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A B S T R A C T

Cryptosporidium spp. infections in neonatal dairy calves can cause diarrhoea and, in rare cases, death. The in-
fection is usually self-limiting, but halofuginone lactate (HL) can be used prophylactically. Calves (n = 144) in
the study were born during a 2-month period on one farm. A total of 901 serum and 767 faecal samples were
collected. Based on HL treatment, the calves were divided into 3 groups: I) not treated, II) treated incorrectly
(treatment started> 48 h after birth, or lasted< 7 days), and III) treated correctly (started< 48 h after birth,
and lasted ≥7 days). Over the 3-month observation period, 14.6% (n = 21) of the calves died, of which most
(67%) had not been treated with HL. Correctly performed treatment of cryptosporidiosis significantly delayed
the onset of oocysts shedding (P < 0.001) and reduced haptoglobin (HP) and serum amyloid A (SAA) con-
centrations in the second week of life. HP concentration and HL treatment were negatively associated with
weight gain at 3 months of age. Cryptosporidium positive faecal samples were significantly (P < 0.001) more
likely to be diarrhoeic but Giardia or Eimeria positive samples were not. Correct prophylactic treatment with HL
delayed the shedding of Cryptosporidium oocysts and improved survival, but was negatively associated with
weight gain. Incorrect treatment had a low impact on mortality and resembled no treatment regarding the
proportion of calves shedding oocysts. Acute phase response (APR) in the second week of life seemed to be
positively associated with shedding high amounts of Cryptosporidium oocysts.

1. Introduction

Cryptosporidium can be found in cattle herds worldwide (O'Handley
and Olson, 2006) and has also been found in Estonian dairy farms
(Lassen et al., 2009). Cryptosporidium infection in dairy calves can lead
to villous atrophy in the small intestine mucosa and increase intestinal
permeability (Wyatt et al., 2010). Consequently, these pathologies can
lead to diarrhoea and increased risk of mortality (Delafosse et al.,
2015). Neonatal calves have a higher risk of being negatively affected
and shed Cryptosporidium oocysts more frequently than adult livestock
(Maddox-Hyttel et al., 2006; Featherstone et al., 2010). The incubation
period of cryptosporidiosis varies on average from 5 to 7 days, but
symptoms can start as early as 2 days post-infection (Abeywardena
et al., 2015). Infected calves typically excrete oocysts with faeces for
about 2 weeks (Fayer et al., 1998; O'Handley et al., 1999). Under ex-
perimental conditions, the Cryptosporidium oocysts count in faeces rises
a day before the onset of diarrhoea, peaks, and drops 2 days before the
diarrhoea becomes less severe (Operario et al., 2015). In previous

longitudinal studies, the highest number of Cryptosporidium oocysts
were found during the second or third weeks of the calves' lives (Santín
et al., 2008; Coklin et al., 2010).

Giardia's role as a pathogen in production animals is debated
(Geurden et al., 2010). Giardia infections can be chronic and last for
months (Grit et al., 2014). Giardia and Eimeria have multifactorial pa-
thogenesis that leads to microvilli alteration, diarrhoea, and weight loss
in production animals (Olson et al., 1995; Geurden et al., 2010; Lassen
et al., 2015). In a recent study, Giardia infection was also associated
with haemorrhagic diarrhoea in calves (Lee et al., 2016). In cases of
experimental inoculation with the parasite, dairy calves usually survive
the infection with only minor repercussions (Grit et al., 2014). Calves
who are infected after birth start shedding oocysts around the third
week of life (O'Handley et al., 1999). The Giardia infection rate is re-
lated to the age and has been found to peak 6 weeks after birth
(Winkworth et al., 2008; Coklin et al., 2010).

If Cryptosporidium and Giardia infections are concurrent, it could
cause morphological damage to the jejunum to a lesser extent; this
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could be because of the antagonistic nature of the coinfection (Ruest
et al., 1997). Very low doses of both parasites (around 10 oocysts/cysts)
are required to mount an successful infection (Rendtorff, 1954;
Okhuysen et al., 1999).

For the prophylactic treatment of Cryptosporidium, halofuginone
lactate (HL) can be used; it has cryptosporidiostatic effect that in most
cases has been proven to be effective in reducing the excretion of oo-
cysts (Joachim et al., 2003; Silverlås et al., 2009).

The acute phase response (APR) is a series of complex physiological
events occurring after tissue injuries or infections (Cray et al., 2009). In
response to APR, the concentrations of specific acute phase proteins
(APP), serum amyloid A (SAA) and haptoglobin (HP), can increase in
ruminant serum> 1000-fold (Ceciliani et al., 2012; Eklund et al.,
2012). In cases of viral (foot-and-mouth disease and bovine respiratory
syncytial virus) or parasitic (Eimeria and Cryptosporidium) infections,
APP concentrations can increase in domestic ruminants' blood serum
(Orro et al., 2011; Pourjafar et al., 2011; Stenfeldt et al., 2011; Lassen
et al., 2015). In neonatal calves, APPs go through significant changes
during first 2 to 3 weeks of life (Orro et al., 2008; Tóthová et al., 2015),
suggesting that APPs have a role in the adaptation of neonate calves to
the new environment. In reindeer calves, lambs, and beef calves, high
concentrations of SAA measured in the second week of life have been
associated with lower weight gain recorded many months later (Orro
et al., 2006; Peetsalu et al., 2013; Seppä-Lassila et al., 2015, 2017).

Cryptosporidium infection has been shown to increase the APP con-
centration in dairy calves (Pourjafar et al., 2011). However, the effect of
Cryptosporidium infection combined with prophylactic treatment on the
immune system and growth remains unknown. In this study, we ex-
amined the effects of untreated, incorrect treatment, and correct
treatment with HL in an outbreak of cryptosporidiosis in neonatal
calves.

2. Materials and methods

2.1. Ethics statement

This study was conducted based on ethical permission issued by the
Ethical Committee of Animal Experiments in the Estonian Ministry of
Agriculture (no. 7.2-11/2).

2.2. The farm

This study took place on a large dairy farm in Järvamaa County,
Central-Estonia. The average milk production per cow in 2015 was
10,000 kg (Estonian Livestock Performance Recording Ltd., 2015).
During the study, there were about 1800 dairy cows in the farm.

2.3. Animals

Inclusion criteria: all of the female calves born from January 21 to
March 16, 2015, were included in the study (n = 145). Exclusion cri-
teria: twins (1 pair of twins born) and male calves. One animal was
dropped from the study because she died before any samples were
collected.

The calves were separated from their mothers immediately after
birth. In the first 4 weeks, the calves were kept in individual pens with
wooden floors and straw bedding. After that, they were moved to group
pens with concrete flooring and straw and sawdust bedding. Group pens
were composed of 8–10 calves. Both individual and group pens were
housed in the same building until the animals were 2 months old.
Immediately after birth, the calves were weighed with a digital scale
(MS4 PW, Excell Precision Co., Ltd, Vilnius, Lithuania). Additional
weight measurements were taken around 1 and 3 months of age with a
digital scale (KERN EOS 150K100NXL, Kern & Sohn GmbH, Balingen,
Germany) and measuring tape (ANImeter, Albert Kerbl GmbH,
Buchbach, Germany), respectively.

2.4. Feeding

The calves were fed 3 l of unpasteurised colostrum in the first 2 h of
life. The colostrum given to the calves was collected from the dam and
the quality examined visually and with a hydrometer (Kruuse colostrum
densimeter, Jørgen Kruuse A/S, Langeskov, Denmark). If the colostrum
was of unsatisfactory quality (n= 2), deep frozen colostrum from an-
other dam was provided. The calves were fed 2–3 kg of warmed un-
pasteurised raw milk twice per day with free access to hay and starter
feed (Prestarter, Agrovarustus OÜ, Tartu, Estonia) up to 15–17 days of
age. Then their feed was switched to milk powder (Josera
GoldenSpezial, Josera GmbH & Co. KG, Kleinheubach, Germany) so-
lution (1 l of warm water +140 g of milk powder) of 2 × 3 l/day for
1 week with free access to starter feed (Prestarter, Agrovarustus OÜ)
and hay. At 1 month of age, the milk powder product was changed
(Josera IgluStart, Josera GmbH & Co. KG) and decreased each week
with 0.5 l per feeding. Around weaning time (70–80 days of age), the
calves received 2 × 2 l/day. After weaning, the calves had free access
to starter feed (Starter, Agrovarustus OÜ), hay, and silage. No sig-
nificant changes were made to the feeding regiments or feed itself
during the study period.

2.5. Treatments

All of the calves were vaccinated on the second day after birth
against parainfluenza virus type 3 (PI3V) and bovine respiratory syn-
cytial virus (BRSV) (Rispoval, Zoetis Belgium SA, Louvain-la-Neuve,
Belgium). At 3 months of age, all of the calves were vaccinated against
bovine herpesvirus-1 (BoHV-1) (Hiprabovis, Laboratorios HIPRA, S.A.,
Girona, Spain). Prophylactic treatment against Eimeria infection was
done once by administrating toltrazuril (Cevazuril, Ceva Santé Animale,
Libourne, France) to every calf between 29 and 65 days of age.
Prophylactic treatment of the Cryptosporidium infection was done using
HL (Halocur, Intervet International B.V., Boxmeer, Netherlands).

The study was designed as observational cohort study. Based on the
HL treatment regime, the calves were divided retrospectively into 3
groups: I) not treated (n = 34), II) treated incorrectly (treatment
started> 48 h after birth, or lasted< 7 days) (n = 45), and III) treated
according to manufacturer's instructions (started< 48 h after birth,
and lasted ≥7 days) (n = 65).

All animals in the study requiring medical treatment received it
from the farm's veterinarian. Diarrhoea was treated by administering
electrolyte solutions, and if needed, antibiotics were also given.
Antibiotics were also used to treat respiratory infections.

No necropsies were performed on the study animals that died. The
farm's veterinarian noted the most likely cause of death based on
symptoms, such as diarrhoea, respiratory distress, or lameness.

2.6. Sample collection

Once per week, up to 6 weeks of age, serum and faecal samples were
collected from each calf. Follow-up sample collection was done at
around 3 months of age.

Faecal samples were collected with a clean disposable latex glove
directly from the rectum and placed into clean sealable plastic cups and
marked with the last 5 numbers of the animal's ear tag. If the rectum
was found empty and the calf could not be stimulated to defecate using
finger, the sample collection was abandoned (n= 158). In addition, 83
faecal samples were not collected due to the unexpected death of 21
calves. Faecal samples were stored in an insulated container with
cooling elements for 2 h and then kept at 4 °C for a maximum of 48 h
until analysis. In total, 767 faecal samples were collected from 144
calves.

Serum samples (n = 901) were collected from the jugular vein in
sterile evacuated test tubes using an 18-G sterile needle. Blood samples
were transported to the laboratory and centrifuged (3000 RCF for
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10 min). All of the serum samples were then stored at −20 °C until
further analysis.

In order to avoid dehorning affecting the APP serum concentrations,
all of the blood samples were collected immediately before the proce-
dure. For technical reasons, 8 calves were not sampled before de-
horning and were marked as compromised.

2.7. Parasites

Faecal samples were prepared for Cryptosporidium and Giardia de-
tection in a similar method described for Eimeria detection by Lassen
et al., 2009, but with slight modifications. In detail, sample preparation
followed the same steps: weighing, mixing, diluting, and centrifuging,
but after the supernatant was removed and before saturated sugar and
solution (ρ= 1.26 g/cm3) was added, a 20 μl subsample of the 1 ml
suspended pellet was fixed on glass slides well (14 mm diameter latex
wells). Staining was done using fluorescein isothiocyanate (FITC) con-
jugated anti-Cryptosporidium and anti-Giardia monoclonal antibodies
(Crypto/Giardia Cel, Cellabs Pty Ltd., Sydney, Australia). The slides
were examined using an epifluorescence Nikon Eclipse 80i microscope
using 200–400× magnification. Cryptosporidium and Giardia oocysts
were differentiated visually based on morphology, and considered po-
sitive if at least 1 oocyst or cyst was found. All of the oocysts and cysts
on the slide were counted and the approximate number of oocysts per
gram of faeces (OPG) was calculated, corrected to the total area of the
well and to the dilution of the sample (De Waele et al., 2010). In case
there were too many oocysts to count, 3 random visual fields on the
slide were picked and all of the oocysts were counted in the field of
view (Lassen and Lepik, 2014). The counts of each visual field were
averaged and multiplied with the fraction of the visual field surface
area divided by the total slide surface area to calculate the total number
of oocysts on a slide.

DNA was extracted from 12 FITC Cryptosporidium-positive faecal
samples collected at 3th March from calves borned between 21st
January-20th February 2015 (mean age 21 days) using the PSP® Spin
Stool DNA Kit (STRATEC Biomedical AG, Birkenfeld, Germany). The
DNA was submitted to PCR amplification targeting the 18S rRNA gene
of Cryptosporidum spp. as described by Zintl et al. (2007), and the
60 kDa glycoprotein (gp60) gene as described by Peng et al. (2001).
The PCR products were run on a 2% ethidium bromide stained agarose
gel and visualized under an UV transilluminator. Products of approxi-
mately 825 bp from the 18S rRNA and approximately 490 bp of the
gp60 amplifications were cleaned and submitted to sequencing in two
directions using Applied Biosystems® 3130xl Genetic Analyzer. For-
ward and reverse sequences were aligned using the BioEdit v7.2.5
software (Hall, 1999) to generate consensus sequences and correct
potential mismatches. The GenBank BLASTn (Altschul et al., 1990) tool
was used to find similarities between the sequences of our PCR products
and with deposited nucleotide sequences in the library. Sequences of
the 18S rRNA products were used to determine the species of Cryptos-
poridium, and gp60 was used to determine the subtype.

The faecal samples were classified as diarrhoeic or non-diarrhoeic
based on visual examination. The remaining 1 ml of concentrated faecal
sample from above was examined with a light microscope using the
flotation method (Roepstorff and Nansen, 1998) for possible parasites
(Eimeria spp. and intestinal nematodes). Eimeria spp. were differ-
entiated visually based on morphology (Levine, 1985).

2.8. Acute phase proteins and gamma-glutamyltransferase

The concentration of SAA was measured by commercial ELISA kit
(Phase BE kit, Tridelta Development Ltd., Dublin, Ireland). The HP
concentration was assessed via the method defined by Makimura and
Suzuki, 1982), with an alteration using tetramethylbenzidine (0.06 mg/
ml) as a substrate and using microtitration plates (Alsemgeest et al.,
1994). Bovine acute phase serum (pooled and lyophilised) were used to

generate standard curves. Standard provided by the European Com-
mission Concerted Action Project (number QLK5-CT-1999-0153) was
used to standardise the assay of bovine plasma sample with a known HP
concentration. The range of the standard curve was 75–1160 mg/l.

The intra-assay and inter-assay coefficients of variations for SAA
were ˂11% and ˂13% and for HP were ˂13% and ˂10%, respectively.

Analysis of GGT activity was measured using the kinetic method
with L-γ-glutamyl-3-carboxy-4-nitroanilide (Persijn and van der Slik,
1976) in a clinical chemistry analyzer (Accent-200 GGT, PZ Cormay
S.A., Łomianki, Poland).

2.9. Statistical analysis

Linear regression models were used to check if HL treatments were
associated with changes in the HP or SAA concentrations in the first
6 weeks of life. HP or SAA were the dependent variables and both were
logarithmically transformed in order to meet the presumption of
normal distribution. The explanatory variables were the age (days) at
sample collection and HL treatment as a categorical variable.

A random-effects logistic regression model was constructed to in-
vestigate if Cryptosporidium- or Giardia-positive faecal samples in the
first 6 weeks of life were more likely to be diarrhoeic. Eimeria was ex-
cluded from these models, as all the faecal samples from the first
6 weeks of life were negative. The sample being diarrhoeic was added
as a binary dependent variable. Explanatory variables were
Cryptosporidium-positive faecal samples, Giardia-positive samples, and
age (days). Parasite-positive samples were categorised as follows:
0 = no oocysts or cysts found; 1 = the oocyst or cyst count in the
sample below the median count; and 2 = the oocyst or cyst count in the
sample above the median count. The calves were added to the model as
random intercepts.

A logistic regression model was used to examine if Eimeria-positive
calves were diarrhoeic at 3 months of age. The dependent variable was
diarrhoea (binary) and the explanatory variables were the total number
of Eimeria oocysts in 1 g of sample (OPG) and the age (days) at sample
collection.

For assessing the odds of death within the first 6 weeks of age, a
retrospective case-control logistic regression model was constructed.
The case group (n= 14) consisted of animals who died before 43 days
of age. The control group (n = 49) consisted of animals born± 3 days
to a matching case group of animals that did not die before 43 days of
age and whose dams were also either primiparous or multiparous. The
dependent variable was death; the explanatory continuous variables
were Cryptosporidium oocyst count in faecal samples, birth weight, GGT,
and APPs (SAA and HP) at the first week of life; and the independent
variable was the dam being primiparous or multiparous. Backward
step-wise elimination procedure was used for final model.

Linear regression models were used to evaluate if HP and SAA
concentrations differed on weekly bases over the first 6 weeks of life
based on the Cryptosporidium oocyst count found in the faecal samples.
The dependent variables were HP or SAA, and both were logarith-
mically transformed in order to meet the presumption of normal dis-
tribution. The explanatory variables were age at sample collection
(days) and Cryptosporidium infection intensity as a categorical variable
(0 = no oocysts found in faecal sample; 1 = low; sample containing
less than the median number of oocysts (OPG) when compared to other
same weeks' positive results; and 2 = high; sample containing more
than the median number of oocysts when compared to the other same
weeks' positive results). Bonferroni's multiple comparison correction
procedure was used to control Type I errors.

The average area under the curve (AUC) was calculated using the
trapezoidal method for different APPs and the parasite oocyst count
over 6-week periods as:

∑= − + − −− − − −AUC [(t t )f ] [0.5(t t )(f f )]i i 1 i 1 i i 1 i i 1
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where ti = the time of observation, ti − 1 = the previous time of ob-
servation, fi = APP concentration at the time, and fi − 1 = APP con-
centration at the previous time. AUCs were used as summary measures
for concentrations of APPs and the oocyst counts over time. The AUC
value was divided with the calves' age in order to be comparable be-
tween different animals. AUCaverage = AUC/age at sample collection.
The AUC calculation was performed if the calf had 4 observations or
more and was not compromised (had serum sample collected prior to
dehorning).

Multiple linear regression models were used to determine the as-
sociation between APPs-AUC results and Cryptosporidium and Giardia
infection. The SAA- and HP-AUC results were used as dependent vari-
ables. The independent variables of AUCs for both parasites were: the
oocyst or cyst count in the faecal samples, the age and GGT con-
centration at the first sample collection, and HL treatment as catego-
rical variable. The dependent variables SAA- and HP-AUC results were
logarithmically transformed to meet the presumption of normal dis-
tribution.

Multiple linear regression models were used to describe the APPs
and the Cryptosporidium and Giardia infections possible association with
average daily weight gain (ADWG). The dependent variable was ADWG
at the age of 1 month or at the age of 3 months. The independent
variables were SAA, HP average-AUCs, Cryptosporidium and Giardia
oocysts-AUCs, age (days) at the first collection of the first sample, age
(days) at weight measurement, proportion of diarrhoeic faecal samples,
HL treatment categories, and primiparous or multiparous dam's off-
spring as a categorical variable.

In the linear and logistic regression models, independent variables
were selected according to their P values using backward stepwise
elimination. Independent variables were eliminated from a model if
P > 0.05. Variables that changed the coefficient of the remaining
variables with> 10% were kept as confounders.

Statistical data analysis was done using STATA 14.1 (StataCorp LP,
College Station, TX, USA). Basic data management was done using
Excel 2013 (Microsoft, Redmond, WA, USA) and Python 3.5.1
(Anaconda 4.0.0 by Continuum Analytics, Austin, TX, USA). The level
of a significant result was P ≤ 0.05.

3. Results

3.1. Parasite infection, diarrhoea, and halofuginone lactate treatment

The treatment initiated to control the outbreak of diarrhoea in the
calves with HL was started on February 17 and ended on March 22,
2015. In total, 110 calves were treated an average of 6 times (range 1 to
9). On average, the earliest treatment started on day 3 of life (range 0 to
14) (Fig. 1).

In first six weeks of life, a total of 655 faecal samples (by HL
treatment groups: I) no treatment: n = 131, II) incorrect treatment:
n = 228, III) correct treatment: n = 296) and 774 serum samples (by
HL treatment groups: I) no treatment: n= 156, II) incorrect treatment:
n = 272, III) correct treatment: n = 346) were collected. Additionally,
112 faecal and 130 serum samples were collected at 3 months of age.

Cryptosporidium oocysts were found in 33.3% (218/655) of faecal
samples and 84.7% (122/144) of calves. Giardia cysts were found in
30.8% (202/655) of faecal samples and 76.4% (110/144) calves.
Protozoan infections detection and average age of first detection ac-
cording to different HL treatment groups are presented in Table 2.
Mixed protozoan infections were found in 5.8% (38/655) of faecal
samples in 22.2% (32/144) of calves.

The median OPG in a positive Cryptosporidium and Giardia faecal
sample in the first six weeks of life, by HL treatment groups was: I) no
treatment: 242,844 and 14,035 with range of 70–2,755,554 and
69–469,367, II) incorrect treatment: 333,027 and 79,112 with range of
70–3,646,621 and 70–1,401,208, III) correct treatment: 363,436 and
29,386 with range of 69–10,145,426 and 71–2,652,344.

Out of the 12 FITC Cryptosporidium-positive faecal samples the 18S
rRNA gene was successfully amplified in six samples and sequence
analysis identified these as C. parvum. Seven (7/12) samples success-
fully amplified the gp60 gene; five of which were positive and two that
were negative in the amplification of the 18S rRNA gene. Sequence
analysis of the gp60-positive samples identified them as C. parvum
subtype IIaA18G1R1.

Diarrhoea was diagnosed in 53% (344/655) of samples and in 92%
(132/144) of calves during the first 6 weeks of age and in 29% (32/
112) of samples and in 29% (32/112) of calves at 3 months of age. For
the full observation period, 92.4% (133/144) of calves had at least 1
sample that was considered diarrhoeic. The model indicated that in the
first 6 weeks of the calves' lives, Cryptosporidium-positive samples were
associated with diarrhoea but not Giardia (Table 1). The age of the calf
was negatively associated with diarrhoea (OR = 0.98; P = 0.007).
Calves shedding Eimeria oocysts did not have increased odds of being
diarrhoeic (P = 0.2).

In general, the highest proportion of Cryptosporidium-positive sam-
ples was found in calves that were 16–18 days old. When looking at the
proportion of animals shedding oocysts by treatment category, calves
that got no treatment or were treated incorrectly peaked around
10–12 days of age, while correctly treated animals peaked around
19–21 days of age (Fig. 2).

Eimeria oocysts were detected in 9.5% (73/767) of all the faecal
samples collected. Eimeria was only detected in faecal samples collected
at approximately three months of age (median age: 99 days). Four
species of Eimeria were detected in a total of 73 faecal samples: E. bovis
(71.2%, 52/73), E. zuernii (45.2%, 33/73), E. ellipsoidalis (37.0%, 27/
73) and E. auburnensis (16.4%, 12/73). Additional results of Eimeria
infection, grouped by different HL treatments can be found in Table 1S.
No helminth eggs or nematode larvae were found.

3.2. Survival

In first 3 months of life, 21 calves (14.6%) died or were euthanised
(Fig. 1 and Fig. 1S). The average age of death was 29 ± 24 days
(median 16, range 8 to 83). The reasons listed by the farm veterinarian
for mortalities were diarrhoea (n = 12), respiratory infection (n= 6),
euthanised because of massive inflammation of the carpal joint or septic
umbiliculitis (n = 2), and unknown cause (n= 1).

In total, 66.7% (14/21) of the calves in the group that got no HL
treatment died. In the groups of calves that were treated incorrectly or
correctly, 2 and 5 died, respectively (Fig. 1S). Based on the veterinar-
ian's diagnosis, 71% of the deaths in the no treatment group were
caused by diarrhoea, and in the other groups, 1 animal succumbed to
diarrhoea.

In the retrospective case-control logistic regression model, the odds
of a calf dying within the first 6 weeks of life increased with higher SAA
concentrations (OR = 1.01; P = 0.041). Factors that decreased the
odds of a calf dying were: higher GGT activity (OR = 0.99; P = 0.004),
larger birth weight (OR = 0.76; P= 0.019), and having a primiparous
mother (OR = 0.11; P = 0.022) (Table 3).

3.3. Acute phase proteins

In the linear regression models, no associations were found between
HP, SAA, or HL treatment in the parasitic infection category (average
AUC) (P > 0.05) during the first 6 weeks (average AUC).

The average SAA concentration increased during the first 2 weeks of
life and then decreased. The average HP concentration peaked in the
second week of life. In the first 2 weeks of life, calves with a high
number of Cryptosporidium oocysts in their faecal samples also had
elevated serum concentrations of HP compared to calves in the groups
with fewer oocysts in their faeces (Fig. 3). Similarly, in the second week
of life, calves with a high number of Cryptosporidium oocysts in their
faeces also had higher SAA serum concentrations in their serum

T. Niine et al. Research in Veterinary Science 117 (2018) 200–208

203



compared to the other groups (Fig. 3).
The HP concentration during the second week of life was higher in

the HL untreated group compared to the incorrectly (P= 0.001) or
correctly treated groups (P = 0.001) (Fig. 4). HL treatment in the
second week of life was not associated with SAA (P > 0.05).

3.4. Weight gain

The average birth weight was 41.19 ± 5.1 kg (range 27 to 52 kg).
Linear regression predicted a negative association (P = 0.004) between
HP-AUC and ADWG at 3 months of age. Correct treatment had a ne-
gative effect (P = 0.003) on ADWG after a 3-month period when
compared to the group that did not receive treatment (Table 4). In-
formation on weight and ADWG by different HL treatment groups is
presented in Table 5.

4. Discussion

Several pathogens potentially fit the differential diagnosis of diar-
rhoea in calves, including coronavirus, rotavirus, E. coli, and Salmonella.
Before the start of the study, veterinarians on the farm had performed
rapid pen-side tests with positive results for coronavirus, rotavirus, and
Cryptosporidium. In addition, the herd had tested positive for bovine
viral diarrhoea virus at the time of the study (personal communication
from farm veterinarian). The significant increase in SAA and HP con-
centrations and presence of diarrhoea in calves has been observed in
calves during rotavirus, coronavirus and E. coli infections (Balikci and
Al, 2014). In case of naturally occurring rotavirus or coronavirus co-
infection with Cryptosporidium versus mono-infection, significantly
higher SAA and HP concentration increase has been previously reported
(Pourjafar et al., 2011). Nevertheless, best to our knowledge there are
no experimental studies where potential co-pathogenic synergism be-
tween rotavirus and Cryptosporidium infection has been demonstrated in
calves. Our results indicated that Cryptosporidium infections effect to the
production of APP was dose-dependent and associated clinical signs
could be attributed to the Cryptosporidium infection (Fig. 4). This study
reflects the conditions of a farm, and though the outbreak fits the pic-
ture of cryptosporidiosis, it is not possible to exclude the co-existence of
other pathogens.
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Fig. 1. Cryptosporidium and Giardia infection patterns dif-
ferentiated by halofuginone lactate (HL) treatments. Calves
were assigned into groups retrospectively based on HL
treatment regiments (separated by dashed lines on figure):
1) not treated (n = 34), 2) treated incorrectly (treatment
started> 48 h after birth, or lasted< 7 days) (n = 45),
and 3) treated according to manufacturer's instructions
(started< 48 h after birth, and lasted ≥7 days) (n = 65).
(◆) Cryptosporidium positive; (○) Giardia positive; (·)
Giardia and Cryptosporidium negative; (+) death (n = 17);
horizontal lines represent HL treatment and the length
represents the treatment in days. The y-axis represents the
birth order of calves in different HL treatment groups,
starting with the oldest and ending with the youngest; x-
axis represent the age of the calf.

Table 1
Logistic regression model examining the association between diarrhoea in 144 calves
during the first 6 weeks of life and the concentration of Cryptosporidium, the concentration
of Giardia oocysts in faecal samples, and age at sample collection. Calves were added as
random intercepts. Final model is presented.

Variable (n = no. of samples) OR Confidence interval 95% P-value

Cryptosporidium negative (n = 437) 1.0 – –
Cryptosporidium low (n = 109) 1.93 1.23; 3.03 0.004
Cryptosporidium high (n = 109) 2.22 1.39; 3.56 0.001
Giardia negative (n= 453) 1.0 – –
Giardia low (n = 101) 1.45 0.83; 2.55 0.192
Giardia high (n = 101) 1.58 0.91; 2.74 0.102
Age at sample collection (days) 0.98 0.96; 0.99 0.007

n (observations) = 655, average n (observations) per calf = 4.5.

0.0

0.2

0.4

0.6

0.8

1.0

Pr
op

or
tio

n 
of

 C
ry

pt
os

po
ri

di
um

 s
pp

. p
os

iti
ve

 s
am

pl
es

1-
3

4-
6

7-
9

10
-1

2
13

-1
5

16
-1

8
19

-2
1

22
-2

4
25

-2
7

28
-3

0
31

-3
3

34
-3

6
37

-3
9

40
-4

2
43

-4
5

46
-4

8

3 M
on

.

Age (days)

Fig. 2. Proportion of positive Cryptosporidium spp. faecal samples with different halofu-
ginone lactate (HL) treatment category: (white) not treated (n = 34); (black) treatment
start was delayed or duration was< 7 days (n = 45); (blue) treatment was done correctly
(started in the first 48 h of life and lasted ≥7 days of treatment) (n = 65). Total pro-
portion of diarrhoeic faecal samples presented as grey area in the background.
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4.1. Parasite infection, diarrhoea, and halofuginone lactate treatment

This study investigated the dynamics and treatment of what the
farm veterinarians considered an outbreak of cryptosporidiosis. Only C.
parvum isotype IIaA18G1R1 was found and which has been previously
detected in calves faeces (Misic and Abe, 2007; Plutzer and Karanis,

2007; Brook et al., 2009). We suspect that this subtype was the main
cause of cryptosporidiosis in current study, but due to relatively small
PCR sample size, which was collected in single time point during the
study, it was difficult to say whether there were other subtypes present.
Almost all of the calves (84%) were shedding Cryptosporidium spp. oo-
cysts or Giardia spp. cysts in their faeces, but both parasites were found
in only 6% of the faecal samples, and thus did not indicate an antag-
onistic effect. This may be explained by the differences in the parasites
infection patterns (Xiao and Herd, 1994; Santín et al., 2008, 2009).
However, studies of morphological changes of the jejunum have sug-
gested the possibility of an antagonistic effect of the two parasites
(Ruest et al., 1997). Most of Cryptosporidium infections happened before
1 month of age, similar to what has been reported previously in long-
itudinal studies (Harp and Goff, 1998; O'Handley et al., 1999; Geurden
et al., 2007). Calves that were shedding high amounts of Cryptospor-
idium oocysts had higher odds of being diarrhoeic than calves shedding
Giardia or Eimeria, supporting Cryptosporidium as the causative agent of
the symptoms. Some authors have suggested that Giardia infection itself
does not cause diarrhoea (Maddox-Hyttel et al., 2006; O'Handley and
Olson, 2006). A previous study in dairy cattle on several Estonian farms
found a negative correlation between diarrhoea and the presence of
Eimeria spp. in faeces, but a positive correlation between diarrhoea and
higher amounts of Cryptosporidium spp. oocysts (Lassen et al., 2009). In
Finnish calves, the opposite was observed; Eimeria spp. was associated
with diarrhoea, while Cryptosporidium and Giardia were not (Seppä-
Lassila et al., 2015). This illustrates that intestinal parasites, including
Cryptosporidium, are important agents of disease in calves in the area,
but the general clinical picture varies.

The initiation of the Cryptosporidium infection's prophylactic treat-
ment with HL exemplified the connection between APR and the para-
sitic infection under natural conditions. The HL treatment did not seem

88 54 36 80 94 859 29 39 18 4 99 29 39 18 5 10

* P = 0.002 * P < 0.001

* P = 0.02

0

250

500

750

1000

1250

1500

1750

2000

2250

2500

2750

3000

3250

3500

H
ap

to
gl

ob
in

 (
m

g/
l)

1 2 3 4 5 6
Week

88 54 36 80 94 839 29 39 18 4 99 29 39 18 5 10

* P = 0.002

* P = 0.002

0

50

100

150

200

250

300

350

400

450

500

550

600

Se
ru

m
 a

m
yl

oi
d 

A
 (

m
g/

l)

1 2 3 4 5 6
Week

Fig. 3. Haptoglobin (HP) and serum amyloid A (SAA)
concentrations in serum and different categories of
Cryptosporidium oocyst counts in faecal samples.
White = negative (no oocysts found), blue = low (below
median oocysts per gram (OPG)), black = high (more than
median OPG found in a faecal sample). The number of
calves in each group is marked above each bar. Results
from the 3 months of age were not presented because only
one calf had a Cryptosporidium positive faecal sample. (For
interpretation of the references to colour in this figure le-
gend, the reader is referred to the web version of this ar-
ticle.)

32 25 23 22 22 32 1841 45 45 45 44 52 4357 64 56 55 56 59 59

* P = 0.002

* P = 0.02

0

250

500

750

1000

1250

1500

1750

2000

2250

2500

2750

3000

3250

3500

m
g/

l

1 2 3 4 5 6 14
Week

Fig. 4. Haptoglobin (HP) concentrations in serum and different halofuginone lactate (HL)
treatment groups. Statistically significant differences demonstrated with a horizontal bar
on top of second week results. The number of animals in a group shown at the top of a
bar. HL treatment groups: white = no treatment; blue = incorrect treatment (treatment
start was delayed or was< 7 days long); black = correct treatment (started in the first
48 h of life and had ≥7 days of treatment). (For interpretation of the references to colour
in this figure legend, the reader is referred to the web version of this article.)

Table 2
Calves tested for presence of Cryptosporidium oocysts and Giardia cysts in faeces and average age of first positive sample grouped by halofuginone lactate (HL) treatment regimentsa in the
first six weeks of life.

(n = no. of calves) Cryptosporidium Giardia

No. of animals tested
positive

Average (± SD) age of first positive sample (days) No. of animals tested
positive

Average (± SD) age of first positive sample (days)

Not treated (n = 34) 26 (77%) 11 ± 7 23 (68%) 28 ± 10
Incorrectly treated

(n= 45)
41 (91%) 12 ± 7 41 (91%) 31 ± 7

Correctly treated
(n= 65)

55 (84%) 16 ± 5 46 (71%) 31 ± 8

Total (n = 144) 122 (85%) 14 ± 6 110 (76%) 30 ± 8

a I) not treated; II) treatment start was delayed or duration was< 7 days; III) treatment was done correctly (started in the first 48 h of life and lasted ≥7 days of treatment).
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to decrease the number of Cryptosporidium oocysts shed in faeces, si-
milar to what has been reported in one study (Weber et al., 2016), but
contrary to another (Keidel and Daugschies, 2013). Nevertheless, the
correctly performed prophylactic treatment had a delaying effect on the
onset of shedding (Fig. 2 and Table 2), seemed to improve survival
(Fig. 1S), but resulted in a poorer ADWG (Table 5). Previous in-
vestigations have also reported that HL can cause a delay in oocyst
shedding (Jarvie et al., 2005; Trotz-Williams et al., 2011; Keidel and
Daugschies, 2013), but not an impact on the survival of calves. Calves
have higher risk of succumbing to dehydration and acidosis due to
diarrhoea in their first week of life (Foster and Smith, 2009). Prophy-
lactic HL treatment may delay the development of cryptosporidiosis
and help calves cope with very strong infection pressure (Abeywardena
et al., 2015). It has been suggested that HL may have a positive ther-
apeutic effect in calves aged 8–14 days (Klein, 2008). Other authors
(Silverlås et al., 2009; Almawly et al., 2013) have reported that the
therapeutic treatment effect of HL on calves' health seems to be limited,
similar to the findings in this study.

4.2. Survival

Most of the calves' deaths in the current study were concentrated in
a relatively short period, and were found to be related to infections of
the digestive system in the group that did not receive HL treatment.
Shortly after the mass treatment with HL started, the death rate
dropped (Fig. 1). This suggests that the mortalities were related.
Cryptosporidium infections and the treatment may have reduced the
severity of the illness and raised the chance of survival (Fig. 1S). Higher
GGT activity had a positive effect on survival, which suggests colostrum
quality and adsorption of antibodies had an important role in the ani-
mal's ability to survive the infection. It has been shown that high levels
of immunoglobulin G and long fatty acids in colostrum have some
protective effect against diarrhoea caused by Cryptosporidium, but not
against the infection itself (Lopez et al., 1988; Schmidt and
Kuhlenschmidt, 2008; Weber et al., 2016). This could mean that the
animals who were at a weaker starting position due to poorer quality
colostrum and lower birth weights more easily succumbed to Cryptos-
poridium infection. Only after starting the mass treatment with HL did
the survival chances of these calves improve. Even incorrect treatment
with HL seemed to have a positive effect on survival; thus, we could
conclude that no treatment would be the worst option during a massive
increase in cryptosporidiosis cases, especially when most of the deaths
are diarrhoea-related.

The incubation period of Cryptosporidium infection is 5–7 days,
which is so short that the adaptive immune response is unlikely to stop
the development of clinical disease (Petry et al., 2010; Abeywardena
et al., 2015). APR as an innate immune response is faster and more
likely to play a role in controlling the infection and the development of
disease in the early stages. Interestingly, higher SAA concentrations had
a negative impact on the survival of calves. This suggests that APR was
triggered more profoundly in severely affected animals (Fig. 3). Al-
though we cannot rule out other common digestive system pathogens,
the evidence suggests that Cryptosporidium played a major role in
diarrhoeic calves, and that the correct HL treatment was able to delay
the APR induction and decrease its magnitude (Fig. 4).

4.3. APPs

The HL prophylactic treatment delayed Cryptosporidium infection
and seemed to affect the APR in the second week of life. HP, but not
SAA, serum concentrations were significantly lower in the animal
groups that were correctly treated compared to the untreated and in-
correctly treated calves (Fig. 4). This increase in concentrations of APP
coincided with an increased proportion of the calves shedding Cryp-
tosporidium spp. oocysts (Fig. 2) and mortality (Fig. 1S) in the second
week of life. The HP median concentration in heavily shedding animals
was 4.8 times higher (950 mg/l) than the reference value (< 196 mg/l)
of calves that age while the SAA median value (158 mg/l) did not ex-
ceed the reference value (< 178 mg/l) (Seppä-Lassila et al., 2013). We

Table 3
Retrospective case control logistic regression modelling of factors associated with mor-
tality of calves up to 43 days of age. Final model is presented.

Variable (n = no. of calves) OR Confidence interval 95% P-value

SAA (mg/l)a 1.013 1.001; 1.026 0.041
GGT (IU/l)a 0.993 0.988; 0.998 0.004
Birth weight (kg) 0.762 0.607; 0.957 0.019
Multiparous (n= 23) 1.0 – –
Primiparous (n = 40) 0.111 0.017; 0.731 0.022

n (observations) = 63 (the case group (n = 14) and the control group (n= 49)),
SAA = Serum amyloid A, GGT = gamma glutamyltransferase.

a Sample collected first week of life.

Table 4
Association of average daily weight gain (g/days) of 109 calves at 3 months of age,
haptoglobin (HP) average area under the curve (AUC), halofuginone lactate (HL) treat-
menta and age at weight measurement. Final model is presented.

Variable (n = no. of calves) Estimate Confidence interval
95%

P-value

HP average AUC (mg/g/day) −0.16 −0.27; −0.05 0.004
Not HL treated (n= 18) 0 – –
Incorrect HL treatment (n = 42) −55.53 −126.63; 15.58 0.125
Correct HL treatment (n= 49) −107.22 −176.37; −38.06 0.003
Age at weight measurement

(days)
2.15 −0.75; 5.05 0.145

Intercept 708.69 390.65; 1026.72 0.000
n (observations) = 109

a I) not treated; II) treatment start was delayed or duration was< 7 days; III) treatment
was done correctly (started in the first 48 h of life and lasted ≥7 days of treatment).

Table 5
Results of weight measurement and average daily weight gain (ADWG) at 1 and 3 months (± SD) by different halofuginone lactate (HL) treatment groups.a

HL treatment group n (observations) Age (days) Weight (kg) ADWG (g/day)

1 month of age
Not treated 22 29.2 ± 4.4 54.1 ± 5.7 433.6 ± 160.2
Incorrectly treated 44 27.8 ± 3.8 53.4 ± 6.3 449.5 ± 168.2
Correctly treated 56 31.2 ± 4.6 53.9 ± 5.7 388.4 ± 122.8
Total 122 29.6 ± 4.5 53.8 ± 5.9 418.6 ± 148.9
3 months of age
Not treated 19 108.6 ± 12.2 134.5 ± 17.3 861.6 ± 121.0
Incorrectly treated 43 99.8 ± 12.9 120.4 ± 19.3 794.4 ± 129.4
Correctly treated 58 100.4 ± 6.6 117.7 ± 14.9 751.3 ± 123.7
Total 120 101.5 ± 10.6 121.3 ± 17.9 784.2 ± 130.3

a I) not treated; II) treatment start was delayed or duration was< 7 days; III) treatment was done correctly (started in the first 48 h of life and lasted ≥7 days of treatment).
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speculate that this drastic difference was caused by the nature of the
Cryptosporidium infection and likely because localised damage to the
small intestine was more prone to trigger an immunological response
that increased HP rather than SAA concentrations. Previously, rela-
tively small studies (1 to 6 animals) reported an increase in HP and SAA
in dairy calves as a response to Cryptosporidium infections, especially
before the onset of diarrhoea (Enemark et al., 2003a,b; Pourjafar et al.,
2011). Although this study shed more light on the subject, there is a
lack of research on the role of APR in Cryptosporidium and Giardia in-
fections in cattle.

4.4. Weight gain

Although about 67% of the calves died in the group that did not
receive HL treatment, it was surprising to find that the treatment had
significant negative effects on the daily weight gain when the calves
reached 3 months of age. In general, the calves' weight gain met the
expectations of Holstein breed calves at 3 months of age (Retamal and
Risco, 2011), averaging around 121.3 kg. We expected that Cryptos-
poridium infection would have a lasting negative effect on the growth of
the surviving calves. The effect of the infection should have been most
obvious in calves that were infected but not treated. However, the
largest effect was observed in animals that had the correct treatment.
Other authors have not found a significant positive or negative effect of
HL treatment on the growth rate (Jarvie et al., 2005; Trotz-Williams
et al., 2011). It is important to remember that HL treatment does not
stop calves from being infected and shedding large numbers of Cryp-
tosporidium oocysts, damaging the host's cells and consuming resources
for replicating (Silverlås et al., 2009). There were no significant
changes in the feeding regimens in first 3 months of the calves' lives,
ruling out differences in nutrition as an explanation. A possible ex-
planation for the observed effect is the delay and possible expansion of
the parasites' life cycle in the host due to the effect of HL. The cate-
gorisation of different HL treatment groups was very strongly influ-
enced by birth order. As a result, we were not able to exclude time as a
confounding factor in average daily weight regression models.

Elevated concentrations of SAA in the second week of life have been
negatively associated with the growth rate in reindeer calves (Orro
et al., 2006), lambs (Peetsalu et al., 2013) and beef calves (Seppä-
Lassila et al., 2017). In the current study, Cryptosporidium shedding was
associated with higher serum concentrations of SAA and HP in the
second week of the calves' life, indicating that this period of adaptation
was critical. However, only the HP overall response had a negative
association with short-term weight gain at 3 months of age. The ele-
vated HP concentrations may have triggered a stronger APR as a re-
sponse to the infection and consequently affected the growth of the calf.

5. Conclusions

In the outbreak, there was a strong association between
Cryptosporidium infection and diarrhoea, but not with Giardia or Eimeria
infections. Correctly performed prophylactic HL treatment against
cryptosporidiosis delayed the onset of oocyst shedding and improved
the chances of survival. However, the growth rate was negatively af-
fected by correct treatment and a strong APR. Correct treatment was
associated with lower HP concentrations in the second week of life. The
study demonstrates a possible connection between Cryptosporidium in-
fection and APR in dairy calves.

Supplementary data to this article can be found online at https://
doi.org/10.1016/j.rvsc.2017.12.015.
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