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ABSTRACT Resistance or tolerance to traditional antibiotics is a challenging issue in
antimicrobial chemotherapy. Moreover, traditional bactericidal antibiotics kill only ac-
tively growing bacterial cells, whereas nongrowing metabolically inactive cells are
tolerant to and therefore “persist” in the presence of legacy antibiotics. Here, we re-
port that the diarylurea derivative PQ401, previously characterized as an inhibitor of
the insulin-like growth factor I receptor, kills both antibiotic-resistant and nongrow-
ing antibiotic-tolerant methicillin-resistant Staphylococcus aureus (MRSA) by lipid bi-
layer disruption. PQ401 showed several beneficial properties as an antimicrobial lead
compound, including rapid killing kinetics, low probability for resistance develop-
ment, high selectivity to bacterial membranes compared to mammalian membranes,
and synergism with gentamicin. In contrast to well-studied membrane-disrupting
cationic antimicrobial low-molecular-weight compounds and peptides, molecular dy-
namic simulations supported by efficacy data demonstrate that the neutral form of
PQ401 penetrates and subsequently embeds into bacterial lipid bilayers more effec-
tively than the cationic form. Lastly, PQ401 showed efficacy in both the Caenorhab-
ditis elegans and Galleria mellonella models of MRSA infection. These data suggest
that PQ401 may be a lead candidate for repurposing as a membrane-active antimi-
crobial and has potential for further development as a human antibacterial thera-
peutic for difficult-to-treat infections caused by both drug-resistant and -tolerant S.
aureus.

IMPORTANCE Membrane-damaging antimicrobial agents have great potential to
treat multidrug-resistant or multidrug-tolerant bacteria against which conventional
antibiotics are not effective. However, their therapeutic applications are often ham-
pered due to their low selectivity to bacterial over mammalian membranes or their
potential for cross-resistance to a broad spectrum of cationic membrane-active anti-
microbial agents. We discovered that the diarylurea derivative compound PQ401 has
antimicrobial potency against multidrug-resistant and multidrug-tolerant Staphylo-
coccus aureus. PQ401 selectively disrupts bacterial membrane lipid bilayers in com-
parison to mammalian membranes. Unlike cationic membrane-active antimicrobials,
the neutral form of PQ401 rather than its cationic form exhibits maximum mem-
brane activity. Overall, our results demonstrate that PQ401 could be a promising
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lead compound that overcomes the current limitations of membrane selectivity and
cross-resistance. Also, this work provides deeper insight into the design and devel-
opment of new noncharged membrane-targeting therapeutics to combat hard-to-
cure bacterial infections.

KEYWORDS persisters, antibiotic tolerance, antimicrobial resistance, MRSA,
membrane-active antimicrobials, antibiotic, bacterial persister, Caenorhabditis elegans,
membrane-active agent

Staphylococcus aureus is a Gram-positive bacterial pathogen that colonizes the skin
or nasal cavity of approximately one-third of the human population (1). S. aureus is

one of the most significant human bacterial pathogens, causing a wide range of
infections from mild skin infections and food poisoning to life-threatening infections,
such as toxic shock syndrome, endocarditis, and osteomyelitis (1). Despite advances in
antibiotic chemotherapy, including the introduction of daptomycin in 2003, treatment
of S. aureus infections is still a challenge due to resistance to or tolerance of clinically
used antibiotics, as exemplified by methicillin-resistant S. aureus (MRSA) or vancomycin-
intermediate or -resistant S. aureus (VISA/VRSA).

S. aureus can readily acquire resistance by horizontal gene transfer (2). Without
acquiring genetic mutations that actively confer antibiotic resistance, nongrowing
metabolically inactive S. aureus cells also exhibit high levels of tolerance to currently
used antibiotics (3–7). In a laboratory setting, the proportion of antibiotic-tolerant cells
in an S. aureus population varies depending on growth phase (5, 8). In stationary phase,
essentially the entire bacterial population will survive prolonged treatment with high
concentrations of bactericidal antibiotics (3, 4, 6, 8). This has recently been defined as
antibiotic “tolerance” (9). In contrast, in lag and early exponential phase, only a small
subpopulation of an S. aureus culture will survive antibiotic treatment (8). In this case,
the survivors are designated “persisters” (9).

Antibiotic tolerance is a consequence of the fact that traditional antibiotics target
biosynthetic processes that are occurring at significantly reduced levels in nongrowing
cells (10) or is a consequence of a low-energy state that arrests the energy-dependent
uptake of antibiotics (5, 7). Clinically, bacterial tolerance or persistence is associated
with the recalcitrance of chronic infections (11, 12). The present lack of effective
antibiotics against antibiotic-resistant bacteria or tolerant/persister cells highlights the
unmet need of developing novel antimicrobial therapies.

The validity of the bacterial membrane as an antimicrobial target has been proven
by the evolution of antimicrobial peptides (AMPs) and proteins by animals, plants, and
fungi that kill bacteria by disrupting bacterial membranes (13). Bacterial membranes are
an ideal target for antimicrobial agents because membrane integrity is indispensable
for bacterial survival regardless of growth state (14). However, a key barrier to the
development of membrane-active agents as human therapeutics is their typical low
level of selectivity between bacterial and mammalian membranes. Since natural AMPs
exhibit high selectivity to bacterial over mammalian membranes, membrane-active
small molecules are typically designed and developed to mimic natural AMPs (15, 16).
Thus, rationally designed membrane-active small molecules are usually cationic and
amphipathic, which are key structural features of AMPs (15, 16). In particular, the
cationic nature of natural AMPs plays an important role in selectively binding to
negatively charged bacterial membranes by electrostatic affinity rather than binding to
zwitterionic mammalian membranes (15, 17, 18). However, bacteria can acquire resis-
tance to cationic membrane-active agents by reducing the negative charge of their
membranes, which can subsequently result in cross-resistance to a range of natural
AMPs, including host innate immunity effectors and other synthetic cationic
membrane-active antimicrobials (17, 18). Therefore, development of membrane-active
small molecules that show high levels of bacterial membrane selectivity while at the
same time minimizing the selection of cross-resistance remains challenging.

Recently, our group used a SYTOX Green-MRSA membrane permeability assay (19)
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to screen a collection of 185 “hits” obtained by screening �82,000 synthetic chemicals
using an automated high-throughput Caenorhabditis elegans-MRSA intestinal infection
assay (20). This strategy enables us to exclude toxic compounds with low membrane
selectivity because the hit is determined based on C. elegans survival. Using this
approach, we were able to identify a set of membrane-active antimicrobials effec-
tive against nongrowing MRSA. These membrane-disrupting compounds exhibited
high levels of membrane selectivity to bacterial compared to mammalian mem-
branes (6, 20, 21).

Diarylureas are known to be important pharmacophores in drug discovery (22).
Indeed, diarylurea derivatives have been developed as antimalarial (23), antischisto-
somal (24), antimicrobial (25, 26), and anticancer (22, 27) agents. We identified the
diarylurea compound PQ401 as a hit in the C. elegans screen (described above) that not
only blocks the ability of MRSA to kill C. elegans but also induces rapid MRSA membrane
permeabilization. PQ401 has been shown to inhibit autophosphorylation of the insulin-
like growth factor I receptor (IGF-1R) and impede breast cancer cell growth in in vivo
mouse models (28). However, the antimicrobial activity of PQ401 has not been previ-
ously reported. In this paper, we elucidate the mode of action by which PQ401
permeabilizes the membrane and the role that ionized states of PQ401 play in its
antimicrobial potency. Unexpectedly, we found that the neutral form of PQ401 is more
potent than the cationic form, which correlates with enhanced membrane penetration
of the neutral form in molecular dynamics simulation studies. In addition, we report
that PQ401 has promising features as a potential therapeutic including high potency
against both multidrug-resistant and multidrug-tolerant Gram-positive pathogens, fast
killing kinetics, a very low rate of resistance development, and synergism with genta-
micin.

RESULTS
PQ401 exhibits bactericidal activity and a low probability for resistance devel-

opment. We identified PQ401 (Fig. 1A) as a hit compound that rescues C. elegans from
MRSA-mediated killing (Fig. 1B) (20). In general, a compound can rescue C. elegans from
an MRSA intestinal infection if it inhibits bacterial growth, blocks a bacterial virulence
factor or factors, or modulates C. elegans innate immunity (29–31). We first tested the
antimicrobial activity of PQ401 against a panel of antibiotic-resistant S. aureus strains,
including MRSA clinical isolates and a vancomycin-resistant S. aureus (VRSA; strain
VRS1) (32). As shown in Table 1, the MIC of PQ401 was 4 �g/ml against all of the MRSA
strains tested as well as the VRSA strain VRS1 (Table 1). PQ401 demonstrated bacteri-
cidal activity with a minimum bactericidal concentration (MBC) of 4 �g/ml against a
panel of MRSA and VRSA strains (Table 2). It exhibited fast killing kinetics, completely
eradicating 5 � 107 CFU/ml of growing MRSA at 10 �g/ml within 4 h, indicating that
PQ401 is a more effective bactericidal agent than vancomycin against MRSA (Fig. 1C).

We further tested the antimicrobial activity of PQ401 using a panel of the so-called
ESKAPE pathogens, which include two Gram-positive bacteria (Enterococcus faecium
and S. aureus) and four Gram-negative bacteria (Klebsiella pneumoniae, Acinetobacter
baumannii, Pseudomonas aeruginosa, and Enterobacter spp.). These ESKAPE pathogens
are of particular concern because they are the leading cause of nosocomial infections
and often develop antibiotic resistance (33). PQ401 showed antimicrobial activity
against Gram-positive pathogens but not against Gram-negative pathogens (Table 3).
Interestingly, PQ401 has an MIC of 4 �g/ml against the multidrug-resistant E. faecium
strain C68 (34) (Table 3) as it does against the S. aureus strains tested.

S. aureus can readily develop resistance against most clinical antibacterial agents
(35). To evaluate the ability of S. aureus to develop resistance to PQ401, we exposed
three independent cultures of MRSA strain MW2 (SP1, SP2, and SP3) to a sub-MIC level
of PQ401 for 25 days using a serial passage method in a 96-well plate (36). The
fluoroquinolone antibiotic ciprofloxacin targeting DNA gyrase was used as a control.
MRSA MW2 strains exhibiting a 32-fold-higher MIC to ciprofloxacin than the wild-type
strain were generated after 25 days of serial passage in sub-MICs (Fig. 1D). In contrast,
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we did not observe a significant increase in the PQ401 MIC during the same time frame
(Fig. 1D). This result suggests that PQ401 exhibits an extremely low probability for
PQ401 resistance development.

PQ401 selectively disrupts bacterial membranes. The finding that PQ401 exhibits
a high rate of killing and a low probability of resistance development suggests that it
might be functioning as a membrane-active antimicrobial (14, 37). To test whether
PQ401 disrupts MRSA membranes, we measured the permeability of MRSA MW2 to
SYTOX Green after treatment with a range of concentrations of PQ401. As shown in
Fig. 2A, PQ401 induced rapid membrane permeabilization in a dose-dependent man-
ner. Dose-dependent permeabilization was also observed in nongrowing antibiotic-

FIG 1 The insulin-like growth factor receptor (IGF-1R) inhibitor PQ401 exhibits bactericidal activity
against S. aureus strain MW2 with no detectable resistance development. (A) Chemical structure of
PQ401. (B) MRSA-infected C. elegans was treated with 5 �g/ml PQ401, 10 �g/ml vancomycin (Van,
positive control), and 0.1% DMSO (DMSO, negative control). Dead worms were stained with SYTOX
Orange. (C) Exponential-phase S. aureus MW2 was treated with PQ401 or vancomycin for 4 h. The
bacterial viability was measured at hourly intervals. The limitation of detection is 2 � 102 CFU/ml. Error
bars denote SD (n � 3). (D) Three attempts to develop MRSA resistance to PQ401 (SP 1, 2, and 3) and to
ciprofloxacin (Cipro) over 25 days.

TABLE 1 MIC of PQ401 against MRSA strains

MRSA strain

MIC (�g/ml) of drug:

Oxacillin Vancomycin PQ401

MW2 64 1 4
ATCC 33591 �64 2 4
JE2 64 1 4
VRS1 �64 �64 4
BF1 �64 2 4
BF2 �64 2 4
BF3 32 2 4
BF4 16 2 4
BF5 �64 1 4
BF7 �64 2 4
BF8 �64 2 4
BF10 �64 1 4
BF11 �64 1 4
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tolerant MRSA cells treated with PQ401. These results indicate that PQ401 can cause
membrane damage regardless of growth states.

To further explore the effects of PQ401 on bacterial lipid bilayers, we challenged
biomembrane-mimicking giant unilamellar vesicles (GUVs) with PQ401. GUVs are arti-
ficial spherical vesicles made up of a single lipid bilayer with a diameter of 10 to 100 �m
(38, 39). Their relatively large size enables direct observation of dynamic morphological
changes by optical microscopy (40, 41). GUVs have been employed to investigate the
modes of action of several membrane-active antibacterial agents, including daptomy-
cin (38, 42–45). To mimic the negatively charged S. aureus membrane, we created GUVs
consisting of a dioleoyl-sn-glycero-3-phosphocholine (DOPC)/1,2-dioleoyl-sn-glycero-3-
phospho-(1=-rac-glycerol) (DOPG) lipid bilayer at a ratio of 7:3, which have been used
for monitoring the effects of daptomycin and other membrane-active antimicrobial
agents on S. aureus lipid bilayers (38, 46–49). When GUVs were treated with 4 �g/ml
(1� MIC) PQ401, we noted the formation of lipid aggregates on the surface of the GUVs
after �45 s, followed by rupture at �100 s (Fig. 2B; see also Movies S1 and S2 in the
supplemental material), indicating that PQ401 directly interacts with and disrupts
bacterial mimetic lipid bilayers.

Membrane-active agents typically interact with both bacterial and mammalian lipid
bilayers. To test the membrane selectivity of PQ401, we fabricated GUVs consisting of
1-palmitoyl-2-oleoyl-glycero-3-phosphocholine (POPC) and cholesterol in the ratio of
7:3, which mimics mammalian lipid bilayers (50, 51). In contrast to the bacterial mimetic
GUVs, PQ401 did not induce any deformation of the mammalian mimetic GUVs at
4 �g/ml or 10 �g/ml (Fig. 2B and Movies S3 to S5). The inertness of mammalian
membranes to PQ401 was confirmed using human erythrocytes. As shown in Fig. 2C,
PQ401 did not induce detectable hemolysis of erythrocytes up to 512 �g/ml. Consistent
with these results, PQ401 was previously reported to kill cancer cells by IGF-1R
inhibition-mediated apoptosis rather than membrane disruption (28, 52). Combined,
these results indicate that PQ401 has a high level of selectivity for bacterial in com-
parison to mammalian membranes.

Neutral PQ401 penetrates into bacterial lipid bilayers. To further explore the
molecular details by which PQ401 interacts with bacterial membranes, we conducted
all-atom molecular dynamics (MD) simulations. The topology and parameters of PQ401
for the GROMOS54a7 forcefield (53) were generated by Automated Topology Builder
(ATB) (54, 55). Like bacterial membrane-mimetic GUVs, we used the previously estab-
lished model of DOPC/DOPG at a 7:3 ratio to simulate negatively charged S. aureus
membranes. The MD modeling showed that PQ401 is initially recruited to the mem-

TABLE 2 Minimum bactericidal concentration of PQ401 against MRSA strains

MRSA strain

MBC (�g/ml) of drug:

Oxacillin Vancomycin PQ401

MW2 �64 4 4
ATCC 33591 �64 4 4
JE2 �64 8 4
VRS1 �64 �64 4

TABLE 3 MICs of PQ401 against the ESKAPE pathogens

Strain

MIC (�g/ml) of drug:

PQ401 Vancomycin Gentamicin Ciprofloxacin

Enterococcus faecium E007 4 1 �64 �64
Enterococcus faecium C68 4 64 �64 �64
Staphylococcus aureus Newman 4 2 2 0.25
Klebsiella pneumoniae WGLW2 �64 �64 1 0.031
Acinetobacter baumannii ATCC 17978 �64 �64 1 0.25
Pseudomonas aeruginosa PA14 �64 �64 2 0.063
Enterobacter aerogenes ATCC 13048 �64 �64 2 0.031
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brane surface by the binding of the chloro-methoxyphenyl moiety to hydrophilic lipid
heads via the polar interactions between two polar moieties, including the urea and
chloro-methoxyphenyl groups and hydrophilic lipid head groups (Fig. 3A; see also
Fig. S1A and Movie S6). After several tens of nanoseconds of sustained attachment,
PQ401 penetrates into the membrane interior, maximizing interactions between a
nonpolar benzene ring and hydrophobic lipid tails (Fig. 3A and B and Movie S6).
Potential mean force (PMF) calculations (Fig. S1B) using the umbrella sampling method
(56) confirmed that insertion of PQ401 into the lipid bilayer is energetically favorable
with a transfer energy about �10 kBT (Fig. 3C).

Next, we also conducted MD simulations to explore PQ401 interaction with the
mammalian mimetic lipid bilayer of POPC-cholesterol at a 7:3 ratio. Unexpectedly, we
found that the MD simulations predicted that PQ401 could also penetrate into the
mammalian membrane with a slightly higher transfer energy than with the bacterial
mimetic membrane (Fig. S1C). Although this simulation indicates that the penetration
of PQ401 into mammalian lipid bilayers is energetically favorable, as described above,
human red blood cells as well as GUVs having the same composition of POPC-
cholesterol as the membranes used in the MD simulations (Fig. 2B and C and Movies
S3 to S5) are resistant to disruption by PQ401. Combined, these data indicate that the
penetration of PQ401 molecules per se is not sufficient to induce the disruption of
mammalian lipid bilayers.

The ionization states of PQ401 can be varied. The MarvinSketch program
(ChemAxon Ltd.) predicts that PQ401 has 4 different ionization states: a neutral, a
protonated, and two deprotonated forms at the ratios of 98.48 to 1.45 to 0.06 to 0.02,
respectively, at pH 7.4 (Fig. 3A; Table 4). To address whether the ionization state affects
membrane activity, we conducted additional MD simulations. In contrast to the neutral

FIG 2 PQ401 selectively disrupts MRSA membranes. (A) Elicitation of membrane permeability by PQ401
for growing MRSA cells or stationary-phase antibiotic-tolerant MRSA cells. Membrane permeability was
evaluated by monitoring the uptake of the membrane-impermeable dye SYTOX Green for 60 min. Results
are shown as means from triplicates. Error bars (SD) are excluded for clarity. (B) GUVs consisting of
DOPC/DOPG (7:3) or POPC/cholesterol (7:3) labeled with 0.05% Liss Rhod PE were treated with 4 �g/ml
PQ401 or 0.1% DMSO. Deformation dynamics of GUVs was monitored over time using fluorescence
microscopy. (C) Two percent human erythrocytes were treated with a range of PQ401 concentrations for
1 h at 37°C. A sample treated with 1% Triton X-100, which causes 100% hemolysis, was used as the
positive control. Results are shown as means � SD (n � 3).
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form, the penetration of all three of the ionized forms into lipid bilayers was not
energetically favorable (Fig. 3C). The mechanisms by which each of the ionized forms
interacts with lipid bilayers are somewhat different. In the case of the protonated form,
unlike the neutral form, the positively charged methylquinoline group instead of the
chloro-methoxyphenyl moiety drives the molecule to the negatively charged surface of
the lipid bilayer; however, the strong binding between the positively charged meth-
ylquinoline group and the negatively charged membrane surface prevents further
penetration (Fig. 3A and B, Fig. S1A, and Movie S7). In the case of two deprotonated
forms, like the neutral form, the chloro-methoxyphenyl moiety binds on the surface of
the bilayer membrane; however, it is unable to penetrate into lipid bilayers because of
the electrostatic repulsion between the negatively charged nitrogen and negatively
charged lipid head groups (Fig. 3A and B, Fig. S1B, and Movies S8 and S9).

FIG 3 Only the neutral form of PQ401 is predicted to penetrate into bacterial lipid bilayers. (A)
Representative simulated configurations of PQ401 in different ionized states from left to right: onset,
membrane attachment, membrane penetration, and equilibrium interacting with 7DOPC/3DOPG lipid
bilayers. PQ401 and sodium ions are depicted as large spheres; phospholipids are represented as chains.
The atoms in PQ401, phospholipids, and sodium ions are colored as follows: hydrogen, white; oxygen,
red; nitrogen, blue; chlorine, green; carbon, cyan; phosphorus, orange; sodium, purple. Water molecules
are not shown for clarity. (B) Magnified view of PQ401 and the corresponding simulated configurations
at 500 ns in different ionized states. (C) The free energy profiles of PQ401 in different ionized states
penetrating into the lipid bilayer as a function of the center-of-mass (COM) distance to the bilayer. The
dot-dashed black line marks the surface of the membrane, averaged from the COM locations of
phosphate groups in the lipids of the outer leaflet. Error bars represent means � SD from three
independent simulations.

TABLE 4 Proportion of each ionized form of PQ401 and their MICs against MRSA strain
MW2a

pH
% ratio
(N:P:Dp1:Dp2)

MIC (�g/ml) of drug:

PQ401 Vancomycin

5.5 46.15:53.85:0.00:0.00 16 1
6.5 89.54:10.45:0.01:0.00 4 1
7.4 98.48:1.45:0.06:0.02 4 1
8.5 98.96:0.12:0.72:0.02 4 1
aAbbreviations: N, neutral form; P, protonated form; Dp1, deprotonated-1 form; Dp2, deprotonated-2 form
shown in Fig. 3. Ionized states were estimated by MarvinSketch.
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To verify these MD simulation results experimentally, we decreased the portion of
the neutral PQ401 by lowering the pH. The MarvinSketch program predicts that at pH
5.5, more than 50% of PQ401 exists in a protonated form, which, according to the MD
simulations, is unable to penetrate the membrane (Table 4 and Fig. 3). Consistent with
the MD simulations, the MIC of PQ401 at pH 5.5 increased to 16 �g/ml, which is 4-fold
higher than at pH 7.4 (Table 4). Further, the ability of PQ401 to permeabilize the
membrane of both growing and nongrowing antibiotic-tolerant MRSA was significantly
decreased at pH 5.5 (Fig. 4). As pH increased, the membrane permeability of PQ401 also
increased (Fig. 4). Between pH 6.5 and 8.5, the MIC of PQ401 was 4 �g/ml, where the
neutral portion of PQ401 is 90% or greater. These computational and experimental
results demonstrate that the polarity of branch groups, the hydrophobicity of core
rings, and the ionization state play important roles in the membrane activity of PQ401.

PQ401 kills antibiotic-tolerant MRSA and shows synergism with gentamicin. As
shown above, PQ401 induces membrane permeabilization of antibiotic-tolerant MRSA
cells (Fig. 2A). Thus, we reasoned that PQ401 should be effective against antibiotic-
tolerant MRSA. As previously reported and shown here in Fig. 5A, 100% of stationary-
phase MRSA cells become antibiotic-tolerant cells that are not susceptible to a panel of
antibiotics having different modes of action. Indeed, PQ401 showed bactericidal activity

FIG 4 The membrane permeability of PQ401 is augmented as pH increases. Membrane permeability by
PQ401 at the indicated pH was evaluated by monitoring the uptake of SYTOX Green for 60 min. Results
are shown as means from triplicates. Error bars (SD) are excluded for clarity.

FIG 5 PQ401 has bactericidal potency and shows synergism with gentamicin against antibiotic-tolerant
MRSA. Antibiotic-tolerant cells of MRSA MW2 were treated with 100� MIC vancomycin (Van), gentamicin
(Gm), or ciprofloxacin (Cipro) (A); the indicated concentrations of PQ401 (B); or 10 �g/ml gentamicin (Gm)
in combination with various concentrations of PQ401 for 4 h (C). CFU counts of viable cells were
measured by serial dilution and plating on TSA plates. Results are shown as means � SD (n � 3).
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against antibiotic-tolerant MRSA cells in a dose-dependent manner, albeit with signif-
icantly less activity than against growing MRSA. PQ401 caused a 1-log reduction in
antibiotic-tolerant MRSA viability at 64 �g/ml (4� MIC) (Fig. 5B).

Membrane-active antimicrobial agents are known to act synergistically with amino-
glycosides against antibiotic-tolerant bacteria by facilitating the diffusion of the ami-
noglycoside across bacterial membranes (6, 20, 21, 57). We tested the synergism of
PQ401 with the aminoglycoside antibiotic gentamicin against antibiotic-tolerant MRSA
cells. As shown in Fig. 5C, combined with gentamicin, the bactericidal activity of PQ401
was enhanced against antibiotic-tolerant MRSA. The combination of 64 �g/ml PQ401
and 10 �g/ml gentamicin led to a �3-log reduction in antibiotic-tolerant MRSA viability
(Fig. 5C).

PQ401 is efficacious in invertebrate animal models. To test the efficacy of PQ401,
we used two invertebrate model hosts, C. elegans and Galleria mellonella (wax moth)
larvae. These two infection models are widely used to evaluate in vivo antimicrobial
potential and toxicity, which can fill the gap between in vitro and in vivo mammalian
experiments (29, 30, 58). In a C. elegans-MRSA infection model, PQ401 exhibited a
median effective concentration (EC50) of 1.7 �g/ml, which is �2-fold higher than the
EC50 (0.86 �g/ml) of vancomycin (Fig. 6A). PQ401 completely blocked C. elegans death
from MRSA infection at �2 �g/ml, which, interestingly, is �2-fold lower than its MIC of
4 �g/ml, whereas vancomycin provided 100% worm survival at around the MIC. In
addition, the exposure of MRSA-infected C. elegans at 64 �g/ml PQ401 for 5 days did
not affect C. elegans viability (Fig. 6A).

Next, we tested the efficacy of PQ401 in G. mellonella larvae. All MRSA-infected G.
mellonella larvae were dead within 48 h postinfection. We treated the infected larvae
with 20 mg PQ401/kg of body weight by injecting 10 �l of 0.5 mg/ml PQ401, which is
the maximum injectable dose due to its solubility in phosphate-buffered saline (PBS).
Also, PQ401 does not cause hemolysis at this concentration of 0.5 mg/ml (Fig. 2C). The
PQ401-treated larvae showed 62.5% survival at 120 h postinfection (Fig. 6B), indicating
significant efficacy (P � 0.0001, Fig. 6B). Consistent with MIC and EC50 results (Table 1
and Fig. 6A), PQ401 efficacy was lower than vancomycin, showing 81.5% survival at 120
h postinfection (Fig. 6B). Taken together, PQ401 is significantly efficacious in the two
MRSA infection animal models.

DISCUSSION

Major disadvantages of conventional antibiotics include resistance development
and inactivity against nongrowing antibiotic-tolerant bacteria. Ideally, the targets of a
new generation of antibiotics should be growth independent and pathogens should
exhibit very low rates of resistance development to antimicrobials corresponding to
these targets. Membrane-disruptive antimicrobial agents have a potential to overcome
the drawbacks of conventional antibiotics if they exhibit membrane selectivity to

FIG 6 PQ401 shows efficacy in two invertebrate animal infection models. (A) MRSA-infected C. elegans
glp-4(bn2);sek-1(km4) animals were treated with the indicated concentrations of PQ401 or vancomycin at
25°C for 5 days. After staining dead worms with SYTOX Orange, percent survival of C. elegans was
calculated in each well of the assay plate. Results are shown as means � SD (n � 3). (B) Sixteen
MRSA-infected G. mellonella larvae (n � 16) were treated with control (PBS), 25 mg/kg vancomycin (Van),
or 20 mg/kg PQ401 at 1 h postinfection. Larval survival following treatment with 20 mg/kg PQ401 was
significant compared to PBS treatment (P � 0.0001). Data are representative of two independent
experiments.
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bacterial compared to mammalian membranes (14, 59). PQ401 is a new example of a
class of membrane-active agents that we have recently described that exhibit antimi-
crobial potency against multidrug-resistant and multidrug-tolerant S. aureus, low prob-
ability for the development of resistance, and the ability to act synergistically with other
antibiotics as well as high membrane selectivity to Gram-positive bacterial membranes.

Interestingly, PQ401 rescued 100% of C. elegans worms from MRSA infections at
one-half the MIC, whereas vancomycin rescued 100% only at 1� MIC (Fig. 6A),
indicating that PQ401 may provide additional beneficial bioactivity to combat MRSA
infections. PQ401 may suppress the expression of MRSA virulence at subinhibitory
concentrations. Several antibiotics, such as linezolid and tigecycline, have been shown
to reduce S. aureus virulence factor expression at sub-MIC levels (60). Also, our labo-
ratory reported previously that a different membrane-active antimicrobial, NH125,
downregulated the expression of several virulence factors, including alpha-hemolysin,
delta-hemolysin, coagulase, and nuclease, at subinhibitory concentrations (61). At
sub-MIC levels, antibacterial compounds targeting protein synthesis may decrease
virulence gene expression (60), and subinhibitory concentrations may also act as a
selective pressure for resistant development (62). However, since PQ401 displays a very
low probability for resistance development at sub-MIC levels, it is possible that its
antivirulence activity at subinhibitory concentrations could contribute to its ability to
treat MRSA infections.

The design and development of membrane-active small molecules have been
traditionally based on a strategy that involves mimicking natural AMPs secreted from
a variety of host organisms, including both plant and animal species, because their
membrane selectivity and antimicrobial activity have been optimized through evolu-
tion in nature (63, 64). In general, common features of AMPs include a net charge of
�	3 and a hydrophobic content of �42% (15, 65, 66). Arginine and lysine are
responsible for the cationic characteristics; tryptophan, phenylalanine, leucine, and
isoleucine contribute to hydrophobicity (63). In particular, the cationic nature of AMPs
plays a key role in selective binding to negatively charged bacterial membranes rather
than to zwitterionic mammalian membranes (15, 63). Following an initial electrostatic
interaction with a bacterial membrane, the hydrophobic residues of AMPs interact with
bacterial lipid tails (15, 63). Based on this paradigm, rationally designed membrane-
active small molecules usually exhibit cationic and amphipathic structures (15, 16) and
have a similar mode of action as AMPs. Interestingly, although daptomycin, an FDA-
approved membrane-active and last-resort antibacterial against MRSA, is anionic, it
forms a cationic complex with Ca2	 and therefore uses electrostatic attraction to
interact with negatively charged bacterial membranes similarly to AMPs (67).

A disadvantage of cationic AMPs and cationic low-molecular-weight compounds as
antimicrobial therapeutics is that the electrostatic binding of cationic antimicrobials to
anionic bacterial membranes can result in the selection of AMP-resistant bacteria that
exhibit an overall reduced negative charge (17, 18). Such mutants often exhibit
cross-resistance to a broad spectrum of cationic membrane-active antimicrobials, which
includes daptomycin (18). Moreover, AMP-resistant bacteria are potentially also more
resistant to host innate immunity-related effectors such as defensins and cathelicidins
that target bacterial membranes (18). For example, daptomycin-resistant S. aureus
strains exhibit cross-resistance to host defense peptides including human neutrophil
defensin-1 and LL-37 (68, 69).

In contrast to conventional membrane-active antimicrobial small molecules and
peptides, the membrane activity of PQ401 is maximized when it exists in a neutral form
rather than a cationic form (Fig. 3). Furthermore, PQ401 does not have clear lipophilic
elements, such as acyl chains. In the case of PQ401, two polar moieties, the chloro-
methoxyphenyl and urea groups, provide sufficient affinity to bind PQ401 to the
surface of the lipid bilayer. Importantly, this attraction of the chloro-methoxyphenyl
group to the membrane surface is not so strong that it hinders further penetration of
PQ401 and subsequent interaction with hydrophobic lipid tails (Fig. 3; see also Movie
S6 in the supplemental material). In light of the development of cross-resistance to cationic
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membrane-active compounds, neutral antimicrobial membrane-targeting compounds
such as PQ401 should circumvent this issue.

To date, we have described four different classes of small-molecule membrane-
active agents including NH125 (19, 49), synthetic retinoids (CD437, CD1530) (20),
nTZDpa (21), and bithionol (6) that are effective against antibiotic-tolerant MRSA cells.
Except for NH125, which is cationic and amphipathic, the remaining three compounds,
as well as PQ401, are neither cationic nor amphipathic but also exhibit significant
differences from each other. CD437 and nTZDpa have a carboxylic moiety and pre-
dominately exist as a negatively charged deprotonated form at pH 7.4. According to
predictions made using MarvinSketch, more than 50% of bithionol also exists as anionic
forms at pH 7.4. Previously, our laboratory reported MD simulations which show that
the neutral forms of CD437, nTZDpa, and bithionol penetrate into lipid bilayers (6, 20,
21). Our working hypothesis is that their anionic forms probably have significantly
reduced membrane activity due to electrostatic repulsion to negatively charged bac-
terial membranes as shown in the case of anionic forms of PQ401 (Fig. 3).

Unlike PQ401, however, only relatively small portions of the neutral forms of CD437,
nTZDpa, and bithionol exist at pH 7.4. The reason why CD437, nTZDpa, and bithionol
are such effective membrane disrupters at neutral pH is not understood, but one
possibility is that the neutral forms of these molecules accumulate over time in bacterial
membranes, ultimately reaching high-enough concentrations to disrupt membrane
function. From a kinetic point of view, embedment of these neutral molecules into
bacterial membranes is very fast (within hundreds of nanoseconds), energetically
favorable, and almost irreversible (Fig. 3A and C and Movie S6) (6, 20, 21). Once
embedded, the energy cost (�10 kBT) to remove these molecules from the membranes
is high (Fig. 3C) (6, 20, 21). Further, at physiological pH, the ratio of anionic and neutral
forms of these molecules in solution remains constant to satisfy the Henderson-
Hasselbach equation (pH � pKa 	 log10 [A-]/[HA]). Thus, because only a small portion
of these molecules are present in a neutral form at physiological pH, as neutral forms
are embedded into the membranes, more neutral forms are generated from anionic
forms to essentially maintain a constant concentration of neutral molecules outside the
bacteria (70). In any case, cationic forms of CD437, nTZDpa, or bithionol do not exist at
any physiological pH. Therefore, CD437, nTZDpa, and bithionol as well as PQ401
demonstrate that unconventional small molecules can bind to and disrupt negatively
charged bacterial membranes in a cationic-independent manner.

Although PQ401 did not cause either disruption of the mammalian mimetic GUVs or
lysis of human red blood cells at concentrations up to 512 �g/ml (Fig. 2B and C and
Movies S3 to S5), the MD simulations predicted that PQ401 could penetrate into
simulated mammalian lipid bilayers (Fig. S1C), suggesting that there is a discrepancy
between the MD simulation and experimental results. However, it is important to point
out that the all-atom MD simulations evaluate only the ability of a single molecule to
penetrate a lipid bilayer based on free energy profiles. In contrast, our previous studies
showed that at least three factors including a molecule’s ability to attach to, penetrate,
and perturb membrane lipid bilayers play important roles in membrane disruption (6,
20, 21). Thus, our current data with PQ401 suggest that it is possible that the collective
behavior of a group of molecules rather than the behavior of single molecules is
required for the disruption of lipid bilayers. For example, groups of interacting dapto-
mycin molecules form oligomeric pores in bacterial lipid bilayers that induce mem-
brane disruption (67). Moreover, the physical properties of particular lipid bilayers
confer different levels of resistance to disruption to membrane-penetrating com-
pounds. The 7POPC/3Cholesterol bilayer is much stiffer (over 100 kBT) than the 7DOPC/
3DOPG (�20 kBT) bilayer (71). Therefore, it is not unexpected that simulations of the
interaction between a single molecule and a lipid bilayer do not reflect all of the
features observed in our wet-lab experiments with GUVs and red blood cells.

Despite the attractive properties of PQ401 as a potential lead compound for the
development of an antimicrobial therapeutic, PQ401 has limitations that require further
development. First, PQ401 was identified as an inhibitor of IGF-1R that induces the
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apoptosis of a variety of cancer cells by blocking the autophosphorylation of IGF-1R (28,
52). IGF-1R plays important roles in several cellular processes, including cell prolifera-
tion, development, and survival. Dysregulation of IGF-1R results in many diseases,
including cancers, thyroid eye disease, psoriasis, and diabetes (72). Therefore, for the
further development of PQ401 as an antimicrobial therapeutic, it would be critical to
minimize potential toxic side effects of PQ401 by nullifying its IGF-1R-inhibitory activity
while maintaining its antimicrobial activity. Second, the MIC of PQ401 is 4 �g/ml
against proliferating MRSA MW2 cells (Table 1), which is 4-fold higher than the MIC
(�1 �g/ml) of vancomycin, daptomycin, and linezolid (6, 20), which are currently used
to treat MRSA infections. Moreover, PQ401 treatment of nongrowing antibiotic-tolerant
MRSA at 64 �g/ml resulted in only a 10-fold decrease in viability (Fig. 5B), whereas other
membrane-active antimicrobials recently identified in our laboratory, such as particular
synthetic retinoids, nTZDpa, and bithionol, completely eradicated antibiotic-tolerant
MRSA at this concentration (6, 20, 21). Finally, PQ401 exhibits poor aqueous solubility.
In the case of the G. mellonella larva infection model, 20 mg/kg was the maximum dose
possible.

Fortunately, however, it seems likely that it should be feasible to eliminate the
IGF-1R-inhibitory activity of PQ401 as well as improve its antimicrobial activity and
aqueous solubility and decrease its toxicity by appropriate structural modifications.
First of all, the crystal structure of IGF-1R has been determined (73). Based on this
structural information, the interactions between IGF-1R and small-molecule inhibitors
are well defined, and extensive in silico molecular docking analyses have been carried
out (74–76). Combining what is known about the well-defined interaction mechanism
between small molecules and IGF-1R with our data pertinent to the penetration of
PQ401 into Gram-positive bacterial lipid bilayers, it seems likely that it would be
possible to eliminate the IGF-1R-inhibitory activity of PQ401 without the loss of its
bacterial membrane-disrupting activity. In this regard, it is noteworthy that replace-
ment of a carboxyl acid with a primary alcohol in the synthetic retinoid CD437 results
in a significant reduction of its anticancer activity while maintaining its antimicrobial
activity (20).

In addition, based on structure-activity relationship (SAR) studies on synthetic
retinoids, we found that the deep penetration of bulky moieties leads to improved
antimicrobial activity by enhanced membrane perturbation (20). In the case of nTZDpa,
we found that additional halogen substituents and the replacement of chlorine with a
larger halogen atom such as iodine significantly enhance antimicrobial activity against
both growing and nongrowing antibiotic-tolerant MRSA as well as membrane selec-
tivity for bacterial over mammalian membranes (21). Based on these SAR results, we
think the addition of halogen atoms or substitution of larger halogen atoms for chlorine
may augment PQ401’s antimicrobial activity. In addition, the SAR studies of diarylurea
derivatives aiming at improving biological activity, aqueous solubility, and bioavailabil-
ity have been intensively conducted and their synthetic procedures are well established
(24–26, 77–79). Therefore, the established SAR of diarylurea derivatives coupled with
the molecular mechanisms described in this study provides a strong rationale for
further optimization of PQ401 as a potential membrane-active antibiotic.

In conclusion, we discovered that PQ401 is a potent antimicrobial that is effective
against both multidrug-resistant and multidrug-tolerant S. aureus. PQ401 kills bacteria
by selectively disrupting bacterial lipid bilayers, exhibits relatively strong bactericidal
activity against growing MRSA cells, has a low probability of selecting for resistance,
exhibits synergism with gentamicin against antibiotic-tolerant MRSA, and shows sig-
nificant efficacy against MRSA in both C. elegans and G. mellonella infection models.
Finally, unlike cationic antimicrobial agents, the antimicrobial activity of PQ401 is
maximized when it exists in its neutral form. This feature of PQ401 in comparison to
cationic antimicrobial peptides significantly expands the potential diversity of
membrane-active antimicrobial agents.
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MATERIALS AND METHODS
Bacterial strains and growth conditions. Methicillin-susceptible S. aureus strain Newman (80);

methicillin-resistant S. aureus (MRSA) strains MW2 BAA-1707 (81) ATCC 33591, and JE2 (82); vancomycin-
resistant S. aureus strain VRS1 (32); 11 clinical S. aureus isolates (49); Enterococcus faecium E007 (83, 84);
vancomycin-resistant E. faecium strain C68 (34, 85); Klebsiella pneumoniae WGLW2 (BEI Resources,
Manassas, VA, USA); Acinetobacter baumannii ATCC 17978 (86); Pseudomonas aeruginosa PA14 (87); and
Enterobacter aerogenes ATCC 13048 were used to test antimicrobial activity (Tables 1 to 3). S. aureus
strains were grown in tryptic soy broth (TSB) (BD, Franklin Lakes, NJ, USA), and E. faecium strains were
grown in brain heart infusion (BHI) broth (BD, Franklin Lakes, NJ, USA) at 37°C at 200 rpm. K. pneumoniae,
A. baumannii, P. aeruginosa, and E. aerogenes were grown in Luria-Bertani (LB) broth (BD, Franklin Lakes,
NJ, USA) at 37°C at 200 rpm.

Antimicrobial agents and chemicals. Vancomycin, oxacillin, gentamicin, and ciprofloxacin were
purchased from Sigma-Aldrich (St. Louis, MO, USA). PQ401 was purchased from R&D Systems (Minne-
apolis, MN, USA). Stocks of all antibiotics of 10 mg/ml were made in dimethyl sulfoxide (DMSO) or
double-distilled water (ddH2O).

MIC and MBC assays. The MICs of antibiotics were determined by the standard microdilution
method recommended by the Clinical and Laboratory Standards Institute (88). The pH of the medium
(cation-adjusted Mueller-Hinton broth) was adjusted to the desired values with NaOH or HCl, and then
the media were filter sterilized through 0.22-�m-pore-size membrane filters. The MBC of PQ401 was
determined by identifying the lowest concentration that killed �99.9% (3 logs) of an initial bacterial
inoculum (5 � 105 CFU/ml) in 24 h (89). CFU were determined by serial dilution and spot-plating on
tryptic soy agar (TSA) plates. MIC and MBC assays were conducted in triplicate.

Killing kinetics assay. An S. aureus overnight culture was diluted 1:10,000 in 25 ml fresh TSB in a
250-ml flask. In order to obtain exponential-phase cells, the diluted cell suspension was incubated at 37°C
with shaking at 225 rpm for 4 h until the optical density at 600 nm (OD600) reached 0.4 (�2 � 107

CFU/ml). One milliliter of the exponential-phase cell culture was added to the wells of a 96-well assay
block (Corning Costar 3960) containing 1 ml of prewarmed TSB with twice the desired concentrations of
compounds. The assay block was sealed with a gas-permeable membrane (Breathe-Easy; Diversified
Biotech) and was incubated at 37°C shaking at 200 rpm. At hourly intervals, 400-�l aliquots were taken,
washed once with PBS, serially diluted, and spot-plated onto tryptic soy agar (TSA; BD) plates. After
incubation at 37°C overnight, the number of cells was calculated based on colony count. These
experiments were conducted in triplicate.

Resistance selection. Development of resistant mutants by serial passage was conducted as
previously described (36). Briefly, an extended range of titers of PQ401 was generated by 2-fold serial
dilution with cation-adjusted Mueller-Hinton (CaMH) broth (Difco, Detroit, MI, USA) from three different
starting concentrations (20, 24, and 32 �g/ml) covering 0.1875 to 32.0 �g/ml. Three sets of an extended
gradient of PQ401 titers were created in a 96-well plate to provide triplicates for the experiment. The
same extended range of concentrations of ciprofloxacin was used as a positive control. MRSA MW2
overnight cultures were adjusted to 1 � 106 CFU/ml in CaMH broth, and 50 �l of the diluted cultures was
dispensed into the 96-well plates containing 50 �l of the extended gradient of antibiotics. After
incubating the plate at 37°C for 24 h, OD600 was measured by a spectrophotometer (SpectraMax M2;
Molecular Devices). Bacterial growth was defined as OD600 of �0.1. Bacterial culture at the highest drug
concentration that permitted bacterial growth was diluted 1,000-fold in CaMH, and the diluted culture
was then used as inoculum for the next passage. The rest of the culture was stored in 16% glycerol at
�80°C. This process was repeated for 25 days.

Antibiotic-tolerant MRSA-killing assay. As previously demonstrated, 100% of S. aureus cells in a
liquid culture become antibiotic-tolerant cells when grown to stationary phase (3–5, 8). Consistently, we
have shown previously that when grown to stationary phase, MRSA MW2 is tolerant to conventional
antibiotics such as gentamicin, ciprofloxacin, vancomycin, linezolid, and daptomycin (6, 19–21). The
antibiotic-tolerant cells of MRSA MW2 were prepared by growing cultures overnight to stationary phase
at 37°C at 200 rpm and washing three times with PBS. One milliliter of �1 � 108 CFU/ml antibiotic-
tolerant MRSA cells was added to 1 ml of PBS containing a 2-fold-higher concentration of the desired
concentration of antibiotics in a 96-well assay block (Corning Costar 3960). One milliliter of the
antibiotic-tolerant MRSA cell suspension containing appropriate concentrations of antibiotics was added
to the wells of a 2-ml deep-well assay block (Corning Costar 3960) and incubated at 37°C, with shaking
at 225 rpm. At every hour, 400-�l samples were removed, washed once with PBS, serially diluted, and
spot-plated on TSA plates. Colonies were counted after overnight incubation at 37°C to determine the
titer of live cells. These experiments were conducted in triplicate.

SYTOX Green membrane permeability assay. The pH of phosphate-buffered saline (PBS) was
adjusted to the desired values with NaOH or HCl, and then the PBS was filter sterilized through
0.22-�m-pore-size membrane filters. Black, clear-bottom, 96-well plates (Corning no. 3904) were filled
with 50 �l of PBS/well containing the indicated concentration of antibiotics. Exponential-phase or
stationary-phase antibiotic-tolerant S. aureus MW2 cells prepared as described under “Killing kinetics
assay” and “Antibiotic-tolerant MRSA-killing assay,” respectively, were then washed 3 times with the same
volume of PBS. The washed cells were adjusted to an OD600 of 0.4 (�2 � 107 CFU/ml) with PBS. SYTOX
Green (Molecular Probes) was added to 10 ml of the diluted bacterial suspension to a final concentration
of 5 �M and incubated for 30 min at room temperature in the dark. Fifty microliters of the bacterium-
SYTOX Green mixture was added to each well of the 96-well plates containing antibiotics. Fluorescence
was measured at room temperature using a spectrophotometer (SpectraMax M2; Molecular Devices) at
the excitation of 485 nm and the emission of 525 nm. All experiments were conducted in triplicate.
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Preparation of GUVs and observation of effects of compounds on GUVs. Giant unilamellar
vesicles (GUVs) were prepared by the electroformation method described previously (6) with slight
modifications. 1,2-Dioleoyl-sn-glycero-3-phosphocholine (DOPC), 1,2-dioleoyl-sn-glycero-3-phospho-(1=-
rac-glycerol) (DOPG), 1-palmitoyl-2-oleoyl-glycero-3-phosphocholine (POPC), cholesterol (ovine wool),
and 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine-N-(lissamine rhodamine B sulfonyl) (18:1 Liss Rhod
PE) were purchased from Avanti Polar Lipids (Alabaster, AL, USA). Lipid mixtures of 4 mM consisting of
DOPC-DOPG-18:1 Liss Rhod PE (7:3:0.005) and POPC-cholesterol-18:1 Liss Rhod PE (7:3:0.005) were
dissolved in chloroform, respectively. The procedure for electroformation of both types of GUVs (7DOPC/
3DOPG and 7POPC/3cholesterol) was the same. Indium tin oxide (ITO)-coated slides (50 � 75 � 1.1 mm;
Delta Technologies, Loveland, CO, USA) were coated with 20 �l of the lipid mixture and dried in a
vacuum chamber for 2 h to remove chloroform. An electroformation chamber was made by placing a
2-mm-thick Teflon spacer between the two lipid-coated ITO slides. After adding 2 ml of 100 mM sucrose
into the electroformation chamber, the chamber was sealed with binder clips and then connected to an
AC field function generator. An AC field of 1.5-V voltage and 10-Hz frequency was applied for 2 h at room
temperature, resulting in 10- to 50-�m-sized vesicles. The harvested GUV suspension was diluted (1:3) in
a solution containing 1 volume of 100 mM sucrose and 6 volumes of 110 mM glucose. Forty-nine
microliters of the diluted GUV suspension (�100 vesicles) was added into a black, clear-bottom 384-well
plate (Corning no. 3712). The plate was left in the dark at room temperature for 15 min until all GUVs
settled on the bottom of the plates. After adding 1 �l of compound solution to a well (final compound
concentration, 1� MIC), the GUVs were observed and imaged with an optical microscope equipped with
fluorescence contrast and a digital camera (63� objectives; Axio Observer A1 and AxioCam MRm; Zeiss,
Germany). Images and movies are representative of five independent experiments.

Human blood hemolysis. Ten percent human erythrocytes were purchased from Rockland Immu-
nochemicals (Limerick, PA, USA). The erythrocytes were diluted to 4% with PBS, and 100 �l was added
to 100 �l of 2-fold serial dilutions of compounds in PBS, 0.2% DMSO (negative control), or 2% Triton
X-100 (positive control) in a 96-well plate. The 96-well plate was incubated at 37°C for 1 h and then
centrifuged at 500 � g for 5 min. One hundred microliters of the supernatant was transferred to a fresh
96-well plate, and absorbance of supernatants was measured at 540 nm. Percent hemolysis was calcu-
lated using the following equation: (A540 of compound-treated sample � A540 of 0.1% DMSO-treated
sample)/(A540 of 1% Triton X-100-treated sample � A540 of 0.1% DMSO-treated sample) � 100. All
experiments were independently repeated 3 times using different batches of human erythrocytes.

All-atom MD simulations. All-atom MD simulations based on the GROMACS package (90) were
performed to investigate the interactions between PQ401 or its different ionized forms and a simulated
bacterial plasma membrane. The topologies and parameters of the compounds were generated by
Automated Topology Builder (54, 55). The bacterial membrane was represented by a mixed lipid bilayer
composed of 88 neutrally charged DOPC and 40 negatively charged DOPG lipids (�7:3 ratio) with
Berger’s lipid force field (91), which has been extensively used in previous studies (38, 46–48). Similarly
to our previous studies (6, 20, 21), water was represented by the SPC/E model (92); a geometric
combining rule was adopted for nonbonded interactions of the compounds with lipids, ions, and water
(93, 94); the fast smooth particle-mesh Ewald method (95) was used to calculate the long-rang
electrostatic interactions; and sodium ions were added to neutralize the system. The simulation box had
an initial size of 5.96 � 5.96 � 12.3 nm, which was large enough to prevent the compounds interacting
with their periodic images. The system was modeled as an NPT ensemble (1 atm, 300 K) with periodic
boundary conditions in all directions. The time step was 2 fs. After a 500-ns initial equilibration of
solvated lipid systems, the compound was introduced into the water phase above the membrane. After
100 ns of reequilibration, the compound was released, and the system was further simulated for 500 ns
(96). Additional simulations were performed to get the free energy profiles for the penetrations of
compounds into the membrane, which were calculated by steered molecular dynamics (97), umbrella
sampling, and the weighted histogram analysis methods (WHAM) (56, 98). In the sampling, the width of
each window was 0.15 nm, each window was simulated for 25 ns, and the first 5 ns was discarded in the
WHAM analysis.

C. elegans-MRSA liquid killing assay. The C. elegans-MRSA infection assay was conducted as
described in a previous study (99). A C. elegans glp-4(bn2);sek-1(km4) double mutant strain was used for
this assay. The glp-4(bn2) mutation blocks the production of progeny at 25°C (100), which prevents
matricidal killing during the infection due to internal hatching of eggs (101). The sek-1(km4) mutation
immunocompromises the worms and increases their sensitivity to infection, which reduces the assay
time (102). The worms were maintained at 15°C on 10-cm slow-kill (SK) agar plates seeded with
Escherichia coli HB101 (103). Eggs isolated from gravid adults by hypochlorite treatment were resus-
pended in M9 buffer and incubated with gentle rocking at 15°C for 48 h. Approximately 4,500 L1
hatchlings were placed on each SK plate seeded with HB101 for 52 h at 25°C until the animals grew into
sterile young adults. The wells of a black, clear-bottom 384-well plate (Corning no. 3712) were filled with
20 �l M9 buffer including the desired concentrations of PQ401, vancomycin, or 1% DMSO (negative
control). After adding 15 young adult C. elegans glp-4(bn2);sek-1(km4) animals to each well of the plate
using a COPAS large particle sorter (Union Biometrica, MA, USA), 35 �l of MRSA MW2 suspension was
added (OD600, 0.08). The assay plate was sealed with a gas-permeable membrane (Breathe-Easy;
Diversified Biotech, Dedham, MA, USA) and then incubated in a humidified chamber at 25°C for 5 days.
After washing the plate 8 times with M9 buffer using a microplate washer (BioTek ELx405; BioTek, VT,
USA), worms were stained with 0.7 �M SYTOX Orange. To evaluate worm survivability, the worms were
imaged using an Image Xpress Micro automated microscope (Molecular Devices), capturing both
transmitted light and tetramethyl rhodamine isocyanate (TRITC) (535-nm excitation, 610-nm emission)
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fluorescent images with a 2� objective. Only dead worms are stained by SYTOX Orange. The assay was
conducted in biological triplicate.

G. mellonella survival assays. Larvae were purchased from a commercial vendor (Vanderhorst, Inc.,
St. Mary’s, OH, USA) and stored at room temperature in the dark. Upon arrival, 16 randomly healthy larvae
between �200 and 250 mg were selected for the experiment. An MRSA MW2 overnight culture was
washed with PBS twice and then diluted in PBS to �1 � 108 CFU/ml. A 10-�l inoculum was injected into
the rear left proleg of the larvae using a 10-�l Hamilton syringe (Sigma-Aldrich; catalog no. 24574). Before
injection, the syringe was washed with 10% bleach, 70% ethanol, water, and PBS. This washing step was
repeated after every six larva injections. After 1 h, 10 �l PBS containing 20-mg/kg (0.5 mg/ml) PQ401 or
25-mg/kg (0.625 mg/ml) vancomycin was administered into the rear right proleg. The wax moths were
incubated at 37°C. Survival was monitored every 24 h for up to 120 h. Statistical analyses (Kaplan-Meier
survival analysis and with log rank test) were conducted using GraphPad Prism version 8 (GraphPad
Software, La Jolla, CA, USA). A P value of less than 0.05 was considered significant.
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