO and
histones-MGO system [84]

* AGEs IC50 = 148.32 ± 3.13 µM
in BSA-glucose system;

crosslinking IC50 = 0.68 ± 0.10
mM in AGEs-BSA-rat tail tendon

collagen system; carbonyl
trapping IC50 = 48.26 ± 16.98

mM [97]

Inhibits production of
fluorescent AGEs and

alpha glycosidases.
Reduces cross-linking of
AGEs-BSA to collagen,

entraps MGO, has
antihyperglycemic and
antioxidant activities

[84,97]

-Sordariomycete sp./Eucommia
ulmoides [98]
-Cochliobolus

lunatus/Mirabilis jalapa
L. [99]

-Brevibacillus borstelensis B14,
Bacillus amyloliquefaciens B17,

Bacillus badius B19,
Sphingomonas yabuuchiae N21,
Enterobacter tabaci N22, and
Lodderomyces elongisporus
P212 and Colletotrichum
acutatum S216/Mentha

haplocalyx (B14, B17, B19),
Ipomoea batatas and

Camellia [89]
-Cladosporium velox/Tinospora

cordifolia [80]
-Fusarium sp./Ferula

assa-foetida [81]

-HPLC, UPLC-
PDA-QTOF-MS

b

-LC-ESI-
MS/MS

-Chromogenic
method, TLC b,

HPLC-UV b,
UPLC-MS/MS

b

-HPLC-DAD b

-HPLC-PDA *

Apigenin
(A) and

derivatives
(V = vitexin

and I =
isovitexin)

* AGEs IC50 = 85.2–185.2 µM in
BSA-glucose-fructose system;

aldose reductase IC50 A =
2.47–6.67 µM in RLAR

system [100]
* Aldose reductase IC50 V = 1.47
± 0.08 µM, IC50 I = 0.49 ± 0.08
µM, IC50 A = 0.97 ± 0.26 µM in

RLAR system and IC50 V = 12.07
± 0.03 µM, IC50 I = 0.13 ± 0.03
µM, IC50 A = 11.65 ± 0.07 µM in
HRAR system; AGES IC50 V =

243.54 ± 8.86 µM, IC50 I = 175.66
± 3.73 µM, IC50 A = 204.14 ±

9.31 µM in BSA-fructose-glucose
system [101]

* 10–25 µM IN AGEs-HUVECs
system [102]

Inhibits aldose reductase
and acetylcholinesterase
activities, as well as the
formation of fluorescent

AGEs. Entraps MGO and
reduces inflammatory

cytokines and adhesion
molecules, has antioxidant

and anti-inflammatory
activities [100–102]

-Dichotomopilus
funicola/Cajanus cajan L.

(pigeon pea) [103]
-Two Fusarium spp./Fritillaria

unibracteata [78]
-Fusarium solani/Cajanus

cajan [104]
-Chaetomium

globosum/Cajanus cajan [105]
-Arcopilus cupreus/Schleichera

oleosa [90]
-Alternaria tenuissima SBUp1,

Fusarium sp./Ferula
assa-foetida [81]

-HPLC-ESI-MS
b

-HPLC-DAD b

-HPLC-UV-Vis *,
LC-MS-ESI b,

1H, 13C NMR a

-HPLC-MS/MS
a

-OHR-LC-MS
(ESI and APCI)

a

-HPLC-PDA *

Kaempferol
and

derivatives

* 2–4 mg/kg b.w/day in rats;
1–5 µM in YPEN cells [106].
* Scavenging activity IC50 =

39.5–55.5 µM [107]
* IC50 = 10 µM in RLAR

system [108]
* 20 mg/kg/day in diabetic

rats [109]

Inhibits aldose reductase
and entraps dicarbonyl
compounds. Reduces

AGEs levels and
hyperglycemia,

suppressing AGEs–RAGEs
axis activation. It has

antioxidant and
anti-inflammatory
activities [106–109]

-Mucor
fragilis/Sinopodophyllum

hexandrum [110]
-Penicillium setosum/Withania

somnifera [111]
-Aspergillus fumiga-

tus/Moringa oleífera [91]

-TLC b,
HPLC-UV b, 1H,

13C NMR a

-HPLC-UV-Vis-
Q-ToF-ESI-MS a

-UHPLC-DAD b
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Table 1. Cont.

AntiAGEs
Compound Concentration/Study Model Action Mechanism Endophytic Source/Host

Plant

Analytical
Method of

Identification

Luteolin
and

derivatives

* AGEs IC50 = 16.5–88.9 µM in
BSA-glucose-fructose system;

aldose reductase IC50 A =
0.087–0.94 µM in RLAR

system [100].
* 100 µg/mL in

BSA-glucose-fructose
system [112]

Inhibits aldose reductase,
and production of

pentosidine and other
fluorescent AGEs. Reduces

protein cross-linking
[100,112]

-Nigrospora oryzae/Loranthus
micranthus [113]

-Fusarium sp./Fritillaria
unibracteata [78]

-Alternaria tenuissima SBUp1,
Fusarium sp./Ferula

assa-foetida [81]

-HPLC-DAD-
ESI-MS a, 1H,

13C, HSQC, and
HMBC NMR

-HPLC-DAD b

-HPLC-PDA *

Quercetin
and

derivatives

* 50–200 µg/mL in BSA-glucose
system [75]

* 100 µM in BSA-glucose,
BSA-ribose and BSA-MGO

system [77]
* AGEs gral IC50 = 65 µM,

Pentosidine IC50 = 18 µM and
75–300 mM in collagen-glucose

system [114]
* 0.5–2.5 mM in BSA-MGO and

BSA-GO system [115]

Inhibits aldose reductase,
and the formation of alpha

dicarbonyl compounds,
CML, and fluorescent

AGEs. Entraps MGO and
GO, and reduces

cross-linking of proteins
and glucose autooxidation,

chelates metal ions, has
antioxidant activity
[75,77,108,114,115]

-Nigrospora oryzae/Loranthus
micranthus [113]

-Fusarium chlamydosporum
and Penicillium

canescens/Polygonum chinense
L. [88]

-Penicillium setosum/Withania
somnifera [111]

-Arcopilus cupreus/Schleichera
oleosa [90]

-Aspergillus fumiga-
tus/Moringa oleífera [91]

-Alternaria tenuissima SBUp1,
Fusarium sp./Ferula

assa-foetida [81]

-HPLC-DAD-
ESI-MS a, 1H,

13C, HSQC, and
HMBC NMR
-HPLC-ESI-
MS/MS b

-HPLC-UV-Vis-
Q-ToF-ESI-MS a

-OHR-LC-MS
(ESI and APCI)

a

-UHPLC-DAD b

-HPLC-PDA *

Catechin

* 50–200 µg/mL in BSA-glucose
system [75]

* 100 µM in BSA-glucose,
BSA-ribose and BSA-MGO

system [77]
* AGEs IC50 = 0.049 ± 0.019

mg/mL in BSA-glucose system,
radical scavenging IC50 = 7.927
± 0.007 and 5 mM for MGO

scavenging

Inhibits the formation of
fluorescent AGEs. Chelates

metal ions, entraps
dicarbonyl compounds,

and has antioxidant
activity [75,77,116]

-Fusarium spp./Fritillaria
unibracteata [78] -HPLC-DAD b

Daidzein * 1 mM in MGO system [117] Entraps MGO [117] -Rahnella aquatilis/Emilia
sonchifolia [118]

-ESI-MS a, 1H,
13C NMR a

Genistein

* 100 µM in BSA-glucose,
BSA-ribose and BSA-MGO

system [77]
* 1 mM in MGO system [117]

Chelates metal ions,
entraps MGO, has

antioxidant activity
[77,117]

-Rahnella aquatilis/Emilia
sonchifolia [118]

-Arcopilus cupreus/Schleichera
oleosa [90]

-ESI-MS a, 1H,
13C NMR a

-OHR-LC-MS
(ESI and APCI)

a

Icariin

* 20 mg/kg/day in diabetic rats
[119]

* 10 and 20 mg/kg b.w. in
diabetic rats [120]

Reduces blood glucose
levels in diabetic rats, has

antioxidant,
anti-inflammatory and

antihyperglycemic
activities [119,120]

-Fusarium spp./Fritillaria
unibracteata [78] -HPLC-DAD b
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Table 1. Cont.

AntiAGEs
Compound Concentration/Study Model Action Mechanism Endophytic Source/Host

Plant

Analytical
Method of

Identification

Rutin and
derivatives

* 50–100 mg/kg body weight in
diabetic rats (review) [121]

Inhibits alpha-glucosidases,
alpha-amylases, aldose

reductase, intestinal
carbohydrate absorption,

and AGEs formation.
Increases glucose uptake

and insulin secretion.
Reduces activity of

enzymes involved in
gluconeogenesis and has

antioxidant and
anti-inflammatory

activities [121]

-Fusarium spp./Fritillaria
unibracteata [78]

-Aspergillus
fumigatus/Moringa oleífera

[91]
-Alternaria tenuissima SBUp1,

Fusarium sp./Ferula
assa-foetida [81]

-HPLC-DAD b

-UHPLC-DAD b

-HPLC-PDA *

Resveratrol

* 5 mg/kg b.w. in diabetic rats
[122]

* 50–300 µg/mL in BSA-fructose,
BSA-MGO and arginine-MGO
system; α-amylase IC50 = 3.62
µg/mL and α-glucosidase IC50 =

17.54 µg/mL [123]

Inhibits aldose reductase,
alpha-glucosidase,

alpha-amylase, and
sorbitol dehydrogenase.
Chelates metal ions and

entraps dicarbonyls.
Improves insulin

sensitivity, glyoxalase-I
activity, and adiponectin

levels. Reduces AGEs
levels in diabetic rats, has

antioxidant and
anti-inflammatory
activities [122,123]

-Alternaria spp.,
Botryosphaeria sp., Penicillium

spp., Cephalosporium spp.,
Aspergillus sp., Geotrichum
sp., and Mucor sp./Vitis

vinifera L. cv. Merlot, Vitis
quinquangularis and

Polygonum cuspidatum [124]
-Arcopilus aureus, Penicillium

spp., Lasiodiplodia spp.,
Nigrospora sp., Botryosphaeria
spp., Fusarium spp., Xilaria

sp., Aspergillus spp. and
Alternaria sp./Vitis vinifera

[125–127]
-Aspergillus niger/Vitis

vinifera Cabernet
Sauvignon [128]

-HPLC-dual λ *
-Biochemical
assays, TLC b,

HPLC *
-Chromogenic
method, TLC b,
UV spectra b,

LC *

Tyrosol

* 5–20 mg/kg b.w. in normal and
diabetic rats [129]

* α-glucosidase IC50 = 70.8 µg
total phenolic/mL [130]

Inhibits alpha-glucosidase,
relieves hyperglycemia,

and has antioxidant
activity [129,130]

-Rhytismataceae sp./Picea
mariana [131]
-Papulaspora

immersa/Smallanthus
sonchifolius [132]

-Phialocephala fortinii/Rhodiola
angusta and R. crenulata [133]

-Pestalotiopsis mi-
crospore/Manilkara zapota [134]

-HPLC a, 1H,
13C NMR a

-Optical
rotation, IR, ID,
and 2D NMR
and MS data a

-HPLC-UV b,
UPLC/Q-ToF-

MS, and
1H-NMR b

−1H, 13C NMR
a, and FABMS a
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Table 1. Cont.

AntiAGEs
Compound Concentration/Study Model Action Mechanism Endophytic Source/Host

Plant

Analytical
Method of

Identification

Ellagic acid
* Aldose reductase IC50 = 0.27
µM in HRAR and IC50 = 0.047
µM in RLAR system [108]

Inhibits aldose reductase
and sorbitol

dehydrogenase activities.
Reduces production of

CEL, CML, and fluorescent
AGEs. Entraps dicarbonyl

compounds. Enhances
insulin signaling,

adiponectin receptors,
glucose transporters, and
inflammatory mediators.
Decreases blood glucose

levels and has
anti-inflammatory activity

[108,135]

-Cladosporium velox/Tinospora
cordifolia [80]

-Aspergillus fumiga-
tus/Moringa oleífera [91]

-HPLC-DAD b

-UHPLC-DAD b

Ginsenosides
(Rb, Rd, Rg)

* AGEs IC50 = 15–220 µM in
BSA-fructose-glucose

system [136]

Inhibits production of
fructosamine, fluorescent
AGEs, and CML. Reduces
levels of amyloid cross-B

structure, has
hypoglycemic
activity [136]

-Fusarium sp. and Aspergillus
sp./Panax notoginseng [137]
-Fusarium spp., Aspergillus

spp., Verticillium spp.,
Penicillium spp., Nectria spp.,

and Plectosphaerella
sp./Panax ginseng [138]

-Penicillium sp., Dictyochaeta
sp. and Camarosporium

sp./Aralia elata [139]

-HPLC-UV,
HPLC-ESI-MS b

-HPLC-PAD b

-HPLC b

Tanshinones

* 5 and 20 mg/kg/day in
transgenic mice [140]

*10 mg/kg/day in diabetic
rats [141]

Reduces plasma glucose,
AGEs levels, and RAGE
expression. Suppress the

activation of NF-κB
signaling pathway

mediated by RAGE, has
anti-inflammatory activity

[140,141]

-Trichoderma atroviride/Salvia
miltiorrhiza [142]

-HPLC-
HRMS/MS

b

Stigmasterol * 0.1 mg/mL in BSA-glucose
system [143]

Inhibits formation of
fluorescent AGEs and
protein glycoxidation.

Entraps carbonyl
intermediates, blocks lysyl

residues of BSA, and
consequently reduces its
binding with glucose. It

has antioxidant
activity [143]

-Cunninghamella
sp./Salicornia bigelovii

Torr [144]

-ESI-MS,
1H-NMRa

Emodin

* AGEs IC50 = 118 µM in
BSA-fructose-glucose system,

aldose reductase IC50 = 15.9 µM
in RLAR system [145]

Inhibits aldose reductase
activity and formation of

fluorescent AGEs and
CML. Entraps MGO, has
antioxidant activity [145]

-Talaromyces spp. Apergillus
spp. and Fusarium

spp./Artemisia annua L. [146]
-Coniochaeta velutina/Tsuga

heterophylla [147]
-Thielavia

subthermophila/Hypericum
perforatum [148]

-Metabolomic
analysis by

LC-HRMS/MS
ab

-LC-MS-IT-TOF
and NMR data a

-HPLC-HRMS *
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Table 1. Cont.

AntiAGEs
Compound Concentration/Study Model Action Mechanism Endophytic Source/Host

Plant

Analytical
Method of

Identification

Umbelliferone

* AGEs IC50 = 2.95 ± 0.02 µM in
BSA-fructose-glucose system

[149]
* 15–240 µg/mL in psoas muscle

system, α-amylase IC50 = 8.06
µg/mL

Inhibits production of
alpha-glycosidase,

alpha-amylase, aldose
reductase, fluorescent

AGEs, and
alpha-dicarbonyl

compounds. Improves
insulin secretion and
glucose uptake, has

antioxidant and
hypoglycemic activities

[149,150]

-Cladosporium velox/Tinospora
cordifolia [80] -HPLC-DAD b

Matrine * 50–100 mg/kg in transgenic
mice, 10–50 µM

Inhibits RAGEs activation,
has anti-inflammatory

activity [151]

-Aspergillus terreus/Sophora
flavescens [152] -HPLC-PAD b

Hypericin

* 1–10 µM in BSA-MGO system,
0.01–0.5 µM in HUVEC-MGO

system [153]
* α-glucosidase IC50 = 4.66 ±

0.27 mg/L [154]

Inhibits production of
α-glucosidase and

fluorescent AGEs. Protects
against MGO-induced

apoptosis and oxidative
damage [153,154]

-Thielavia
subthermophila/Hypericum

perforatum [148]

-HPLC-HRMS *,
detection of
hyp-1 gene

MGO: methylglyoxal; GO: glyoxal; NID: not identified; CML: carboxymethyl lysine; CEL: carboxyethyl lysine;
ROS: reactive oxygen species; BSA: bovine serum albumin; HSA: human serum albumin; RLAR: rat lens aldose
reductase; HRAR: human recombinant aldose reductase; b.w.: body weight; HUVEC: human umbilical vein
endothelial cells; HPLC-PDA: high-performance liquid chromatography coupled to a photodiode array detector;
DAD: diode array detector; ESI: electrospray ionization; MS/MS: mass spectrometry in tandem; HRMS: high-
resolution mass spectrometry; dual λ: dual wavelength absorbance detector; UPLC: ultra-performance liquid
chromatography; 1H and 13C NMR: proton and carbon nuclear magnetic resonance; HSQC: heteronuclear single
quantum coherence NMR; HMBC: heteronuclear multiple bond correlation NMR; OHR-LC-MS: orbitrap high-
resolution liquid chromatography coupled to mass spectrometry; APCI: atmospheric pressure chemical ionization;
TLC: thin layer chromatography; UV: ultraviolet; IR: infrared spectroscopy; QToF-MS: quadrupole time of flight
mass spectrometry; FABMS: fast atom bombardment mass spectrometry; IT: ion trap. a Comparing with database
or literature. b Comparing with standard data processed under the same conditions. * Quantitative method.

As is shown in Table 1, many antiAGEs compounds synthetized by endophytes have
been reported. However, we must be very careful because the identity of a compound
should be confirmed, if possible, using complementary methods such as NMR, IR, MS,
etc. When working with endophytes, is often difficult to obtain enough quantity of a
pure compound or the standard to confidently determine its identity and structure. For
this reason, the compound’s identity is often assigned based on databases and literature
comparisons. Unfortunately, this is often a complex undertaking due to the varied operation
conditions of the analytical instruments, (e.g., experimental vs. those used in databases) or
spectra similarities existing among compounds of the same type. For example, paclitaxel
could give similar UV spectra, retention times in chromatography, and even m/z signals
in mass spectrometry to other different taxanes [155]. For small molecule elucidation
using high-resolution mass spectrometry, a levels system approach has been proposed to
improve the confidence in identification. In this system, level 1 represents the ideal situation
where the proposed structure is confirmed via measurement of a reference standard with
MS/MS [156]. The above emphasizes the need for further research to determine the ability
of endophytes to synthesize some of the antiAGEs plant-derived compounds covered here.

5.1. Plant-Derived AntiAGEs Polyphenols Reported in Endophytes

Many of the compounds that curtail the generation of AGEs are classified as polyphe-
nols, characterized by having an aromatic ring with one or more hydroxyl substituents.
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These natural compounds are often found in plants and include phenolic acids, flavonoids,
stilbenes, curcuminoids, and coumarins [13,157,158]. Figure 4 shows some antiAGEs phe-
nolic acids that have been reported to be produced by endophytes such as protocatechuic
acid [73,74], gallic acid [78–81], coumaric acid [80,81], caffeic acid [78,80,81,88–91], ferulic
acid [73,78,81,88], rosmarinic acid [78,81,98], and chlorogenic acid [80,81,89,99].
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Flavonoids are polyphenolic compounds well known for their beneficial effects on
health, some of them have shown antiAGEs activity [12,157,158]. Flavonoids can be clas-
sified into isoflavones, flavones, flavanones, flavonols and anthocyanins. Figure 5 shows
some antiAGEs flavonoids reported as metabolites in endophytes consisting of: apigenin
and derivatives such as vitexin and isovitexin [78,81,90,103–105], kaempferol and deriva-
tives [91,110,111], luteolin [78,81,113], quercetin and derivatives [81,88,90,91,113], cate-
chin [78], daidzein [118], genistein [90,118], icariin [78] and rutin and derivatives [78,81,91].
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Other antiAGEs phenolic compounds that have been reported in endophytes such
as resveratrol, a stilbene [124–128], tyrosol [131–134], ellagic acid [80,91], and 2,4-diacetyl-
phloroglucinol [68] are shown in Figure 6.
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5.2. AntiAGEs Terpenoids Reported as Metabolites from Endophytes

Terpenoids and isoprenoids are among the most abundant and structurally diverse
group of plant natural products; however, endophytes are becoming an increasingly recog-
nized source of these compounds [159]. Some antiAGEs terpenoids reported in endophytes
(Figure 7) comprise ginsenosides (Rb, Rd, Rg) [137–139], tanshinones [142], and stigmas-
terol [144].
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5.3. Other AntiAGEs Compounds Reported in Endophytes

In addition, other antiAGEs compounds of different chemical classes have been re-
ported in endophytes (Figure 8), such as the anthraquinone, emodin [146–148], the hydrox-
ycoumarin, umbelliferone [80], the naphthodianthrone, hypericin [148] and the alkaloid,
matrine [152].
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6. Endophytes May Encourage the Production of antiAGEs Compounds by Plants

Endophyte inoculation in plants could change through unique interactions, their
own secondary metabolite synthesis, or the metabolites produced by the host plant [160].
In some cases, endophytes may elicit the synthesis of certain plant compounds, such as
alkaloids [161] and phenolics [162]. Berberine is an isoquinoline alkaloid with antiAGEs
activity [163]. Their synthesis in Coptis teeta was positively linked with the presence
of Microbacterium species [164]. Phialocephala fortinii, an endophyte from Rhododendron
pseudochrysanthum, prompted an increase of rutin, hyperoside, quercitrin, and catechin in
seedlings [162]. Various other endophytes have elicited the production of tanshinones in
Salvia miltiorrhiza [165].

Moreover, endophytes may modify the compounds produced by their host, giving rise
to compounds with distinctive properties and/or bioactivities [19]. For example, Phomopsis
sp., an endophyte recovered from Pinus taeda, biotransformed limonene to produce α-
terpineol, carvone, limoneno-1,2-diol, and other limonene derivatives [166]. Paraconiothyriu
variabile, an endophyte of Cephalotaxus harringtonia, biotransformed the host-glycosylated
apigenin and chrysoeriol flavonoids into their respective aglycones [167]. Epicoccum nigrum,
an endophyte of Salix sp., was reported to biotransform the host flavonoids into a new
kaempferol O-diglycoside [168]. The above examples highlight potential and interesting
uses of endophytes to conceivably produce novel antiAGEs compounds.

7. AntiAGEs Compounds Production: Endophytes vs. Plants

Endophytes may have some advantages compared to plants for producing bioactive
compounds, as follows:

• Shorter production time. Microorganisms grow much faster than plants. Consequently,
metabolite mass manufacturing with endophytes may be achieved in shorter periods
compared to plants.

• Environmentally friendly. Culturing microorganisms does not require the use of large
land areas. This averts overharvesting and reduces dependence on plant biodiversity.

• Reliable metabolite production throughout the year. Endophyte-based metabolite
production does not depend on seasonal growth, in contrast to plants, nor on weather
fluctuations or geographical conditions. Secondary metabolites could be produced at
any time of the year with endophytes.
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• More economical process. Usually, microbial sources of valued products are cheaper
because they can be mass-produced; this may have an impact on the market price of
the compounds of interest.

• Fewer purification steps. The chemical complexity of microorganisms is relatively
lower than that of plants. A less complex chemical profile of endophytes makes the
purification process of metabolites easier and potentially less costly [3,103,169].

8. Challenges for the Future Use of Endophytes as Sources of AntiAGEs Compounds

Despite the possible advantages of endophytes as sources of bioactive compounds
(compared to plants), a number of constraints still exist that require diligent consideration
to take advantage of endophytes as sources for the discovery and commercial production
of antiAGEs compounds. Some constraints may include, for example, (i) numerous endo-
phytes are non-cultivable or become unstable under lab conditions and (ii) low growth
yields and a reduction of secondary metabolite production when axenic monocultures are
performed [170,171].

Moreover, most studies about bioactive compounds of endophytes have been done
under axenic monoculture conditions. However, it is well known that endophytes, in their
natural habitat, interact with other organisms, including their host plant and their metabo-
lites, possibly leading to regulation of their own secondary metabolism and cooperating
roles for producing bioactive compounds [19]. For that reason, it may be crucial to study
the endophytes in systems nearby to their natural habitat because this could disclose the
whole potential of endophytes communities to produce bioactive metabolites.

Fortunately, new techniques and technologies, biotechnological platforms, and omic
sciences could help to better analyze and understand endophytes and their usually complex
interactions with other organisms. In addition, genome mining, genetic engineering, and
process optimization (elicitor addition, solid sorbent use, and co-culture fermentation)
will allow us to improve the yield and productivity of antiAGEs compounds synthesis by
endophytes [19,170,171].

9. Conclusions

Endophytes synthesize a wide variety of metabolites, including some specific of their
host plant; as such, they seem to be a promising source of antiAGEs compounds. Addi-
tionally, endophytes may be useful to elicit the production of bioactive phytochemicals by
plants and induce the production of novel ones. However, some outstanding challenges
still limit the discovery and commercial use of these microorganisms as sources of antiAGEs
compounds and other bioactive compounds. The use of new technologies in biotechno-
logical platforms and the advancement of omic sciences will help in the understanding of
endophytes and their complex interactions with other organisms. This new knowledge will
allow endophytes to be harnessed as a safe, sustainable, economical, and profitable option
for developing new antiAGEs and other pharmaceutic compounds. The above could be a
significant aid for the treatment and control of at least some prevalent non-communicable
diseases that threaten global health.
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CML, Nε-carboxymethyl-lysine; GOLA, Nε-[2-[(5-amino-5-carboxypentyl) amino]-2-
oxoethyl]-lysine; DOLD, 3-deoxyglucosonederived lysine dimer; DODIC, 3-deoxyglucoson
e-derived imidazolium cross-link; 3DG-H1, 3-deoxyglucosone-derived hydroimidazolone
1; CEL, Nε-carboxyethyl-lysine; MOLD, methylglyoxal-derived lysine dimer; MODIC,
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methylglyoxal-derived imidazolium cross-link; CEA, Nε-carboxyethyl-arginine; MG-H1,
methylglyoxal-derived hydroimidazolone 1; MG-H3, methylglyoxal-derived hydroimi-
dazolone 3; THP, tetrahydropyrimidine; GOLD, glyoxal-derived lysine dimer; GODIC,
glyoxal-derived imidazolium cross-link; CMC, carboxymethyl cysteine; CMA, Nε-carboxym
ethyl-arginine; G-H1, glyoxal-derived hydroimidazolone 1.
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