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Anaplastic thyroid carcinoma (ATC) is a very rare malignancy; the pathogenesis of which is still not fully understood. The aim of
the present study was to identify hub genes and pathways in ATC by microarray expression profiling. Two independent datasets
(GSE27155 and GSE53072) were downloaded from GEO database. The differentially expressed genes (DEGs) between ATC
tissues and normal thyroid tissues were screened out by the limma package and then enriched by gene ontology (GO) and
KEGG pathway analysis. The hub genes were selected by protein-protein interaction (PPI) analysis. A total of 141 common
upregulated and 87 common downregulated genes were screened out. These DEGs were significantly enriched in the phagosome
and NF-kappa B signaling pathway. Through PPI analysis, TOP2A, TYMS, CCNB1, RACGAP1, FEN1, PRC1, and UBE2C were
selected as hub genes, which were highly expressed in ATC tissues. TCGA data suggested that the expression levels of TOP2A,
TYMS, FEN1, and PRC1 genes were also upregulated in other histological subtypes of thyroid carcinoma. High expression of
TOP2A, TYMS, FEN1, PRC1, or UBE2C gene significantly decreased disease-free survival of patients with other thyroid
carcinomas. In conclusion, the present study identified several hub genes and pathways, which will contribute to elucidating the
pathogenesis of ATC and providing therapeutic targets for ATC.

1. Introduction

Thyroid carcinoma is a common endocrine cancer account-
ing for approximately 1.7% of total cancer diagnoses [1].
The main histologic types of thyroid carcinoma include
papillary thyroid carcinoma (PTC), follicular thyroid carci-
noma, medullary thyroid carcinoma, and anaplastic thyroid
carcinoma (ATC). Approximately 80% of thyroid cancers
are PTCs, which are usually curable with a 5-year survival
of over 95% [2]. In contrast, ATC constitutes only a small
part (1–2%) of all thyroid carcinomas, but it is the most
malignant with a median survival of 3–5 months [3, 4]. To
date, there is no standard or effective therapy for ATC.
Thus, it is very urgent to understand the pathogenesis of
ATC, which will contribute to the discovery of the attractive
therapeutic targets.

In the past decades, traditional and molecular biological
techniques have been used to reveal ATC-related genes and

pathways [5–7]. For instances, Yin et al. found that the
downregulated expression of the forkhead box D3 (FOXD3)
transcription factor in ATC cells promoted invasiveness and
epithelial-to-mesenchymal transition (EMT) and decreased
cellular apoptosis. FOXD3 silencing also enhanced p-ERK
levels in the ATC cells, suggesting it negatively regulated
MAPK/ERK signaling [5]. Zhang et al. observed that S100A4
was highly expressed in ATC tissues. Knockdown of S100A4
significantly decreased proliferation, increased apoptosis,
and inhibited the invasive potential of ATC cells [6]. Salerno
et al. found that TWIST1 played a pleiotropic role in deter-
mining the ATC phenotype. The ectopic expression of
TWIST1 induced resistance to apoptosis and increased cellu-
lar migration and invasion [7]. Although major efforts to
clarify the pathogenesis of ATC are ongoing, the relevant
progress is still not obvious. Considering the complexity
and heterogeneity of ATC, we adopted microarray technol-
ogy and bioinformatics methods to systematically explore
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large-cohort gene expression in ATC tissues, which has been
demonstrated to be valuable for molecular mechanism inves-
tigation [8].

2. Materials and Methods

2.1.MicroarrayData.The rawdata of gene expression profiles
of 9 ATC and 7 normal thyroid tissues were downloaded from
Gene Expression Omnibus database (GEO accession num-
bers: GSE27155 and GSE53072). GSE27155 and GSE53072
datasets were submitted by Giordano et al. and Pita et al.,
respectively [9–11]. Among these analyzed tissues, 4 ATC
and 4 normal thyroid tissues from GSE27155 were detected
by Affymetrix Human Genome U133A Array (GPL96 plat-
form). Other tissues from GSE53072 were detected by Affy-
metrix Human Gene 1.0 ST Array (GPL6244 platform).

The raw data of GSE27155 and GSE53072 were prepro-
cessed using the affy and oligo packages with the robust mul-
tichip averaging (RMA) algorithm, respectively [12–16]. The
probeset IDs were converted into the corresponding gene
symbols using the annotation information derived from plat-
forms. If multiple probesets correspond to the same gene, the
mean expression values of those probesets were obtained.

2.2. Identification of Differentially Expressed Genes (DEGs).
Limma R package was applied to identify the DEGs between
ATC and normal thyroid tissues [17]. The Benjamini-
Hochberg (BH) method was introduced to adjust the raw
p values. The adjusted p value< 0.05 and |log2 fold change
(FC)|≥ 1 were set as the thresholds for identifying DEGs.

2.3. Functional and Pathway Enrichment Analysis of DEGs.
In order to systematically explore genes involved in ATC,
gene ontology (GO) and pathway enrichment analyses for
the common DEGs were performed using the clusterProfiler
package in R, which was based on the GO and Kyoto Ency-
clopedia of Genes and Genomes (KEGG) databases [18–20].
The criterion for the significant enrichments was set as
p value< 0.05.

2.4. Construction of the Protein-Protein Interaction (PPI)
Network. The PPI network provides a valuable framework
for better understanding of the functional organization of
the proteome. In this network, nodes and edges represent

proteins and interactions between proteins, respectively.
The proteins with high degrees, namely, those highly con-
nected with other proteins, are defined to be located at the
network center, which may be regulatory “hubs.” We con-
structed the PPI network by using STRING database and
Cytoscape 3.3 software [21, 22]. The nodes with degree> 1
were reserved in the PPI network. Genes with degree> 25
were considered as hub genes (proteins).

2.5. The Expression Levels of Hub Genes in Other Thyroid
Carcinomas. UALCAN (http://ualcan.path.uab.edu) is a
user-friendly, interactive web resource for analyzing cancer
transcriptome data from The Cancer Genome Atlas (TCGA)
[23]. In the current study, UALCAN was used to explore the
expression levels of hub genes in other thyroid carcinomas.
p value< 0.05 was considered statistically significant.

2.6. The Association of Hub Gene Expression with Disease-
Free Survival of Patients with Other Thyroid Carcinomas.
Gene expression profiling interactive analysis (GEPIA,
http://gepia.cancer-pku.cn/) is a web-based tool to deliver
fast and customizable functionalities based on TCGA and
GTEx data [24]. These functionalities included differential
expression analysis, profiling plotting, correlation analysis,
patient survival analysis, similar gene detection, and dimen-
sionality reduction analysis. In the current study, GEPIA
was used to explore the association of hub gene expression
with disease-free survival of patients with other thyroid car-
cinomas. Patients were grouped into high expression group
and low expression group according to the median value of
hub gene expression. p value< 0.05 was considered statisti-
cally significant.

3. Results

3.1. Identification of DEGs. As shown in Figure 1 and Table 1,
for GSE27155, a total of 404 DEGs, including 263 upregu-
lated and 141 downregulated genes in ATC, were identified.
For GSE53072, a total of 2522 DEGs, including 995 upregu-
lated and 1527 downregulated genes in ATC, were screened
out. Further analysis showed that the two independent data-
sets contained 228 common DEGs, including 141 common
upregulated and 87 common downregulated genes in ATC.

GSE53072

854 141 122

GSE27155

(a)

GSE53072

871440 54

GSE27155

(b)

Figure 1: Venn diagrams showing the number of differentially expressed genes (DEGs) in ATC tissues compared with normal thyroid tissues
((a) the number of upregulated genes; (b) the number of downregulated genes).

2 International Journal of Endocrinology

http://ualcan.path.uab.edu
http://gepia.cancer-pku.cn/


T
a
bl
e
1:
T
he

co
m
m
on

di
ff
er
en
ti
al
ly
ex
pr
es
se
d
ge
ne
s
in

G
SE

27
15
5
an
d
G
SE

53
07
2
da
ta
se
ts
.N

ot
e:
bo
ld

an
d
it
al
ic
da
ta
in
di
ca
te
ge
ne
s
in

th
e
ph

ag
os
om

e
an
d
N
F-
ka
pp

a
B
si
gn
al
in
g
pa
th
w
ay
,

re
sp
ec
ti
ve
ly
.B

ol
d-
it
al
ic
da
ta

in
di
ca
te
s
th
e
co
m
m
on

ge
ne

in
th
e
ph

ag
os
om

e
an
d
N
F-
ka
pp

a
B
si
gn
al
in
g
pa
th
w
ay
.

C
om

m
on

di
ff
er
en
ti
al
ly
ex
pr
es
se
d
ge
ne
s

D
ow

nr
eg
ul
at
ed

ge
ne
s

U
pr
eg
ul
at
ed

ge
ne
s

M
A
N
1C

1
C
A
4

W
A
SF
3

H
SD

17
B
4

C
1Q

A
N
C
F
2

C
LE

C
7A

R
A
B
31

C
O
L5

A
2

C
C
N
B
1

R
A
P
2C

P
B
X
1

K
C
N
J1
6

C
LN

5
M
Y
LI
P

C
LI
C
4

A
SP

M
R
E
C
Q
L

P
M
A
IP
1

C
O
L6

A
3

V
C
A
N

IR
A
K
I

C
lo
rfl
l5

P
T
P
R
M

R
C
B
T
B
1

H
SD

17
B
8

C
D
C
20

K
IF
14

T
U
B
A
1A

A
D
G
R
E
5

C
D
C
25
B

LM
N
B
1

FL
N
A

M
A
R
C
2

T
X
N
L1

T
SH

R
M
T
C
H
1

V
C
A
M
1

LB
R

R
A
C
G
A
P
1

T
P
M
4

T
P
X
2

T
G
FB

I
T
A
G
LN

2

M
A
R
C
1

C
IR
B
P

SA
V
1

K
H
D
R
B
S2

G
P
SM

2
A
R
ID

5B
C
O
R
O
1C

C
O
LG

A
LT

1
U
B
E
2C

SL
C
36
A
1

C
3A

R
1

R
A
P
1G

A
P

B
C
A
M

D
I0
2

LM
B
R
D
1

G
N
A
I3

PL
A
U

C
IT

V
A
SP

C
T
SA

LH
FP

L2
T
Y
M
S

E
C
H
D
C
2

T
LE

2
C
K
B

SL
C
26
A
4

C
D
53

Z
W
IN

T
A
LO

X
5A

P
E
M
P
3

A
D
R
M
1

C
D
14

W
IP
F1

P
LP

P
3

P
A
X
8

P
P
P
1R

13
B

E
P
H
B
6

IF
I1
6

M
IC
A
L2

P
N
P

P
LI
N
3

B
4G

A
LT

5
T
T
K

O
SM

R

SE
LE

N
B
P
1

LR
P
2

SO
R
D

A
T
P
6V

0E
2

FC
E
R
1G

M
S4
A
4A

R
N
A
SE

6
D
D
X
39
A

IT
G
B
2

R
A
B
32

K
IF
4A

R
G
S5

A
C
A
D
L

D
U
O
X
1

T
M
E
M
24
3

F
C
G
R
2A

FE
N
1

B
A
Z
1A

B
ST

2
Y
W
H
A
H

T
U
B
B
2A

A
LD

H
9A

1
R
A
B
17

C
R
A
B
P
1

E
P
H
X
2

F
C
G
R
2B

N
N
M
T

SE
C
23
A

T
Y
R
O
B
P

LG
A
LS
1

C
LI
C
1

R
G
S1
6

SN
T
A
1

D
U
O
X
2

T
G

P
T
P
R
C

R
H
O
G

N
U
SA

P
1

A
P
2S
1

R
A
C
2

H
LA

-D
P
A
1

H
H
E
X

IN
P
P
5J

G
A
T
M

T
JP
2

T
R
A
F5

LP
X
N

A
N
X
A
2

R
R
M
2

G
N
L3

T
N
FR

SF
21

PR
K
C
Q

C
B
X
7

M
Y
05
C

N
T
R
K
2

D
T
L

M
S4
A
6A

P
K
M

M
T
H
FD

2
C
D
86

T
H
B
S2

N
E
B
L

A
C
O
X
2

D
A
P
K
2

FO
X
E
1

E
N
O
l

P
P
P
1R

14
B

P
R
C
1

T
M
SB

10
SM

C
4

U
P
P
1

O
G
D
H
L

Z
B
E
D
2

A
B
A
T

B
SP

R
Y

LA
P
T
M
5

C
ll
or
f2
4

C
H
SY

1
SL
C
20
A
1

H
C
LS
1

T
M
E
M
17
6B

A
B
LI
M
1

H
G
D

SA
LL

1
C
C
L2
1

Y
A
R
S

C
T
SC

C
C
L1
3

A
C
T
R
3

T
O
P
B
P
1

E
IF
4E

B
P
1

FG
FR

2
LI
M
C
H
1

C
D
H
16

A
LD

H
1A

1
D
P
Y
D

T
U
B
A
1C

K
P
N
A
2

C
O
L3

A
1

T
F
R
C

M
C
M
4

G
LB

1L
2

P
P
A
R
G
C
1A

A
LD

H
3A

2
C
LI
C
3

M
T
M
R
11

LY
Z

SL
C
16
A
3

P
X
D
N

T
LR

2
LY

96

M
E
T
T
L7

A
H
O
P
X

D
U
SP

14
R
G
N

S1
00
A
10

FO
X
M
1

E
V
I2
A

M
C
M
6

H
2A

FZ
A
N
X
A
2P

2

P
E
B
P
1

SO
R
B
S2

H
LF

G
P
R
A
SP

1
S1
00
A
11

T
N
FR

SF
1A

T
O
P
2A

R
N
D
3

B
A
SP

1
T
N
C

IF
T
88

P
D
E
8B

N
A
P
1L

2
A
IM

2
C
D
16
3

C
O
L1

A
1

FA
P

SL
C
1A

3
P
LP

2

3International Journal of Endocrinology



3.2. Integrated Analysis of the Common DEGs. By GO analy-
sis, we identified 146 significant enrichments terms, which
were classified in 3 GO categories, including biological pro-
cesses (BP, 92), molecular functions (MF, 20), and cellular
components (CC, 34). The top 10 GO terms of BP, MF,
and CC were shown in Figures 2(a)–2(c). For BP, those com-
mon DEGs are significantly enriched in neutrophil activa-
tion, neutrophil-mediated immunity, neutrophil activation
involved in immune response, neutrophil degranulation,
hormone metabolic process, mitotic sister chromatid segre-
gation, microtubule cytoskeleton organization involved in

mitosis, mitotic spindle organization, thyroid hormone met-
abolic process, thyroid hormone generation, and so on. For
MF, those common DEGs are mainly enriched in cell adhe-
sion molecule binding, actin binding, nucleoside binding,
GTPase activity, cofactor binding, coenzyme binding, pattern
recognition receptor activity, signaling pattern recognition
receptor activity, aldehyde dehydrogenase (NAD) activity,
and IgG binding. For CC, those common DEGs are signif-
icantly enriched in the side of the membrane, secretory
granule membrane, cell-substrate junction, cell-substrate
adherens junction, focal adhesion, cell leading edge, spindle,

�yroid hormone generation

�yroid hormone metabolic process

Mitotic spindle organization

Microtubule cytoskeleton organization involved in mitosis

Mitotic sister chromatid segregation

Hormone metabolic process

Neutrophil degranulation

Neutrophil activation involved in immune response

Neutrophil mediated immunity

Neutrophil activation

Count
5
10
15
20

0.0005
0.0010
0.0015
0.0020

p.adjust

0.04 0.06 0.08 0.100.02
Gene ratio

(a)

IgG binding

Aldehyde dehydrogenase (NAD) activity

Signaling pattern recognition receptor activity

Pattern recognition receptor activity

Coenzyme binding

Cofactor binding

GTPase activity

Nucleoside binding

Actin binding

Cell adhesion molecule binding

0.02 0.04 0.06
Gene ratio

Count
3
6
9
12
15

0.01
0.02
0.03

p.adjust

(b)

Extracellular matrix component

External side of plasma membrane

Endocytic vesicle

Spindle

Cell leading edge

Focal adhesion

Cell−substrate adherens junction

Cell−substrate junction

Secretory granule membrane

Side of membrane

0.04 0.05 0.06 0.07
Gene ratio

Count
10.0
12.5
15.0

0.002
0.004
0.006

p.adjust

(c)

NF−kappa B signaling pathway

Phagosome

0.09 0.10 0.11
Gene ratio

Count
10
11
12
13
14

4e−04
6e−04
8e−04
1e−03

p.adjust

(d)

Figure 2: The top 10 gene ontology (GO) terms and significantly enriched KEGG pathways ((a) biological processes; (b) molecular functions;
(c) cellular components; (d) KEGG pathways).
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endocytic vesicle, external side of plasma membrane, extra-
cellular matrix component, and so on. Furthermore, KEGG
pathway enrichment analysis showed that these common
DEGs were significantly enriched in the phagosome and
NF-kappa B signaling pathway (Figure 2(d)).

There were 180 nodes and 737 edges in the PPI network
(Figure 3(a)). Thereinto, 7 upregulated genes in ATC, includ-
ing TOP2A, TYMS, CCNB1, RACGAP1, FEN1, PRC1, and

UBE2C, were selected as the hub genes (Figure 3(b)). TOP2A
gene had the highest degree (degree = 37) in the network.

UALCAN and GEPIA online tools were used to explore
TCGA data. Results suggested that the expression levels of
hub genes, TOP2A, TYMS, FEN1, and PRC1, were also upreg-
ulated in at least one histological subtype of thyroid carci-
noma (Figure 4). However, the expression levels of CCNB1
and RACGAP1 genes were significantly downregulated in at
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Figure 3: Protein-protein interaction (PPI) network of differentially expressed genes (DEGs) ((a) PPI network; (b) hub genes).
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least one histological subtype of thyroid carcinoma. UBE2C
gene expression did not significantly change in other thyroid
carcinomas (figure not shown). Survival analysis indicated
that high expression of TOP2A, TYMS, FEN1, PRC1, or
UBE2C gene significantly decreased disease-free survival of
patients with other thyroid carcinomas (Figure 5).

4. Discussion

In the present study, we identified two significant pathways
(phagosome and NF-kappa B signaling pathway) and seven
hub genes (TOP2A, TYMS, CCNB1, RACGAP1, FEN1,
PRC1, and UBE2C) related with ATC. In 2017, Huang
et al. used GSE33630 data to conduct a similar analysis
and considered the Toll-like receptor signaling pathway,
extracellular matrix-receptor interaction, and cytokine-
cytokine receptor interaction pathway as important path-
ways implicating ATC. FOS, CXCL10, COL5A1, COL11A1,
and CCL28 genes might be used as therapeutic targets for
ATC [25]. These findings were different from our findings,
which might be attributed to tumor heterogeneity or differ-
ences in analytical methods between two studies. Besides
the identification of potential hub genes and pathways asso-
ciated with ACT, we still analyzed the expression levels of
these hub genes in other histological subtypes of thyroid
carcinoma and found that UBE2C gene expression did
not significantly change in other thyroid carcinomas, sug-
gesting that UBE2C might act as a specific diagnostic bio-
marker for ACT. Further survival analysis showed that
high expression of TOP2A, TYMS, FEN1, PRC1, or UBE2C
gene significantly decreased disease-free survival of patients
with other thyroid carcinomas.

Although there was no study directly linking phagosome
to ATC, the phagosome participated in the innate and adap-
tive immune responses [26, 27]. The present study found ten
common DEGs involving in the phagosome. Therefore, the
role of the phagosome and phagosome-related genes in
ATC was worthy of being further explored. NF-kappa B
signaling pathway played an important role in cancer initi-
ation and progression [28, 29]. The present analysis of
DEGs showed that most genes of the NF-kappa B signaling
pathway were upregulated, suggesting that the pathway was
also activated in ATC. Furthermore, the NF-kappa B signal-
ing pathway also participated in an anticancer agent (R-ros-
covitine) activity, inducing apoptosis of ATC cells [30].
These results indicated that novel agents involving the
NF-kappa B signaling pathway could be developed to improve
ATC treatment.

Previous studies have indicated that seven hub genes
identified by the present study play an important role in the
occurrence and development of tumors [31–46]. TOP2A
gene encodes a DNA topoisomerase that controls and alters
the topologic states of DNA during transcription. Immu-
nohistochemical analysis showed that TOP2A correlated
with thyroid tumor histology and it was more frequently
expressed in tumors with aggressive clinical behavior [31].
TYMS gene encodes thymidylate synthase, which catalyzes
the methylation of deoxyuridylate to deoxythymidylate.
Although the role of TYMS in ATC was not reported previ-
ously, the enzyme has been of interest as a target for cancer
chemotherapeutic agents [32–35]. The protein encoded by
CCNB1 gene is involved in mitosis and necessary for proper
control of the G2/M transition phase of the cell cycle.
Lin et al. found that dinaciclib, a cyclin-dependent kinase
(CDK) inhibitor, could inhibit ATC cell proliferation by
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Figure 4: The expression levels of hub genes in other thyroid carcinomas.
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decreasing CDK1, CCNB1, and Aurora A expression, induc-
ing cell cycle arrest in the G2/M phase and inducing the accu-
mulation of prophase mitotic cells [36]. RACGAP1 gene
encodes a GTPase-activating protein (GAP) that is a compo-
nent of the centralspindlin complex. This protein played a
regulatory role in cytokinesis, cell growth, and differentia-
tion. To date, there is no report linking RACGAP1 to ATC,
but its importance in the development of other cancers has
been revealed [37, 38]. The protein encoded by FEN1 gene
removes 5′ overhanging flaps in DNA repair and processes
the 5′ ends of Okazaki fragments in lagging strand DNA
synthesis. Previous studies confirmed that FEN1 not only
promoted cancer cell proliferation and progression but also
conferred cancer drug resistance [39, 40]. According to these
results, we inferred that FEN1 might also play important
roles in development or drug resistance of ATC. PRC1 gene
encodes a protein involved in cytokinesis [41, 42]. The pro-
tein is present at high levels during the S and G2/M phases
of mitosis, but its levels drop dramatically when the cell exits

mitosis and enters the G1 phase. Recent studies showed that
PRC1 was upregulated in many types of cancer and might
serve as a prognostic biomarker of cancer [43–45]. UBE2C
gene encodes a member of the E2 ubiquitin-conjugating
enzyme family. The encoded protein is required for the
destruction of mitotic cyclins and for cell cycle progression.
Pallante et al. found that UBE2C overexpression was involved
in thyroid cell proliferation and might act as a diagnostic bio-
marker for ATC [46].

Taken together, the integrated bioinformatics study pre-
sented several hub genes and pathways related to ATC, which
would provide new insights into the exploration of pathogen-
esis and therapeutic targets for ATC.

Data Availability

The microarray data used to support the findings of this study
have been deposited in the Gene Expression Omnibus (GEO)
repository (accession numbers: GSE27155 and GSE53072).
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Figure 5: The association of hub gene expression with disease-free survival of patients with other thyroid carcinomas.

7International Journal of Endocrinology



Conflicts of Interest

The authors declare that they have no competing interests.

Authors’ Contributions

Xueren Gao and Jianguo Wang contributed equally to this
work.

References

[1] W. He, B. Qi, Q. Zhou et al., “Key genes and pathways in thy-
roid cancer based on gene set enrichment analysis,” Oncology
Reports, vol. 30, no. 3, pp. 1391–1397, 2013.

[2] R. M. Tuttle, D. W. Ball, D. Byrd et al., “Thyroid carcinoma,”
Journal of the National Comprehensive Cancer Network,
vol. 8, no. 11, pp. 1228–1274, 2010.

[3] J. Capdevila, R. Mayor, F. M. Mancuso et al., “Early evolution-
ary divergence between papillary and anaplastic thyroid can-
cers,” Annals of Oncology, vol. 29, no. 6, pp. 1454–1460, 2018.

[4] E. Molinaro, C. Romei, A. Biagini et al., “Anaplastic thyroid
carcinoma: from clinicopathology to genetics and advanced
therapies,” Nature Reviews Endocrinology, vol. 13, no. 11,
pp. 644–660, 2017.

[5] H. Yin, T. Meng, L. Zhou et al., “FOXD3 regulates anaplastic
thyroid cancer progression,” Oncotarget, vol. 8, no. 20,
pp. 33644–33651, 2017.

[6] K. Zhang, M. Yu, F. Hao, A. Dong, and D. Chen, “Knockdown
of S100A4 blocks growth and metastasis of anaplastic thyroid
cancer cells in vitro and in vivo,” Cancer Biomarkers, vol. 17,
no. 3, pp. 281–291, 2016.

[7] P. Salerno, G. Garcia-Rostan, S. Piccinin et al., “TWIST1 plays
a pleiotropic role in determining the anaplastic thyroid cancer
phenotype,” The Journal of Clinical Endocrinology and Metab-
olism, vol. 96, no. 5, pp. E772–E781, 2011.

[8] B. Berger, J. Peng, and M. Singh, “Computational solutions for
omics data,” Nature Reviews Genetics, vol. 14, no. 5, pp. 333–
346, 2013.

[9] T. J. Giordano, R. Kuick, D. G. Thomas et al., “Molecular clas-
sification of papillary thyroid carcinoma: distinct BRAF, RAS,
and RET/PTC mutation-specific gene expression profiles dis-
covered by DNA microarray analysis,” Oncogene, vol. 24,
no. 44, pp. 6646–6656, 2005.

[10] T. J. Giordano, A. Y. Au, R. Kuick et al., “Delineation, func-
tional validation, and bioinformatic evaluation of gene expres-
sion in thyroid follicular carcinomas with the PAX8-PPARG
translocation,” Clinical Cancer Research, vol. 12, no. 7,
pp. 1983–1993, 2006.

[11] J. M. Pita, I. F. Figueiredo, M. M. Moura, V. Leite, and B. M.
Cavaco, “Cell cycle deregulation and TP53 and RAS mutations
are major events in poorly differentiated and undifferentiated
thyroid carcinomas,” The Journal of Clinical Endocrinology
and Metabolism, vol. 99, no. 3, pp. E497–E507, 2014.

[12] L. Gautier, L. Cope, B. M. Bolstad, and R. A. Irizarry, “affy–
analysis of Affymetrix GeneChip data at the probe level,” Bio-
informatics, vol. 20, no. 3, pp. 307–315, 2004.

[13] B. S. Carvalho and R. A. Irizarry, “A framework for oligonucle-
otide microarray preprocessing,” Bioinformatics, vol. 26,
no. 19, pp. 2363–2367, 2010.

[14] B. M. Bolstad, R. A. Irizarry, M. Astrand, and T. P. Speed, “A
comparison of normalization methods for high density

oligonucleotide array data based on variance and bias,” Bioin-
formatics, vol. 19, no. 2, pp. 185–193, 2003.

[15] R. A. Irizarry, B. M. Bolstad, F. Collin, L. M. Cope, B. Hobbs,
and T. P. Speed, “Summaries of Affymetrix GeneChip probe
level data,” Nucleic Acids Research, vol. 31, no. 4, pp. 15e–
115, 2003.

[16] R. A. Irizarry, B. Hobbs, F. Collin et al., “Exploration, nor-
malization, and summaries of high density oligonucleotide
array probe level data,” Biostatistics, vol. 4, no. 2, pp. 249–
264, 2003.

[17] M. E. Ritchie, B. Phipson, D. Wu et al., “Limma powers differ-
ential expression analyses for RNA-sequencing and microar-
ray studies,” Nucleic Acids Research, vol. 43, no. 7, p. e47,
2015.

[18] G. Yu, L. G. Wang, Y. Han, and Q. Y. He, “clusterProfiler: an R
package for comparing biological themes among gene clus-
ters,” OMICS, vol. 16, no. 5, pp. 284–287, 2012.

[19] M. A. Harris, J. Clark, A. Ireland et al., “The Gene Ontology
(GO) database and informatics resource,” Nucleic Acids
Research, vol. 32, pp. D258–D261, 2004.

[20] M. Kanehisa and S. Goto, “KEGG: Kyoto encyclopedia of
genes and genomes,” Nucleic Acids Research, vol. 28, no. 1,
pp. 27–30, 2000.

[21] D. Szklarczyk, J. H. Morris, H. Cook et al., “The STRING data-
base in 2017: quality-controlled protein-protein association
networks, made broadly accessible,” Nucleic Acids Research,
vol. 45, no. D1, pp. D362–D368, 2017.

[22] P. Shannon, A. Markiel, O. Ozier et al., “Cytoscape: a software
environment for integrated models of biomolecular interac-
tion networks,” Genome Research, vol. 13, no. 11, pp. 2498–
2504, 2003.

[23] D. S. Chandrashekar, B. Bashel, S. A. H. Balasubramanya et al.,
“UALCAN: a portal for facilitating tumor subgroup gene
expression and survival analyses,” Neoplasia, vol. 19, no. 8,
pp. 649–658, 2017.

[24] Z. Tang, C. Li, B. Kang, G. Gao, C. Li, and Z. Zhang, “GEPIA: a
web server for cancer and normal gene expression profiling
and interactive analyses,” Nucleic Acids Research, vol. 45,
no. W1, pp. W98–W102, 2017.

[25] Y. Huang, Y. Tao, X. Li et al., “Bioinformatics analysis of key
genes and latent pathway interactions based on the anaplastic
thyroid carcinoma gene expression profile,” Oncology Letters,
vol. 13, no. 1, pp. 167–176, 2017.

[26] L. Schnettger and M. G. Gutierrez, “Quantitative spatiotempo-
ral analysis of phagosome maturation in live cells,”Methods in
Molecular Biology, vol. 1519, pp. 169–184, 2017.

[27] P. Nunes-Hasler, S. Maschalidi, C. Lippens et al., “STIM1 pro-
motes migration, phagosomal maturation and antigen cross-
presentation in dendritic cells,” Nature Communications,
vol. 8, no. 1, p. 1852, 2017.

[28] B. Hoesel and J. A. Schmid, “The complexity of NF-κB signal-
ing in inflammation and cancer,” Molecular Cancer, vol. 12,
no. 1, p. 86, 2013.

[29] J. A. DiDonato, F. Mercurio, and M. Karin, “NF-κB and
the link between inflammation and cancer,” Immunological
Reviews, vol. 246, no. 1, pp. 379–400, 2012.

[30] M. Festa, A. Petrella, S. Alfano, and L. Parente, “R-roscovitine
sensitizes anaplastic thyroid carcinoma cells to TRAIL-
induced apoptosis via regulation of IKK/NF-κB pathway,”
International Journal of Cancer, vol. 124, no. 11, pp. 2728–
2736, 2009.

8 International Journal of Endocrinology



[31] A. Lee, V. A. LiVolsi, and Z. W. Baloch, “Expression of DNA
topoisomerase IIalpha in thyroid neoplasia,” Modern Pathol-
ogy, vol. 13, no. 4, pp. 396–400, 2000.

[32] M. Joerger, A. Omlin, T. Cerny, and M. Früh, “The role of
pemetrexed in advanced non small-cell lung cancer: special
focus on pharmacology and mechanism of action,” Current
Drug Targets, vol. 11, no. 1, pp. 37–47, 2010.

[33] P. Ceppi, M. Volante, S. Saviozzi et al., “Squamous cell carci-
noma of the lung compared with other histotypes shows
higher messenger RNA and protein levels for thymidylate syn-
thase,” Cancer, vol. 107, no. 7, pp. 1589–1596, 2006.

[34] H. Ozasa, T. Oguri, T. Uemura et al., “Significance of thymidy-
late synthase for resistance to pemetrexed in lung cancer,”
Cancer Science, vol. 101, no. 1, pp. 161–166, 2010.

[35] G. Scagliotti, N. Hanna, F. Fossella et al., “The differential effi-
cacy of pemetrexed according to NSCLC histology: a review of
two phase III studies,” The Oncologist, vol. 14, no. 3, pp. 253–
263, 2009.

[36] S. F. Lin, J. D. Lin, C. Hsueh, T. C. Chou, and R. J. Wong, “A
cyclin-dependent kinase inhibitor, dinaciclib in preclinical
treatment models of thyroid cancer,” PLoS One, vol. 12,
no. 2, article e0172315, 2017.

[37] C. Wang, W. Wang, Y. Liu, M. Yong, Y. Yang, and H. Zhou,
“Rac GTPase activating protein 1 promotes oncogenic pro-
gression of epithelial ovarian cancer,” Cancer Science,
vol. 109, no. 1, pp. 84–93, 2018.

[38] H. Imaoka, Y. Toiyama, S. Saigusa et al., “RacGAP1 expres-
sion, increasing tumor malignant potential, as a predictive bio-
marker for lymph node metastasis and poor prognosis in
colorectal cancer,” Carcinogenesis, vol. 36, no. 3, pp. 346–
354, 2015.

[39] L. He, L. Luo, H. Zhu et al., “FEN1 promotes tumor progres-
sion and confers cisplatin resistance in non-small-cell lung
cancer,” Molecular Oncology, vol. 11, no. 9, pp. 1302-1303,
2017.

[40] K. Zhang, S. Keymeulen, R. Nelson et al., “Overexpression of
flap endonuclease 1 correlates with enhanced proliferation
and poor prognosis of non-small-cell lung cancer,” American
Journal of Pathology, vol. 188, no. 1, pp. 242–251, 2018.

[41] C. Mollinari, J. P. Kleman, W. Jiang, G. Schoehn, T. Hunter,
and R. L. Margolis, “PRC1 is a microtubule binding and bun-
dling protein essential to maintain the mitotic spindle mid-
zone,” Journal of Cell Biology, vol. 157, no. 7, pp. 1175–1186,
2002.

[42] C. Zhu and W. Jiang, “Cell cycle-dependent translocation of
PRC1 on the spindle by Kif4 is essential for midzone formation
and cytokinesis,” Proceedings of the National Academy of
Sciences of the United States of America, vol. 102, no. 2,
pp. 343–348, 2005.

[43] B. Zhang, X. Shi, G. Xu et al., “Elevated PRC1 in gastric
carcinoma exerts oncogenic function and is targeted by
piperlongumine in a p53-dependent manner,” Journal of
Cellular and Molecular Medicine, vol. 21, no. 7, pp. 1329–
1341, 2017.

[44] A. Shimo, T. Nishidate, T. Ohta, M. Fukuda, Y. Nakamura,
and T. Katagiri, “Elevated expression of protein regulator of
cytokinesis 1, involved in the growth of breast cancer cells,”
Cancer Science, vol. 98, no. 2, pp. 174–181, 2007.

[45] H. W. Luo, Q. B. Chen, Y. P. Wan et al., “Protein regulator of
cytokinesis 1 overexpression predicts biochemical recurrence
in men with prostate cancer,” Biomedicine & Pharmacother-
apy, vol. 78, pp. 116–120, 2016.

[46] P. Pallante, M. T. Berlingieri, G. Troncone et al., “UbcH10
overexpression may represent a marker of anaplastic thyroid
carcinomas,” British Journal of Cancer, vol. 93, no. 4,
pp. 464–471, 2005.

9International Journal of Endocrinology


	Integrated Bioinformatics Analysis of Hub Genes and Pathways in Anaplastic Thyroid Carcinomas
	1. Introduction
	2. Materials and Methods
	2.1. Microarray Data
	2.2. Identification of Differentially Expressed Genes (DEGs)
	2.3. Functional and Pathway Enrichment Analysis of DEGs
	2.4. Construction of the Protein-Protein Interaction (PPI) Network
	2.5. The Expression Levels of Hub Genes in Other Thyroid Carcinomas
	2.6. The Association of Hub Gene Expression with Disease-Free Survival of Patients with Other Thyroid Carcinomas

	3. Results
	3.1. Identification of DEGs
	3.2. Integrated Analysis of the Common DEGs

	4. Discussion
	Data Availability
	Conflicts of Interest
	Authors’ Contributions

