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Abstract: An increasing number of genetic and metabolic anomalies have been determined to
lead to cancer, generally fatal. Cancerous cells may spread to any body part, where they can
be life-threatening. Skin cancer is one of the most common types of cancer, and its frequency is
increasing worldwide. The main subtypes of skin cancer are squamous and basal cell carcinomas,
and melanoma, which is clinically aggressive and responsible for most deaths. Therefore, skin cancer
screening is necessary. One of the best methods to accurately and swiftly identify skin cancer is
using deep learning (DL). In this research, the deep learning method convolution neural network
(CNN) was used to detect the two primary types of tumors, malignant and benign, using the ISIC2018
dataset. This dataset comprises 3533 skin lesions, including benign, malignant, nonmelanocytic, and
melanocytic tumors. Using ESRGAN, the photos were first retouched and improved. The photos
were augmented, normalized, and resized during the preprocessing step. Skin lesion photos could
be classified using a CNN method based on an aggregate of results obtained after many repetitions.
Then, multiple transfer learning models, such as Resnet50, InceptionV3, and Inception Resnet, were
used for fine-tuning. In addition to experimenting with several models (the designed CNN, Resnet50,
InceptionV3, and Inception Resnet), this study’s innovation and contribution are the use of ESRGAN
as a preprocessing step. Our designed model showed results comparable to the pretrained model.
Simulations using the ISIC 2018 skin lesion dataset showed that the suggested strategy was successful.
An 83.2% accuracy rate was achieved by the CNN, in comparison to the Resnet50 (83.7%), InceptionV3
(85.8%), and Inception Resnet (84%) models.

Keywords: deep learning; machine learning; convolutional neural network; ISIC 2018; skin lesion;
computer vision

1. Introduction

The uncontrollable development of tissues in a specific body area is known as can-
cer [1]. One of the most quickly spreading diseases in the world looks to be skin cancer.
Skin cancer is a disease in which abnormal skin cells develop out of control [2]. In order to
determine potential cancer therapies, early detection and accurate diagnosis are essential.
Melanoma, the deadliest form of skin cancer, is responsible for most skin cancer-related
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deaths in developed countries. The major skin cancer types comprise basal cell carci-
noma [3], squamous cell carcinoma [4], Merkel cell cancer [5], dermatofibroma [6], vascular
lesion [7], and benign keratosis [8].

In order to diagnose abnormalities in various regions of the body, such as skin can-
cer [9], breast cancer [10], brain tumors [11], lung cancer [12], and stomach cancer [13],
diagnostic imaging assessment plays an important part. According to the GLOBOCAN
survey, there will be 19.2 million new cancer diagnoses and 9.9 million cancer deaths in
2020. Lung cancer is the leading cause of death (18.2%), followed by colorectal cancer
(9.5%), liver cancer (8.4%), stomach cancer (7.8%), breast cancer (6.9%), esophageal cancer
(5.5%), and pancreatic cancer (4.7%). The GLOBOCAN survey also points out more than
half of cancer deaths occur in Asia, along with about 20% of cancer deaths occurring in
Europe. Furthermore, the areas most affected by skin cancer around the globe are shown in
Figure 1, with North America accounting for about half of the total.
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To ensure better prognosis and death rates, early skin cancer identification is crucial,
yet solid tumor detection typically relies mostly on screening mammography with inad-
equate sensitivity, which is then validated by clinical specimens. Cancer screening and
treatment reaction evaluations are usually not appropriate uses for this approach [2,3]. An
increasing number of healthcare providers are using artificial intelligence (AI) for med-
ical diagnostics to improve and accelerate the diagnosis decision-making procedure [4].
However, despite some current evidence of improvement in this domain, the accurate
assessment and adequate reporting of predicted flaws have been entirely or partly ignored
by currently available AI research for clinical diagnosis.

Computer-aided design (CAD) can quickly, reliably, and consistently diagnose various
disorders. CAD also provides the option for advanced tumor disease detection and protec-
tion that is both precise and cost-effective. Human organ disorders are typically assessed
using a variety of imaging technologies, including magnetic resonance imaging (MRI) [5],
positron emission tomography (PET) [6], and X-rays [7]. Computed tomography (CT) [8,9],
dermatoscopy image analysis, clinical screening, and other approaches were initially used
to visually diagnose skin lesions. Dermatologists with little expertise have shown reduced
accuracy in skin lesion diagnostics [10–12]. The methods for physicians to evaluate and
analyze lesion images are time-consuming, complex, subjective, and error-prone. This is
mainly because the images of skin lesions are so complicated. Unambiguous identification
of lesion pixels is essential to performing image analysis, for evaluation and awareness of
skin lesions. Using machine learning approaches in computer vision has led to a significant
advance in computer-aided diagnostic and prediction systems for skin cancer detection [13].
Image preprocessing and classification of lesion images are some of the main processes
used to outline the entire cancer detection and diagnosis, as described in Figure 2 [14].
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The exponential growth in processing power has led to tremendous advancements in
computer vision technologies, particularly in the development of deep learning models
such as CNN. The earliest possible detection of skin cancer is now required. Skin cancer is
the second most common cancer (after breast cancer) in women between the ages of 30 and
35, and the most common cancer in women between the ages of 25 and 29, according to
Dr. Lee [15], who serves several young patients with skin cancer. Early identification of
skin cancer using deep learning outperformed human specialists in many computer vision
challenges [15,16], resulting in reduced death rates. It is possible to get outstanding and
cutting-edge processing and classification accuracy by including efficient formulations into
deep learning techniques [17–19].

In order to correctly diagnose early cancer signs from lesion images, this study pro-
poses a crossbred DL model for cancer classification and prediction. Preprocessing and
classification are key components of the system under consideration. During the prepro-
cessing phase, the entire intensity of the image is improved to decrease the inconsistencies
among photos. The image is additionally scaled and standardized to fit the training model’s
scale during this procedure. Many different metrics were used to evaluate the suggested
model in the comparison studies. These metrics included precision and recall metrics, the
F1-score, and the area under the curve (AUC). The publicly available, large-scale ISIC 2018
dataset comprises a massive number of lesion images with diagnosed cancer. Pretrained
networks such as Resnet50, InceptionV3, and Inception Resnet were employed for compari-
son. A training process with varying configurations of training strategies (e.g., validation
patience and data augmentation) was employed to boost the recommended technique’s
universal efficiency and prevent overfitting.

The remainder of this paper is broken down as follows: Section 2 summarizes existing
investigations, Section 3 describes the methods used to build the cancer dataset and the
recommended system’s design requirements, Section 4 offers the findings of the study, and
Section 5 finishes with the conclusion and suggestions for further studies.

2. Related Work

Skin cancer is on the upswing, and this has been true for the last 10 years [20]. Because
the skin is the body’s central part, it is reasonable to assume that skin cancer is the most
frequent disease in humans. Timely detection of skin cancer is essential for successful
therapy. Skin cancer indications can now be quickly and easily diagnosed using computer-
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based techniques. Multiple noninvasive methods have been proposed for assessing skin
cancer signs.

The use of machine aid in the early diagnosis of cancer has opened up a new field
of study and demonstrated the ability to eliminate limitations in the manual method. An
overview of several relevant studies is presented here to better understand the topic of dis-
cussion and to create a vision of the current state of the art. Deep learning techniques have
produced outstanding outcomes in several areas compared to other traditional machine
learning methodologies. In the last few decades, deep learning has completely transformed
the nature of machine learning. The artificial neural network is the most advanced branch
of machine learning. The anatomy and operation of the human brain was the source of
inspiration for this method [21].

Experts have examined and assessed the strength of the facts supporting the accuracy
rate of computer-aided techniques [22]. ScienceDirect, SpringerLink, and IEEE databases
were consulted. Skin lesion segmentation and classification approaches were analyzed, out-
lining the significant limitations. An enhanced melanoma skin cancer diagnosis technique
was presented in [23]. An implantation manifold with nonlinear embeddings was used to
create synthetic views of melanoma. Employing dermatoscopic scans from the publicly ac-
cessible PH2 dataset, the data augmentation approach was utilized to build a new collection
of skin melanoma datasets. The SqueezeNet deep learning model was trained using the
enhanced images. The experiments revealed that the accuracy of melanoma identification
improved significantly (92.18). Extracting a skin melanoma (SM) region from a digital
dermatoscopy image using the VGG-SegNet algorithm was suggested in [24]. Essential
performance parameters were subsequently established after a comparison between the
extracted segmented SM and the ground truth (GT). Employing the standard ISIC2016
database, the proposed scheme was evaluated and verified.

Scholars have combined human and artificial intelligence to classify skin cancer. A
total of 112 German dermatologists and a CNN categorized 300 biopsy-verified skin lesions
into five classifications. Using gradient boosting, the two separately obtained sets of
diagnoses were joined to create a unified classifier. Man and machine obtained 82.95%
multiclass accuracy [25]. The deep learning-based InSiNet technique detects benign and
malignant tumors [26]. Under similar scenarios, the approach was evaluated on HAM10000
images (ISIC 2018), ISIC 2019, and ISIC 2020. Accordingly, the created InSiNet framework
outperformed the other approaches, obtaining 94.59%, 91.89%, and 90.549% accuracy when
using the ISIC 2018, ISIC 2019, and ISIC2020 datasets.

To categorize skin melanoma at an early stage, researchers offered a deep-learning-
based methodology, including a region-based convolutional neural network (RCNN) and
fuzzy k-means clustering (FKM) [27]. The suggested technique was put to the test using
a variety of clinical photos in order to aid dermatologists in the early detection of this life-
threatening condition. The ISIC-2017, PH2, and ISBI-2016 datasets were used to assess the
provided methodology’s effectiveness. The findings revealed that it outperformed current
state-of-the-art methodologies with an average accuracy of 95.40%, 93.1%, and 95.6%.

DL models such as convolutional neural networks (CNNs) have proven themselves
superior to more traditional methods in various fields, especially image and feature recog-
nition [28]. Moreover, they have been effectively applied in the medical profession, with
phenomenal results and outstanding performance in a variety of challenging situations.
Doctors and professionals now have access to a variety of DL-based medical imaging
systems to aid in cancer prognosis, treatment, and follow-up assessments.

The Lesion-classifier, relying on pixel-by-pixel classification findings, was presented
to categorize skin lesions into melanoma and non-melanoma cases. Skin lesion datasets
ISBI2017 and PH2 were used in the investigation to verify efficacy. The experiments
showed that the suggested technique had an accuracy rate of 95% on the ISIC 2017 and
PH2 datasets [29].
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In recent years, various deep learning algorithms have been applied to classify skin
cancer, as outlined in Table 1, as well as other existing studies such as [30,31]. Table 1
presents the various methods for predicting cancer.

Table 1. Current methods, datasets, and results for skin cancer detection.

Recent Work Data Size Data Set Techniques Used Number of Classes

[25] 300 HAM10000 CNN with XGBoost Five

[26] 1323 HAM10000 InSiNet Two

[27]

1280 ISIC-2016

Region-based CNN (RCNN) Two2000 ISIC-2017

200 PH2

[29] 2000 ISBI2017 Deep convolutional encoder–decoder
network (DCNN) Two

[32] 48,373 DermNet, ISIC Archive,
Dermofit image library MobileNetV2 Two

[33] 7470 HAM10000 ResNet50 Seven

[34] 3753 ImageNet ECOC SVM Two

[35] 16,170 HAM10000 Anisotropic diffusion filtering Two

[36] 1000 ISIC SVM + RF Eight

[37] 6705 HAM10000 DCNN Two

[38] 279 ImageNet DCNN VGG-16 Two

[39] 10,015 HAM10000 AlexNet Seven

[40] 10,015 HAM10000 CNN Seven

Timely screening and prediction have been found to enhance the probability of proper
medication and reduce mortality. However, most of these studies focused solely on apply-
ing DL models to actual images rather than preprocessed images, limiting the ultimate
classification network’s ability to adapt. By altering the framework of pretrained systems
via the addition of multiple layers, the present work builds a lightweight skin cancer
diagnosis method in order to achieve a higher level of confidence.

3. Proposed System

A CNN model using images from the image data store is presented schematically
to generate discriminative and relevant attribute interpretations for the cancer detection
technique, as shown in Algorithm 1. To begin, a basic explanation of the used dataset
is provided. Moreover, the details of the implementation of proposed model, including
preprocessing techniques and the basic architecture, are presented.
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Algorithm 1: Processes in the mechanism suggested

Let barcapitalb = lesion image, aug = augmentation, ppr = preprocessing, ig = image, ig€ = image
enhancement algorithm (ESRGAN), rt = rotation, sc = scaling, rl = reflection, and
sh = shifting method
Input: {Lesion image barcapitalb}
Output: {confusion matrix, accuracy, precision, ROC, F1, AUC, recall}
Step 1: Browse(barcapitalb)
Step 2: Implement (ppr (ig))
2.1. Operate (ig€)_
2.2. aug(ig) w.r.t. rt, sc, rl, sh

2.2.1. perform rt
2.2.2. perform sc
2.2.3. perform rl
2.2.4. perform sh

2.3. Resize (ig)/224*24*3
2.4 Normalize pixelvalue (ig)/interval [0,1]
Step 2: Split (dataset)/training, testing, and validating
Step 3: Train CNN model
Step 4: Train pretrained models (Resnet, Inception, Inception Resnet)

4.1 Fine-tune model parameters (freeze layers, learning rate, epochs, batch size)
Step 5: Compute VPM (confusion matrix, accuracy, precision, ROC, F1, AUC, recall)
Step 6: Evaluation (existing work)

3.1. ISIC 2018 Image Dataset

Data are at the core of DL, representing what these learning techniques run on. Can-
cer is a unique disease, and there have already been many datasets published. We used
lesion images from publicly accessible image databases of identified affected individuals.
The ISIC 2018 dataset was utilized for training the proposed approach, which contained
10,015 training and 1512 test images for a total of 11,527 images [30]. ISIC 2018 provided
the ground-truth data only for the training set, consisting of seven classes, melanoma,
melanocytic nevus, basal cell carcinoma, squamous cell carcinoma, vascular lesions, der-
matofibroma, and benign keratosis, as shown in Figure 3.
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We applied the proposed CNN model to the ISIC 2018 skin lesion classification chal-
lenge test set; our data store consisted of 3533 lesion scans where 1760 of them are benign
and 1773 are malignant, and we tested the proposed system using a total of 960 images
consisting of 360 benign and 300 malignant cases. The lesion images were acquired from
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an openly accessible data repository ISIC 2018 [31]. For evaluation, the authors obtained
radiological scans from many legitimate databases of cancer incidences; images from this
source are used in most cancer diagnostics. The database, which is updated regularly,
offers a free library of cancer cases and lesion images. The Kaggle list “Lesion Images”
was used to collect lesion images; 3533 images from these sources are included in the
ISIC2018 collection [41]. Figure 4 shows various lesion image examples from the ISIC2018
dataset, demonstrating the collection’s diversity of patient situations. It was decided to
build ISIC2018 because the library is openly available and openly available to the academic
communities and the public society.
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3.2. Image Preprocessing

This process involved data augmentation, image improvement using (ESRGAN),
image resizing, and normalization.

3.2.1. ESRGAN

Approaches such as super-resolution generative adversarial network enhanced SR-
GAN [42] can help improve the detection of skin lesions. The enhanced edition of the
super-resolution GAN (Ledig et al.) [43] uses a resilient-in-residual block instead of a basic
residual network or a simple convolution trunk when it comes to microscopic-level gra-
dients. Additionally, the model does not have a batch normalization layer for smoothing
down the image. Accordingly, the sharp edges of the image artefacts can be better ap-
proximated in the images produced by ESRGAN. When determining if an image is real or
false, ESRGAN employs a relativistic discriminator https://arxiv.org/pdf/1807.00734.pdf
(accesed on 10 April 2022). This method yields more accurate results. Perceptual differences
between the actual and false images are combined with the relativistic average loss and
pixelwise absolute difference between the real and fake images as the loss function during
adversarial training. A two-phase training scheme is used to sharpen the generator’s skills.
This reduces the pixelwise L1 distance between the input and target high-resolution image
to avoid local minima when beginning with complete randomization in the first phase of
the algorithm.

In the second stage, the goal is to refine and improve the reconstructed images of the
smallest artefacts. The final trained model is interpolated between the L1 loss and the
adversarially trained models for a photorealistic reconstruction.

A discriminator network was trained to distinguish between super-resolved images
and actual photo images. By rearranging the lightness elements in the source image’s

https://arxiv.org/pdf/1807.00734.pdf
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histogram, an evolutionary contrast enhancement algorithm was used to strengthen the
lesion picture’s minutiae, textures, and poor contrast. As a result, this method enhanced
the appearance of borders and arcs in each section of the picture, as shown in Figure 5,
while simultaneously increasing the image’s contrast level.
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Figure 5. Images after the enhancement process.

3.2.2. Augmentation

For each image in the dataset, upgraded images with associated masks including
rotation, reflection, shifting, brightness, and resizing were produced. Detection and as-
sessment are restricted by the poor quality of raw lesion images generated by electronic
detectors. There were a total of 1440 benign and 1197 malignant training images. After
conducting augmentation, there were a total of 1760 benign and 1773 malignant images.
The imbalanced distribution of classes was addressed by performing oversampling on the
malignant images.

To avoid biased prediction consequences, the ISIC2018 dataset was split into three mu-
tually distinct sets (training, validation, and evaluation sets) to address the overfitting issue
caused by the short number of training photographs. The output of the image augmentation
process after applying different augmentation parameters is shown in Figure 6.

3.2.3. Data Preparation

Image acquisition factors can vary due to the fact that certain photos in the dataset
have low pixel dimensions, and all images should be resized. As a result, the image’s
luminance and size can change dramatically. Each acquisition tool has its own unique
set of criteria; hence, the lesion image dataset is likely to contain a variety of images. In
order to verify that the data were consistent and free of noise, the pixel strength of all
images was standardized within the interval [−1, 1]. Normalization computed using
Equation (1) ensured that the model was less susceptible to minor weight changes, facilitat-
ing its improvement. Below, Inorm, MinI, and MaxI represent image, normalize, minimum,
and maximum, respectively.

Inorm = (I − MinI)

(
2

MaxI − MinI

)
− 1 (1)
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3.3. Proposed CNN for ISIC2018 Detection

Due to the enormous number of hyperparameters and structures that need to be
accounted for, DL models face significant difficulty (e.g., learning rate, number of frozen
layers, batch size, and number of epochs). Several hyperparameter values were tested to
see how they affected the efficiency of the suggested systems. The proposed CNN model
consisted of three layers, as shown in Figure 7. As depicted in Figure 7, the skin cancer
detection system employed a transfer DL strategy to learn discriminative and informative
feature representations from preprocessed images in the image dataset.
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The presented system’s core architecture was built on three learning models: Resnet50,
Inception, and Inception Resnet50.

3.3.1. Resnet50

Resnet50is a 50-layer residual network [44]. Several difficulties emerged when scholars
tried to apply the adage “the deeper the better” to deep learning methods. In comparison to
networks having 20–30 layers, the deep network with 52 layers produced subpar outcomes,
disproving the theory that “the deeper the network, the higher the network’s efficiency”.
Resnet-50, a residual learning feature of the CNN model, was developed by experts. The
residual unit is compensated for by using a conventional layer with a skip connection. Tying
a layer’s incoming signal to a certain layer’s output using a skip connection is possible.
The residual units allowed the training of a 152-layer model that was used to win the
2015 LSVRC2015 challenge. There is less of a learning curve because of its novel residual
structure. A top five false-positive rate of <3.6% can be achieved using this machine.

3.3.2. Inception V3

An essential feature of the Inception module is its capacity to perform multiresolution
processing [45]. To capture characteristics in standard CNN models, kernels with distinct
receptive areas are utilized in certain layers. In an inception model, on the other hand,
many kernels with differing receptive fields are employed in tandem to retrieve features of
various sizes. The Inception module’s outcome is created by stacking the parallel features
that were extracted one on top of the other. The subsequent convolutional layer of the CNN
uses the rich attribute maps produced by the Inception module’s merged result. Because of
this, the Inception module’s effectiveness in medical imaging, specifically on lesion pictures,
is exceptional [46].

3.3.3. Inception Resnet

The Resnet50 and Inception frameworks were combined into one model to classify
hyperspectral images. More than one million photos from the ImageNet collection were
used to train the Inception ResnetV2 convolutional neural network. In total, there are
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164 layers in this network, and it is capable of classifying photos into 1000 different object
categories. Consequently, the network has amassed a diverse set of feature descriptions.
The network accepts a 299-by-299-pixel picture as an input and gives a set of classifiers.

4. Experimental Results

Experiments were conducted on the ISIC2018 dataset to illustrate the effectiveness of the
suggested DL systems and to compare their findings to those of the current state of the art.

4.1. Parameter Setting and Experimental Evaluation Index

Simulations on the ISIC2018 dataset were carried out to illustrate the performance of
the suggested DL systems and to compare their results to the current state of the art. On a
linux desktop with a GPU RTX3060 and 8GB of RAM, the TensorFlow Keras program for
the present scheme was tested. Training and testing sets were separated using a ratio of
80 to 20%, as shown in Figure 8. The training set contained 1760 benign and 1773 malignant
images, while the testing set comprised 360 benign and 300 malignant images.
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Figure 8. Distribution of dataset.

The suggested training set comprised an 80% randomized array of lesion images. All
testing was conducted using this set. Then, 10% of the data were used for verification
throughout the learning phase. The weight combinations with the greatest accuracy values
were retained. On the ISIC2018 dataset, the Adam optimizer was used to pretrain the
suggested architecture, which employs a learning rate technique that slows down learning
when it becomes static for an extended period (i.e., validation patience). Furthermore, we
implemented a batch rebalancing technique to improve the prevalence of infection forms
during the batching process. The hyperparameters and their values used by the Adam
optimizer for training are presented in Table 2.

Table 2. Hyperparameters of Adam optimizer.

Parameter Value

Batch size 2–32
Loss function categorical cross-entropy
Momentum 0.95

4.2. Performance Assessment

This part of the study includes an in-depth explanation of the evaluation metrics
utilized and their outcomes. Classifier accuracy (Acc) is the primarily used statistic for
evaluating classification effectiveness. It is described as the number of instances (images)
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categorized accurately divided by the number of examples (images) in the dataset under
analysis, as expressed in Equation (2). There are two used metrics generally used for
evaluating the effectiveness of image categorization systems: precision (Pr) and recall
(Rc). Precision is a measure of how many classified photos are correctly labeled compared
to the total number of images, as expressed in Equation (3). Recall is the percentage of
successfully categorized images in the database compared to the number of associated
images, as expressed in Equation (4). The F-score is the harmonic mean of precision
and recall; a greater value is an indicator of the system’s ability to forecast the future.
The effectiveness of systems cannot be judged just on the basis of precision or recall.
Equation (5) is the mathematical representation of the F-score (Fs).

Acc =
Tp + Tn

Tp + Tn + Fp + Fn , (2)

Pr =
Tp

Tp + Fp , (3)

Rc =
Tp

Tp + Fn , (4)

Fs = 2 ×
(

Pr × Rc
Pr + Rc

)
, (5)

where Tp indicates a true positive, Tn indicates a true negative, Fp indicates a false positive,
and Fn indicates a false negative.

4.3. Performance of Different DCNN Models

Different DCNNs (CNN, Resnet50, Inception, and Inception Resnet) were imple-
mented for training and testing tasks on the ISIC 2018 skin lesion classification challenge
dataset. Using an 80–20 split between training and testing, the results are presented of
various assessments on the ISIC2018 dataset for the suggested systems. This division was
chosen to minimize the impact on execution time. CNN, Resnet50, Inception, and Inception
Resnet models were trained for 50 epochs employing 10% of the training set as a validation
set, with a batch size ranging from 2 to 32, and learning rates varying from 1 × 104 to
1 × 106. Moreover, fine-tuning was performed regarding Resnet50, Inception, and Inception
Resnet by freezing different numbers of layers to achieve the best accuracy. In order to train
the models using similar parameters (runs 1–3, Tables 3–6), we used several runs (three
runs for the similar parameters) to construct the model ensemble. The accuracy fluctuated
from run to run since the weights were generated at random for each run; only the best run
outcome was saved. Tables 3–6 show the accuracy results for the proposed CNN.

Table 3. Average accuracy of CNN model using ISIC dataset (optimizer = Adam, learning rate = 1 × 10−6).

Batch Size
Ensemble Using Several Runs

Run 1 Run 2 Run 3

2 0.7818 0.7606 0.7011
4 0.7636 0.7833 0.7363
8 0.7363 0.75 0.7439
16 0.7939 0.7727 0.7636
32 0.7651 0.7363 0.7363
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Table 4. Average accuracy of CNN model using ISIC dataset (optimizer = Adam, learning rate = 1 × 10−5).

Batch Size
Ensemble Using Several Runs

Run 1 Run 2 Run 3

2 0.8212 0.8196 0.8136
4 0.8121 0.8227 0.7924
8 0.8227 0.8227 0.8167
16 0.8000 0.7651 0.7985
32 0.8045 0.8136 0.8152

Table 5. Average accuracy of CNN model using ISIC dataset (optimizer = Adam, learning rate = 1 × 10−4).

Batch Size
Ensemble Using Several Runs

Run 1 Run 2 Run 3

2 0.8182 0.8000 0.8136
4 0.8318 0.8257 0.8121
8 0.8061 0.7909 0.8091
16 0.7879 0.7879 0.7985
32 0.7864 0.7969 0.7985

Table 6. Best accuracy after fine-tuning using several transfer learning models.

CNN Resnet50 InceptionV3 Inception Resnet

0.8318 0.8364 0. 8576 0.8409

Figures 9 and 10 show the confusion matrices of the benign and malignant cancer findings
using CNN, Resnet50, InceptionV3, and Inception Resnet. A total of 37 benign infected pictures
were misinterpreted as malignant, while 74 malignant images were inaccurately classified as
benign when using the CNN, in contrast to 62 benign images misclassified as malignant and
34 malignant images misinterpreted as benign when using InceptionV3.
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Diagnostic effectiveness was assessed using the AUC receiver operating characteristic
curve (ROC), depicting the model’s categorization effectiveness as a function of two pa-
rameters: true positives and false positives. The AUC is calculated as the area under the
ROC curve covered by small trapezoidal segments. As shown in Figure 11, we performed
ROC analyses using a CNN model with an area of 0.83. The best-case ROC outcome for the
suggested model after fine-tuning using InceptionV3 is shown in Figure 12.
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It is now clear that the proposed strategy can be used in real-world settings to help
radiologists diagnose cancer infection more correctly by utilizing lesion images, while
simultaneously lowering their burden.

4.4. Comparison with Other Methods

A comparison of the suggested method’s efficacy to that of existing methods was
performed to better demonstrate its viability. Table 7 shows that our strategy was superior
to other networks in terms of performance. In the proposed approach, the Inception model
had an overall accuracy rate of 85.7%, outperforming the existing models.

Table 7. Comparison with other methods.

Reference Dataset Model Accuracy

[47] ISIC2018 VGG19_2 76.6%
[48] ISIC2016 VGGNet 78.6%
[49] ISBI2017 AlexNet + VGGNet 79.9%
[50] ISIC2017 U-Net 80.0%
[51] 2-ary, 3-ary, 9-ary DenseNet 82%
[52] HAM10000 AlexNet 84%
[53] HAM10000 MobileNet 83.9%

Proposed ISIC2018 CNN 83.1%
Proposed ISIC2018 Resnet50 83.6%
Proposed ISIC2018 Resnet50-Inception 84.1%
Proposed ISIC2018 Inception V3 85.7%

4.5. Discussion

According to our findings, none of the other approaches could match our level of
precision. We attribute this to (i) ESRGAN’s overall resolution improvement, (ii) the fine-
tuning to learn particular dataset aspects, and (iii) our use of numerous architectures, each
with a different capacity to generalize and adapt to various data. The lack of unique medical
image features meant that the transfer learning architectures could not achieve a higher level
of classification accuracy. Despite being better at classifying natural pictures, Resnet50’s
classification accuracy was lower than that of InceptionV3 when used on medical images.
These findings suggest that shallower networks, such as that in InceptionV3, have more
generalizable properties that may be used for a larger variety of imagery. On the other hand,



Healthcare 2022, 10, 1183 16 of 18

deeper networks such as Resnet50 and Inception Resnet learn abstract characteristics that
may be applied to any domain. Because the features of InceptionV3 are less semantically
suited to natural pictures, they are more generalizable and adaptable when applied to
medical images (compared to Resnet50 and Inception Resnet). Furthermore, fine-tuning the
networks improved the accuracy of the four models. Compared to Resnet50 and Inception
Resnet, InceptionV3’s accuracy increased the most. According to the results of this study,
deep networks are more likely to acquire relevant features when fine-tuned on a smaller
dataset than shallow networks. The confusion matrices and numerical data shown in
Figures 9 and 10 indicate that the suggested procedures were sufficient.

5. Conclusions and Future Work

By analyzing images of lesions on the skin, we developed a technique for quickly
and accurately diagnosing both benign and malignant forms of cancer. The suggested
system uses image enhancement approaches to boost the luminance of the lesion image
and reduce noise. Resnet50, InceptionV3, and Resnet Inception were all trained on the
upper edge of the preprocessed lesion medical images to prevent overfitting, as well as
improve the overall competencies of the suggested DL methods. A lesion image dataset
called the ISIC2018 dataset was used to test the proposed system’s performance. In the
proposed approach, the Inception model had an overall accuracy rate of 85.7%, which
is comparable to that of experienced dermatologists. In addition to experimenting with
several models (designed CNN, Resnet50, InceptionV3, and Inception Resnet), this study’s
innovation and contribution are the use of ESRGAN as a preprocessing step. Our designed
model showed results comparable to the pretrained model. According to the comparative
research, the proposed system outperformed current models. To establish the effectiveness
of the suggested method, there is a need to conduct tests on a large, complex dataset that
includes many cancer cases. It is possible that, in the future, we will employ Densenet,
VGG, or AlexNet to analyze the cancer dataset.
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