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Abstract Reoccurring seasonal cyanobacterial harmful algal
blooms (CHABs) persist in many waters, and recent work has
shown links between CHAB and elevated risk of amyotrophic
lateral sclerosis (ALS). Quantifying the exposure levels of
CHAB as a potential risk factor for ALS is complicated by
human mobility, potential pathways, and data availability. In
this work, we develop phycocyanin concentration (i.e.,
CHAB exposure) maps using satellite remote sensing across
northern New England to assess relationships with ALS cases
using a spatial epidemiological approach. Strategic semi-
analytical regression models integrated Landsat and in situ
observations to map phycocyanin concentration (PC) for all
lakes greater than 8 ha (n = 4117) across the region. Then,
systematic versions of a Bayesian Poisson Log-linear model
were fit to assess the mapped PC as a risk factor for ALSwhile
accounting for model uncertainty and modifiable area unit

problems. The satellite remote sensing of PC had strong over-
all ability to map conditions (adj. R2, 0.86; RMSE, 11.92) and
spatial variability across the region. PC tended to be positively
associated with ALS risk with the level of significance de-
pending on fixed model components. Meta-analysis shows
that when average PC exposure is 100 μg/L, an all model
average odds ratio is 1.48, meaning there is about a 48%
increase in average ALS risk. This research generated the first
regionally comprehensive map of PC for thousands of lakes
and integrated robust spatial uncertainty. The outcomes sup-
port the hypothesis that cyanotoxins increase the risk of ALS,
which helps our understanding of the etiology of ALS.
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Introduction

Concern over toxins and public health threats resulting from
cyanobacterial harmful algal blooms (CHABs) have gained
attention as reoccurring seasonal blooms persist in many wa-
ters. Cyanobacteria are particularly noxious when anthropo-
genic eutrophication (i.e., intensive agriculture, excess fertil-
izers, and runoff) of water bodies causes large concentrations
of nutrients to produce massive cyanobacterial blooms. While
blooms often cause local authorities to warn of acute health
risks, the health impacts of chronic exposure to low or mod-
erate levels of cyanotoxins are also largely unknown and po-
tentially more pivotal for certain diseases and illnesses.
Broadly, cyanotoxins can be described as having negative
health impacts and can be grouped by the chemical structure,
tissue, or target systems (e.g., neurotoxic, hepatotoxic,
dermatotoxic). Cyanotoxins found within inland freshwater
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lakes include saxitoxins, anatoxin, cylindrospermopsins,
lyngbyatoxins, hepatotoxins, and microcystins, which tend
to be the most frequently reported by health agencies (Rao
et al. 2002; Codd et al. 2005; Lévesque et al. 2014).

Cyanobacteria produce a variety of toxins that have human
health implications, including beta-N-methyl-amino-L-ala-
nine (BMAA) (Codd et al. 2005). The 100-fold higher inci-
dence of ALS/parkinsonism-dementia complex (ALS/PDC)
documented among the Chamorro people of Guam in the
1950s and 1960s implicated the cyanobacterial neurotoxin
BMAA found in components of their diet (Mulder and
Kurland 1987; Cox and Sacks 2002; Cox et al. 2003).
BMAA has been demonstrated to be concentrated in the
brains of ALS patients (but not controls) in Florida (Pablo
et al. 2009) and to be mis-incorporated into neuronal proteins
via the L-serine tRNA-synthetase system (Dunlop and
Rodgers 2011; Dunlop et al. 2013). Two pathogenic mecha-
nisms have recently been recognized both in sALS and famil-
ial cases: (1) protein misfolding (Mulligan and Chakrabartty
2013; Ogawa and Furukawa 2014; Grad and Cashman 2014;
Ravits 2014), which is probably the major mechanism by
which the cyanobacterial neurotoxin BMAA produces chron-
ic neurotoxicity (Dunlop et al. 2013), and (2) impairment of
RNA metabolism (Robberecht and Philips 2013). Recent
findings show that chronic dietary exposure of vervets to
BMAA caused neurofibrillary tangles and amyloid deposits
similar to those in the brains of patients with ALS/PDC in
Guam, supporting the notion of BMAA as an environmental
trigger (Cox et al. 2016).

Evidence has shown linkages between water quality,
cyanobacteria, and high ALS incidence (Caller et al.
2013; Torbick et al. 2014). Research has demonstrated
the presence of BMAA in fish and crustaceans in the hu-
man food chain in Florida, Chesapeake Bay, Baltic Sea,
France, and Sweden (Jonasson et al. 2010; Brand et al.
2010; Masseret et al. 2013; Mondo et al. 2012; Field
et al. 2013). Clusters of ALS have been reported near
cyanobacterial bloom outbreaks in France, Japan, New
Hampshire, and Wisconsin (Sienko et al. 1990; Doi et al.
2010; Masseret et al. 2013; Caller et al. 2012). Caller et al.
(2009) shows a statistically significant increased incidence
of ALS in subjects residing within 0.5 miles of a New
Hampshire lake that experienced cyanobacteria blooms.
Torbick et al. (2014) showed increasing odds of belonging
to an ALS hot spot with poorer water conditions that favor
cyanobacteria in northern New England. Potential routes of
exposure include aerosolization, dermal contact, ingestion
of water, and dietary exposure through the aquatic food
web (Banack et al. 2010, Stommel et al. 2013, Banack
et al. 2015). However, measuring CHAB and toxins is very
challenging given their dynamics and gene expression, the
distribution of waterbodies across a landscape, and the
tools required for precise measurements.

Satellite Remote Sensing CHAB Exposure Mapping

The number, extent, and distribution of lakes in northern New
England prohibit comprehensive assessment of cyanobacteria
or toxins using traditional point sampling. The use of satellite
remote sensing for mapping inland lakes conditions and
CHABs has been well documented (e.g., Torbick et al.
2013; Torbick and Corbiere 2015a, b). Historically, CHAB
or HAB algorithms have been developed for individual lakes
and for specific sensors. Often, chlorophyll-a (chl-a) concen-
tration, a measure of total phytoplankton biomass, are re-
trieved as a surrogate for HAB exposure. However, proxies
such as phycocyanin concentration (PC) (μg/L), population
density (cells/L), or cyanobacterial biovolume (μm3/L),
which are more sensitive to pigments of cyanobacterial spe-
cies or relative amount, have also been developed using satel-
lite data. For example, Vincent et al. (2004) used Landsat 5
TM and ETM+ 7 to map a phycocyanin concentration index
highlighting Microcystis for two time periods in the western
basin of Lake Erie. In an evaluation of transferability, Lunetta
et al. (2015) evaluated the use of a MERIS-derived
Cyanobacteria Index, which had originally been developed
for Lake Erie (Wynne et al. 2008; Stumpf et al. 2012), to lakes
in eastern USA and found moderate success for low and high
levels of cyanobacteria biovolume concentrations. The use of
PC further improves upon Torbick et al. (2014)’s analysis of
the effect of water quality on ALS risk since PC is a more
direct measure of cyanobacteria concentration (Stumpf et al.
2016) in northern New England waters and hence is a more
specific indicator of cyanotoxin-producing cyanobacteria than
total algal biovolume or chl-a metrics.

Typically, tradeoffs are required between satellite resolu-
tions (spatial, temporal, and spectral) as well as cost and avail-
ability. These also influence algorithm approaches as some
sensors are more capable of diagnostic retrieval (analytical)
rather than statistical algorithms although many approaches
today blend techniques depending on objectives (Mouw
et al. 2015). Given the size, shape, and distribution of inland
lakes, moderate resolution platforms such as Landsat-8 are
required for wall-to-wall or total mapping of lakes across a
region. For example, Torbick et al. (2013) used Landsat band
ratio regression models when mapping a suite of comprehen-
sive indicators across a dozen Landsat scenes (designated by
path/row grid) required to cover Michigan. The broad spectral
channels of Landsat prohibit easily scalable analytical algo-
rithms that are useful across lake types or conditions over a
large region. Techniques leveraging valuable application-
specific wavelengths on sensors such as MERIS or MODIS
(i.e., Simis et al. 2005; Wynne et al. 2008; Stumpf et al. 2012)
are not capable of mapping small- to medium-sized lakes giv-
en the spatial resolution of these platforms. Further, while
research has shown advantages of narrow band hyperspectral
data for mapping cyanobacteria concentration or
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phytoplankton functional types (e.g., Gietelson et al. 2000;
Simis et al. 2005; Hunter et al. 2010), there is no cost-
effective or operational satellite platform capable of compre-
hensively mapping lakes over a large regionwith narrow spec-
tral channels.

Objectives

The objective of this work was to develop cyanobacterial
harmful algal blooms (CHAB) exposure maps using satellite
remote sensing calibrated with in situ observations to assess
CHAB exposure as a potential risk factor for ALS considering
scales and spatial uncertainty.

Methods

Study Site

Northern New England, USA (NNE;Maine, NewHampshire,
Vermont), is a diverse socio-ecological system representing a
range of landscapes, populations, and lakes. A history of set-
tlement, farming, and timber industry segmented the land-
scape during the past two centuries. Natural habitat is broadly
classified as Eastern Temperate Forest with level 3 ecoregions
of Atlantic Maritime Highlands, Northeastern Coastal Zone,
and Acadian Plains and Hills (Omernik 1987). The interior of
NNE has a humid continental climate (Dfb: Köppen climate
classification) with cold winters and seasonal patterns. NNE
has a total area of 140,786 km2 with 9060km2 of lake surface
area and a population of 3,283,562 million ranging from small
villages to large cities. Over the past four decades, urban
sprawl and impervious surfaces (i.e., conversion of natural
land covers to man-made surfaces such as pavement) have
increased the most in coastal and interior NNE relative to
New England with much of the development surrounding
lakes and lake communities (Torbick and Corbiere 2015a,
b). Recent work has shown lake temperatures are increasing
at a rate of 0.8 °C/decade in the region (Torbick et al. 2016),
which will likely increase the frequency, duration, and mag-
nitude of CHAB events. There are 4117 waterbodies greater
than 8 ha and generally lake water quality is considered
Bgood^ in NNE with 82% categorized as oligotrophic and
mesotrophic according to Landsat derived Trophic Status
Index maps (Torbick et al. 2014).

Human Health Case Data

Our team has been building ALS case data inmultiple regions,
including NNE, for the past 10 years. The database used in
this analysis included date of birth, sex, and residential
longitude/latitude coordinates for cases collected between
January 1999 and October 2009 similar to that used by

Caller et al. (2013) and Torbick et al. (2014). Records from
Dartmouth HitchcockMedical Center (DHMC), the Muscular
Dystrophy Association of Northern New England, regional
clinics, and surveys were searched to identify cases of ALS
diagnosed with dates. When possible, we confirmed accuracy
of diagnosis, year of diagnosis, demographic history of pa-
tients identified by review of medical records, the Social
Security Death Index, obituaries, and data supplemented from
questionnaires. Nine cases only had a town name with no
coordinates. These cases were assigned town centroid spatial
location using the geocode function in the R package ggmap,
which makes use of Google Maps (Kahle and Wickham
2013). This procedure did add spatial uncertainty for distances
less than the town aggregation level for these few patients.
Furthermore, the spatial extent for this database was restricted
to the states of Vermont and NewHampshire and excluded the
counties of Bennington (VT) and Cheshire, Hillsborough,
Rockingham, and Strafford (NH), giving a total of 347 (in this
selected region) ALS cases. This sub-region of NNE was se-
lected since the ALS dataset being used in this analysis is
suspected to underestimate the risk for the entire NNE region
as it is likely that portions of the NNE population travel to
other urban area medical centers (e.g., Boston) and thus are
not within the clinic/hospital catchments of our dataset (Caller
et al. 2015).

In Situ Lake Measurements

A field campaign to collect near simultaneous (in regard to
satellite overpass) in situ measurements of phycocyanin con-
centration and other parameters across the region was carried
out during the summers 2014, 2015, and 2016 (Fig. 1). The
campaign was coordinated with government agencies (EPA,
New Hampshire Department of Environmental Services,
Maine Department of Environmental Protection, Vermont
Department of Environmental Conservation) and university
labs to ensure cross calibration and efficiency. A stratified lake
sampling approach was executed that considered size, trophic
status, depth, access, path row (location), watershed, and prac-
tical logistic factors (e.g., safety, drive time). Target satellite
overpasses (path row) were coordinated with strategic lakes
while considering local weather patterns (clouds, wind, hu-
midity) during overpasses in an attempt to obtain a high num-
ber of diverse and robust samples under quality (clear sky)
conditions. At each lake, local conditions were assessed and
a sample location representative of an approximate 3 × 3
Landsat pixel array was pursued to allow for linkage between
the in situ and satellite remote sensing. Medium and larger
lakes (>200 ha) with spatial variability had multiple samples
from different bays, Bopen^ water, or noteworthy locations
(e.g., near damn). A total of 305 unique observations from
79 different waterbodies across Maine, New Hampshire, and
Vermont were obtained during July, August, and September.
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Conditions ranged from a small, 8.1-ha hypereutrophic pond
(Showell Pond) to a large 127,000-ha lake (Champlain) with
varying CHAB conditions across bays.

A well-calibrated YSI EXO-1 multi-parameter sonde was
used to measure in situ cyanobacteria concentrations along
with measurements of chlorophyll a, dissolved oxygen, fluo-
rescent dissolved organic matter (FDOM) as a surrogate for
chromophoric (colored) dissolved organic matter (CDOM),
and a suite of other parameters (e.g., secchi depth, tempera-
ture, total dissolved solids, conductivity). Instrument measure-
ments focused on 30–50 cm depth or near surface while peri-
odic epilimnion, integrated tube, and vertical profiles were
also collected. The Bcyanobacteria^ sensor measures phyco-
cyanin pigments using in vivo fluorometry (IVF) in real time,
detecting concentrationswith a resolution of 1 cell/mL (0.1 rel-
ative fluorescence units/RFU). The instruments were calibrat-
ed and cross compared against extracted concentrations, stan-
dards, and other probes before sampling began each season,
within season, and after season to correct for any potential
drift. Since PC/cell can be variable depending on culture con-
ditions, we also cross calibrate on PC pigment while also
assessing against cultured Microcystis. Periodic integrated
tube samples, plankton tows, and enzyme-linked immunosor-
bent assays (ELISA) were executed to gauge vertical profile
structure, enumerate taxa, assess toxicity at a subset of lakes,
and ensure cross calibration between in situ and probe instru-
ments. The sonde was ported to a handheld integration device
to simultaneously record Global Positioning System data and

instrument observations. A StellarNet Inc. bluewave®
spectroradiometer was used to collect periodic in situ radio-
metric measurements following best practices (e.g., Torbick
and Becker 2009). The handheld hyperspectral device mea-
sures the 350–1150 nm range using a 16-bit digitizer and
holographic diffraction grating (600 g/mm) CCD with a
signal-to-noise ratio of 1000-to-1. The handheld hyperspectral
measurements were used to help gauge conditions, spectral
absorption characteristics, and qualitatively support prepro-
cessing decisions.

Satellite Remote Sensing Mapping

A multi-year (see below) collection of in situ measurements
was executed across 79 lakes of varying size and conditions,
multiple path rows, and multiple time windows targeting
Landsat 7 Enhanced Thematic Mapper Plus (ETM+) and
Landsat 8 Operational Land Imager (OLI) overpasses.
Landsat follows a Sun-synchronous orbit at an altitude of
705 km with a 16-day repeat window; each Landsat satellite
(7 and 8) being offset to provide 8-day overpass repeats for a
given foot print. These platforms capture observations in the
visible (vis/0.45–69 μm), near-infrared (nir/0.75–0.90 μm),
and shortwave-infrared (swir/1.55–1.75, 2.08–2.35 μm) at
30 m spatial resolution. Data were obtained as L1T from
Earth Explorer with standard radiometric and geometric ter-
rain corrections.

Fig. 1 Northern New England
study region showing lakes
(blue), Landsat path row tile
footprints, gridded ALS case data
aggregated to 8 km units for
privacy, boundary extent (gray),
and lakes with in situ data
collection (yellow)
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For inland lake mapping, a tradeoff is required consid-
ering number of samples, timing of overpass, atmosphere
and weather conditions, and dynamics of CHABs. Longer
temporal windows between in situ sampling and overpass
provide more samples for modeling; however, potentially
longer intervals present greater uncertainty concerning the
stability of the conditions. This research followed prece-
dence (i.e., Torbick et al. 2013; Lunetta et al. 2015) and
had +/−2-day window. This resulted in 6 unique dates
from 2014 (i.e., Days Of Year 237, 238, 245, 246, 251,
260), 4 unique dates from 2015, and 4 from 2016.
Preprocessing routines for atmospheric correction built
upon previous efforts. In summary, the atmospheric cor-
rection routines tested included the use of MODIS
Aerosol Optical Depth (Level 3 MOD08_D3) to drive
the Second Simulation of the Satellite Signal in the
Solar Spectrum (6S) radiative transfer model (Vermote
et al. 1997) to generate water-leaving radiance and surface
reflectance measurements (Ledapsm). We also compared
these outcomes to preprocessing routines that followed
Vanhellemont and Ruddick (2014) and Vanhellemont
and Ruddick (2015) to generate water-leaving radiance
(rhow) and reflectance (rhoam) measurements by using a
SWIR-based correction approach to adjust for Rayleigh
and aerosol scattering. Correcting for atmosphere, while
challenging, has advantages for transferability and more
robust mapping models. For clouds and shadows,
Func t ion of Mask (Zhu and Woodcock 2012) ,
Automated Cloud Classification Algorithm (Masek et al.
2006), and Band Quality Assessment (BQA) were applied
using Ledaps and L8SR, as required for ETM+ and OLI.
Any cloud or shadow pixels, along with Scan Line
Corrector (SLC) gaps, were treated as no data.

A spatiotemporal database was built linking the Landsat
overpasses to the in situ measurements. Sampling points
were buffered to represent a 3 × 3 Landsat pixel array
(visible bands; 3 × 3 pixels = 90 m × 90 m). These sam-
pling units were then intersected with an inward buffered
lake vector boundary to ensure no coastline or mixed pixel
problems. The mean value for these areas was used as this
helps capture potential variability of positioning error in
either the georegistration or sample location. Strategic
semi-analytical regression models were examined using
variables shown to have spectral relationships with inher-
ent optical properties in previous studies. Strategic inde-
pendent variables (i.e., bands and ratios) were systemati-
cally added and removed while examining statistical per-
formance and residuals. Withheld, out-of-sample adjusted
R2, significance values, root mean square error (RMSE),
and Akaike Information Criterion (AIC) were used to as-
sess performance. The result of the satellite mapping was a
map of phycocyanin concentration (i.e., CHAB exposure)
for all lakes greater than 8 ha in northern New England.

Statistical Modeling

There are several challenges in assessing the relationship be-
tween phycocyanin concentrations and ALS risk that go be-
yond the challenges in mapping it. For one, it is difficult to
know exactly to what extent people are exposed to specific
lakes. Thus, a common approach is to compare case residence
locations to average exposures based on a certain proximity
scale (Waller and Gotway 2004; Torbick et al. 2014). In a
statistical framework, this comparison takes the form of a
generalized linear regression model, which for our study is a
Poisson regression that compares exposure levels to case
counts adjusted for the density and demographic differences
in the background population at risk (Diggle et al. 1998).

Ongoing deliberation within the science community exists
on the model specifications that should be used for Poisson
regressions of environmental public health data. On the one
hand, a correct modeling approach needs to account for spatial
dependence in the data; however, on the other hand, the ac-
counting for spatial autocorrelation can be computationally
prohibitive depending on the exact form and size of the data
(Banerjee et al. 2004), and the addition of spatial random
effects can create variance inflation in the exposure effect
parameter, meaning significant exposures may appear insig-
nificant (Reich et al. 2006; Hughes and Haran 2013; Hughes
2015). Furthermore, model outcomes depend on the shape and
size of modeling units (Wall 2004; Waagepetersen 2004; Li
et al. 2012), the choice of the background population dataset
(Tatem et al. 2011), and the proximity scale chosen to average
exposure estimates (Torbick et al. 2014). To address these
challenges, we use Bayesian inference estimated using
Integrated Nested Laplace Approximation (INLA) as imple-
mented in the R package INLA (Rue et al. 2009) for 64 dif-
ferent Poisson log-linear models that vary each of the follow-
ing components: the use of spatial random effects (two
choices), the size of the geographic modeling units (two res-
olutions), the background population dataset (two choices),
and the proximity scale for PC concentration exposure (eight
scales). This modeling approach addresses all the potential
complications mentioned above in a robust and transparent
manner.

Half the models we executed contain no spatial random
effects, and the other half include the spatial random effects
proposed by Besag et al. (1991), which are a convolution of
independent and spatially correlated random effects, where
the spatially correlated random effects are an intrinsic condi-
tional autoregression. The Poisson log-linear model with
BYM random effects is a special case of a Log-Gaussian
Cox Process (LGCP) (Møller et al. 1998) and is commonly
used when data come in the form of case counts on areal units
defined by administrative areas. One advantage of this speci-
fication is the savings in computational costs for Bayesian
inference since a numerical approximation known as INLA
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can be used for very fast estimation of the posterior marginal
distributions (Rue et al. 2009). However, since administrative
areas are often not related to the disease in question and may
vary greatly in size and shape, this model specification has
been criticized for poor and/or unexpected results (Wall
2004; Li et al. 2012).

Since our health data are available as point locations
representing the residence of a disease case, we can avoid
the negative effects by defining custom areal units similar
in size, shape, and related to the disease. A regular lattice
is one such set of custom areal units used (Li et al. 2012;
Illian et al. 2012; Diggle et al. 2013) for which
Waagepetersen (2004) has shown that when pixel sizes
tend to zero, the approximate posterior expectations of
the LGCP converge to exact posterior expectations. This
means that the regular lattice provides an approximate
continuous specification of disease intensity, which has
the potential to incorporate data on environmental risk
factors that are available at high spatial resolutions
(Diggle et al. 2013). Despite the approximate continuous
specification, a specific discretization is subject to the
ecological fallacy (Waller and Gotway 2004; Diggle
et al. 2013). Thus, using the regular lattice as our geo-
graphic modeling units, we compare two resolutions, a 4-
km resolution and an 8-km resolution, which were chosen
to balance computational efficiency with disease process
spatial variability. Specifically, the 8-km resolution was
chosen to account for spatial uncertainty in some case
locations where only a town name was available and be-
cause the median square area of these towns was
66.3 km2. The 4-km resolution was chosen following a
procedure outlined by Diggle et al. (2013) where a pre-
liminary estimate of the disease process spatial variability
was obtained via minimum contrast.

Adjusting the case counts in the 4 and 8 km regular
grids for the density and demographic differences in the
background population at risk is done by calculating two
sets of expected counts based on gridded population prod-
ucts representing the region’s population at the year 2000,
one prov ided by the Soc ioeconomic Data and
Applications Center (SEDAC) and the other a product of
OakRidge National Laboratory (LandScan 2000).
Expected counts are then used as a fixed offset parameter
in the Poisson log-linear models (see log(E) in Fig. 2).
Expected counts were indirectly and internally standard-
ized, which means they represent the number of the cases
expected in a specific pixel location assuming the
population in that pixel location contracts ALS at the
same rate as an internal standard population (Waller and
Gotway 2004, chapter 2). Rates are age and sex specific
following the age/sex classes defined in Noonan et al.
(2005), and the internal standard population is the
superpopulation containing all pixels within the study

spatial extent. The age/sex specific rates were calculated
as follows:

ri ¼
∑
all x

Oi xð Þ
∑
all x

ni xð Þ ;

where i = 1 , 2 , … , 12 is the identifier for one of the 12 age/
sex classes defined by Noonan et al. (2005), x represents a
pixel location, Oi(x) is the number of observed ALS cases in
the pixel x having age/sex class i, and ni(x) is the population at
risk in pixel x having age/sex class i. Following the calculation
of the age/sex specific rates, the standardized expected counts
for each pixel x are calculated as:

E xð Þ ¼ ∑
all i

ni xð Þ � ri :

The ni(x) for the both ri and E(x) are either the populations
counts from SEDAC or from Landscan 2000. A square pixel x
is either sized 4 or 8 km.

For PC proximity scales, we consider a suite of lake area-
weighted averages and maximums for a range of distances
from the centroid of the modeling unit (4 or 8 km square pixel)
and for watershed scales in which the modeling unit centroids
fall. Table 1 gives the names and details for each scale used in
our multi-scale analysis evaluating PC exposures.

The outcome of this modeling analysis is thus twofold.
First, we seek to quantify the relationship between each of
the spatial proximity scales of PC and ALS risk as well as
compare differences in the scales. Second, we seek to quantify
the impact of the fixed model components, i.e., the choice of
background population, the choice of grid size, and the use of

Fig. 2 Breakdown of modeling components considered in this study
resulting in 64 unique models
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spatial random effects, on the estimate of the PC proximity
metric’s effect on ALS risk and on the model’s fit as measured
by the deviance information criterion (DIC) (Spiegelhalter
et al. 2002) to ensure robust statistical analyses and address
uncertainty.

Results and Discussion

Satellite CHAB Exposure Mapping

Lake water estimates of CHABs and their toxins are severely
limited in most regions. This research application represents
the first regionally comprehensive map of PC for thousands of
lakes. Figure 3 illustrates example waterbodies and highlights
ability to capture within lake spatial variability of PC. The
majority of lakes in NNE had low prevalence of CHAB during
the overpass dates (circa 2015) used for this regional exposure
map.Many lakes in NNE had no to low (<10 μg/L) PC for the
dates observed. The number of lakes at example PC thresholds
in NNE is shown in Table 2 while the mean lake PC for this
time period was 7.4 μg/L (Table 2). A total of 415 lakes with
NNE had a mean PC greater than 10 μg/L with 32 having a
mean PC greater than 100 (μg/L). Watersheds (at the HUC12
scale) in northwest Vermont, southern New Hampshire, and
Central Maine had hot spots of elevated mean PC at the wa-
tershed scale. A total of 37 watersheds have mean PC greater
than 25 μg/L. Watersheds with very elevated PC (>100 μg/L)
include Putnam Creek, (VT/NY), Mississquoi Bay (VT),
Putnam Creek (NY/VT), Cathance and Androscoggin River
(ME), Winooski River (VT), Riviere aux Brochets (Canada),
Big Presque Isle stream (ME), and South Bay Lake
Champlain (NY). Approximately 5% (n = 208) of all lakes

>8 ha across NNE (n = 4117) had a maximum PC value
>100 μg/L.

The multi-season and multi-year in situ sampling campaign
was combined with Landsat observations to generate expo-
sure maps across northern New England. The semi-
analytical algorithm (NIR/green + NIR/blue band ratio regres-
sion) calibrated with the in situ had a strong overall ability
(withheld sample adj. R2 0.86; RMSE 11.92) to map PC.
Both the Ledapsm and rhow atmospheric corrections generat-
ed comparable PC distributions across the region, although
using different coefficients. Since semi-analytical models
were applied, the highest accuracy and most precise (RMSE,
F-stat, adj.R2) model was chosen as the CHAB exposuremap,
which well represented the CHAB conditions (at this snapshot
in time) and spatial variability across the entire region. The use
of moderate and freely available sensors (i.e., Landsat-8,
Sentinel-2) is important as there are many small lakes and
ponds across landscapes that act as potential exposure sources
for populations.

Currently, multiple initiatives by organizations, such as the
World Health Organization, the US Environmental Protection
Agency, and USGeological Survey, are developing guidelines
for classifying toxins in waters, health criteria, and decision
making. Variations exist across drinking and recreational wa-
ters, and these are generally geared at acute health impacts and
operational decisions such as drinking water treatment proto-
col. In the USA, some individual states also have guidelines
and varying criteria such as the State of Vermont and their
tiered lake sampling program based on cell counts and toxin
analysis tied to management protocol such as posting signage
on a public beach. Guidelines across these initiatives to date
have been geared at observations of microcystins,
chlorophyll-a concentrations, cyanobacteria biovolume, visi-
ble scums, foul odor, liquid chromatography mass

Table 1 Proximity scales of phycocyanin concentration (μg/L) used in the ALS modeling study

PC proximity
scale

Description

huc10MAX Maximum of lake averages within the Hydrological Unit Code 12 (HUC10) boundary assigned to 4(8)km lattice cells if cell centroid
also falls within the HUC10 boundary

huc10AVG Mean of lake averages within the HUC10 boundary assigned to 4(8)km lattice cells if cell centroid also falls within the HUC10
boundary

huc12MAX Maximum of lake averages within the Hydrological Unit Code 12 (HUC12) boundary assigned to 4(8)km lattice cells if cell centroid
also falls within the HUC12 boundary

huc12AVG Mean of lake averages within the HUC12 boundary assigned to 4(8)km lattice cells if cell centroid also falls within the HUC12
boundary

4kmAVG Mean PC of all 30 m lake pixels within a 4-km radius of 4(8)km lattice cell; when no lake intersects this radius, a value of 0 is assigned

8kmAVG Mean PC of all 30 m lake pixels within an 8-km radius of 4(8)km lattice cell; when no lake intersects this radius, a value of 0 is
assigned

10kmAVG Mean PC of all 30 m lake pixels within a 10-km radius of 4(8)km lattice cell; when no lake intersects this radius, a value of 0 is
assigned

idw6 Inverse distance weighted mean PC of 30 m lake pixel centroids to each 4(8)km lattice cell centroid, where 30 m cell centroids
greater than a distance of 50 km were not included. Weights were 1

distance6
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spectrometry (LCMS), or ELISA tests for anatoxins and sax-
itoxins, and other metrics tuned to CHAB exposure.

No current PC guidelines or thresholds exist at local, state,
or Federal levels or by theWorld Health Organization. Several
initiatives are developing criteria based on combinations of
toxicity, cell abundance, and measurements of algal biomass;
however, no operational policies are in place at this time.
Potentially, PC maps derived from satellite remote sensing
can help inform guidelines and risk management decisions.
The use of PC or chl-a would allow satellite remote sensing to
play a strong role in supporting monitoring, reporting, and
verification for CHAB public health programs. Currently, sat-
ellite remote sensing cannot directly detect toxins such as
BMAA or microcystins; therefore, use of PC or other expo-
sure metrics that can be accurately derived from satellite re-
mote sensing can be considered. Potentially, approaches that
model relationships between PC or chl-a parameters and
toxins can be used; however, this remains an active research
area and more effort is needed to scale up to a landscape-level

assessment. The cost effectiveness, availability, large area
coverage, and repeat frequency of remote sensing can support
regional CHAB mapping programs to complement traditional
sampling or scale-up studies to larger areas. This work showed
robust PC mapping across multiple years, multiple path rows,
and several sampling dates across a range of lake conditions,
indicating usefulness in supporting public health investiga-
tions and CHAB tracking initiatives.

Relationship of Water Quality to ALS Risk

We used a spatial epidemiological approach to evaluate the
mapped PC exposure at various proximity scales as a risk
factor for ALS, and multiple versions of the Bayesian
Poisson Log-linear model were fit using INLA to account
for uncertainty due to model choice. All the 64 models except
for one had an estimated odds ratio greater than one, meaning
that on average higher amounts of PC exposure are associated
with higher risk of ALS in Vermont and New Hampshire
(Fig. 4). However, lower 95% confidence bounds for all these
models are not greater than 1. Furthermore, whether the lower
bound is greater than 1 and the width of the intervals vary by
PC proximity scale.

Significance of the PC exposure was determined using per-
centiles of the estimated effects’ marginal posterior distribu-
tions to calculate approximate p values, where for example, if
the smallest positive percentile was the fifth percentile, then

Fig. 3 Landsat-derived maps of
phycocyanin concentration for a
Missisquoi Bay, Lake Champlain,
b Shelburne Pond, c Lake Carmi,
d South Sanford retention ponds,
e Lake Attitash, and f Wenham
Pond

Table 2 Matrix of
Landsat-derived mean
lake phycocyanin
concentration (μg/L)
across the study region

Mean Lake PC (μg/L)

State >10 >50 >100

ME 284 56 16

NH 79 12 9

VT 52 18 7
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the calculated p value was 2 × 0.05 = 0.1. These are approx-
imate since only the percentiles, 0.005, 0.025, 0.05, 0.1, 0.2,
…, 0.9, 0.95, 0.975, and 0.995 were calculated from the esti-
mated effects’ marginal posterior distribution. Thus, the
smallest approximate p value of any of the models is 0.01.
The distribution of approximate p values for all 64 model is

shown in Table 3. Since multiple models are fit, one would
expect a uniform distribution of p values if the phycocya-
nin concentration had no effect. However, there are more
small p values than large p values (Table 3), which sup-
ports the hypothesis that PC exposure is a risk factor for
ALS. This is consistent with the results of Torbick et al.

Fig. 4 Odds ratios for each 1 μg/L increase in PC exposure for all models. Left is the estimated mean for each model and middle and right are the 95%
confidence bounds for each model
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(2014), which showed poorer water quality is associated with
ALS hotspot membership, and further improves on these re-
sults by explicitly accounting for model uncertainty.

The impacts of differences in the background population
datasets, the grid sizes, and the use of spatial random effects
are measured in two ways; one by comparing the deviance
information criterion (DIC) (Spiegelhalter et al. 2002) values
where smaller DIC values indicate models that better explain
the spatial variability of ALS risk, and two by comparing the
p values of the PC exposure effect on ALS risk where smaller
p values indicated a more significant effect. In terms of the
model fit, the choice of grid size has the largest impact since
this choice shows the greatest difference between DIC values
(Fig. 5 top). Models with the larger grid size (8 km) have
smaller DIC values (better fits), which may be due to better
stability of population estimates in the rural regions and/or due
to spatial uncertainty in exposure location. In terms of the
significance of the relationship between the PC exposure
and the spatial variability of ALS risk, there is a noticeable
difference between the use and non-use of spatial random
effects with smaller p values observed for non-spatial models
(Fig. 5 bottom). From a model selection point of view, the
differences in p values between spatial and non-spatial models
is not particularly useful as neither the BYM random effects
nor the non-spatial models are ideal (Reich et al. 2006;
Hughes and Haran 2013; Hughes 2015). However, concor-
dance across these models provides support for the identified
relationships.

To investigate differences in the PC proximity scales,
we compared DIC (Fig. 5 top right) and approximate p-
values (Fig. 5 bottom right). In terms of DIC (model fit),
there is little difference between PC proximity scale
choices when considering the eight models for each prox-
imity scale varying random effect use, background popu-
lation choice, and grid size. However, in terms of p values,

the proximity scales 10kmAVG and idw6 that included
farther distances had smaller p values, and all 8 models
with the idw6 scale had p values of 0.05 or less despite
the differences in use of random effects, choice of back-
ground population, and grid size. It could be that the in-
clusion of larger distances in these scales can better cap-
ture the population mobility in this predominately rural
and suburban region. For example, the idw6 scale includ-
ed distances representing a 30- to 40-min drive. However,
this scale differs from the other averages in that it is an
inversely weighted distance average where farther lake
points contribute less to the average. This means the larg-
er distances had very little impact but may add stability to
the estimate. The other averages used a fixed distance and
weighted all lake points within the fixed distance equally.

Finally, although small p values are commonly chosen to
indicate statistical significance, it is also important to evaluate
the size of the effects. The average of all estimated odds ratios
for when PC is 100 μg/L is 1.476 (Fig. 5), meaning there is
about a 48% increase in average ALS risk when the average
PC exposure is 100 μg/L. This implies that locations, such as
Missisquoi Bay, Lake Attitash, Lake Carmi, China Lake, or
Showell Pond or any of the 32 lakes with PC >100 μg/L for
example, have substantially elevated ALS risk.

The observed association between elevated PC levels and
risk of ALS is supported by the implication of a water-related
risk factor in our prior questionnaire-based case-control study
in the region. Increased risk of ALS was associated with ever
having lived full-time within 2 mi of a waterbody (OR 1.59
95%CI 1.05–2.42), and frequent participation in water sports,
specifically boating, sailing, or kayaking (OR 1.51 95%CI
1.01–1.42), and particularly with water-skiing (adjusted OR
3.89 95%CI 1.97–8.44). Water-skiing retained independent
statistical significance in a composite model containing age,
gender, and smoking status (Andrew et al. 2017).

Limitations

We note there are other potential risk factors for ALS and that
some of these other risk factors potentially interact or reside in
lakes that undergo CHABs. The array of environmental and
occupational toxins that have been implicated include several,
such as heavy metals lead and mercury (Kamel et al. 2005;
Morahan and Pamphlett 2006; Kamel et al. 2008; Johnson and
Atchison 2009), selenium (Vinceti et al. 1996), and agricul-
tural pesticides (McGuire et al. 1997; Gunier et al. 2001), have
all been proposed as influential drivers of sALS. Lifestyle
factors and other toxins implicated also include tobacco
(Nelson et al. 2000; Armon 2009), military service (Horner
et al. 2008; Miranda et al. 2008), and head injuries (Chio et al.
2009; McKee et al. 2010; Lehman et al. 2012). We highlight
that phycocyanin concentration is not necessarily

Table 3 Distribution of discretized p values for the statistical
significance of the relationship between phycocyanin concentration
(μg/L) and ALS risk from all 64 models

Distribution of p values

Approximate p value Count Proportion

0.01 8 0.125

0.05 11 0.172

0.1 8 0.125

0.2 13 0.203

0.4 12 0.188

0.6 11 0.172

0.8 0 0

1 1 0.016

Total 64 1
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representative of cyanotoxins or toxicity and more work is
required to model these relationships. Furthermore, place of
residence at time of diagnosis is not necessarily the location
where etiologically relevant exposure occurred, and may
not be representative of a person’s exposome (Jacquez
et al. 2015; Sabel et al. 2009; Wheeler and Calder 2016).
The temporal uncertainty may produce biased exposure es-
timates particularly if the water quality in this region was
quite different at the time of onset of the disease in ALS
cases compared to that at the relevant exposure time.
Future work will continue to investigate spatial scales,
toxins, and temporal uncertainty including chronic expo-
sure, epigenetic factors, and lifetime residential history.
Finally, although in this study we account for many of the
model uncertainties, the PC proximity scales are all deter-
ministic formulas of CHAB exposure that do not account for
the uncertainty in the effect of the exposure (Waller and
Gotway 2004). As technology provides more opportunities
for direct measurements of cyanotoxins, these measure-
ments can be further considered within a modeling
framework.

Conclusions

The ALS case dataset discussed in Caller et al. (2013) and
Torbick et al. (2014) is further analyzed using measures of
CHAB and robust spatial statistics that integrate uncertainty.
We present themain conclusions in bulleted format to succinctly
highlight the advances of this highly interdisciplinary research.

& We carried out extensive field data collection to calibrate
and validate satellite remote sensing of cyanobacterial
harmful algal bloom extent and intensity across northern
New England. The mapping outcomes show robust PC
mapping using Landsat ETM+ and OLI and in situ col-
lected across multiple years, multiple path rows, seasons,
and a range of lake conditions, indicating their usefulness
for supporting public health investigations and CHAB
tracking initiatives. This research provides the first region-
al estimates of PC exposure.

& This work builds upon previous efforts investigating the
etiology of ALS and the potential role of lake water qual-
ity, CHAB, and BMAA toxins. This eco-epidemiological

Fig. 5 Boxplots comparing impact of model choices. For each of the
model components, random effect use, background population, and grid
size, there are 2 choices with 32 models for each choice. For the choice of

PC proximity scale, there are 8 choices each with 8 models. Top boxplots
compare DIC (deviance information criterion). Bottom boxplots compare
p values of the effect of PC exposure

Neurotox Res (2018) 33:199–212 209



work used phycocyanin concentration, a direct measure of
CHAB relative to previous works that used chlorophyll-a
and other metrics (e.g., secchi depth, total nitrogen) of lake
water quality.

& Our previous approach used a hot spot analysis which has
potential limitations related to case ascertainment and/or
potential challenges of modifiable area unit problems.
This research does not explicitly use a hot spot approach
and multiple scales of analysis were conducted.

& Robust and transparent spatial modeling used Bayesian in-
ference of the Log-Gaussian Cox Process (LGCP), which
includes spatial random effects specified by the logarithm of
a Gaussian Markov Random Field on a regular lattice. For
the estimation of the relationship between ALS risk and
satellite-derived metrics phycocyanin concentration, the
modeled component of the intensity for the LGCP, is de-
fined by the water quality metrics as regression parameters
combinedwith spatial random effects. This approach explic-
itly accounts for the spatial uncertainty of ALS Bhotspots^.

& The spatial modeling shows that PC is found to be posi-
tively associated with ALS risk. However, the level of
significance depends on several fixed components of the
modeling framework. The effects of resolution choice of
the regular lattice, the choice of background population,
and the choice of spatial random effects (BYM versus
none) were comprehensively investigated in terms of
model fit by comparing the DIC values of different
models. This work showed that the resolution choice had
the largest impact on model fit, where the larger of the two
resolutions gave the smallest DIC values. It is possible that
the larger resolution provides a better model fit because
population estimates in the rural regions are more stable at
larger aggregation units and/or there is spatial uncertainty
in potential exposure pathways.

& This research supports previous findings that poorer water
quality are associated with higher likelihood of hot spot
membership and the hypothesis that cyanotoxins are in-
creasing the risk of ALS outcomes, and CHAB are a pub-
lic health threat.
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