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Patients with systemic lupus erythematosus (SLE) can experience acute neurological
events such as seizures, cerebrovascular accidents, and delirium, psychiatric conditions
including depression, anxiety, and psychosis, as well as memory loss and general cogni-
tive decline. Neuropsychiatric SLE (NPSLE) occurs in between 30 and 40% of SLE patients,
can constitute the initial patient presentation, and may occur outside the greater context
of an SLE flare. Current efforts to elucidate the mechanistic underpinnings of NPSLE are
focused on several different and potentially complementary pathways, including throm-
bosis, brain autoreactive antibodies, and complement deposition. Furthermore, significant
effort is dedicated to understanding the contribution of neuroinflammation induced by TNF,
IL-1, IL-6, and IFN-γ. More recent studies have pointed to a possible role for the TNF family
ligand TWEAK in the pathogenesis of neuropsychiatric disease in human lupus patients,
and in a murine model of this disease. The blood brain barrier (BBB) consists of tight
junctions between endothelial cells (ECs) and astrocytic projections which regulate para-
cellular and transcellular flow into the central nervous system (CNS), respectively. Given
the privileged environment of the CNS, an important question is whether and how the
integrity of the BBB is compromised in NPSLE, and its potential pathogenic role. Evi-
dence of BBB violation in NPSLE includes changes in the albumin quotient (Qalb) between
plasma and cerebrospinal fluid, activation of brain ECs, and magnetic resonance imaging.
This review summarizes the evidence implicating BBB damage as an important compo-
nent in NPSLE development, occurring via damage to barrier integrity by environmental
triggers such as infection and stress; cerebrovascular ischemia as result of a generally
prothrombotic state; and immune mediated EC activation, mediated by antibodies and/or
inflammatory cytokines. Additionally, new evidence supporting the role of TWEAK/Fn14
signaling in compromising the integrity of the BBB in lupus will be presented.

Keywords:TWEAK, Fn14, blood brain barrier, neuropsychiatric lupus, MRL/lpr

INTRODUCTION
Systemic lupus erythematosus (SLE) is a systemic autoimmune
disease characterized by hyper-activation of B and T lymphocytes
resulting in the overproduction of autoantibodies, tissue depo-
sition of immune complexes, and high levels of inflammatory
cytokines, cumulatively resulting in a systemic pro-inflammatory
state (1). SLE patients may suffer from skin, joint, hematologic,
and renal disease, the latter being a predominant contributor
to morbidity and mortality. Treatments have traditionally con-
sisted of corticosteroids and potent immunosuppressive agents
such as cyclophosphamide, though biologic medications target-
ing particular cytokines may eventually prove to be promising
alternatives. Additionally, the course of the disease is highly vari-
able between patients, with certain manifestations more common
than others, and the overall impact on quality of life dependent
on the individual patient’s circumstances and particular disease
manifestations.

Central nervous system (CNS) presentations in SLE patients
consist of a broad array of symptoms, which can be gener-
ally divided between focal neurological and diffuse psychiatric

manifestations. Focal episodes may include seizures and cere-
brovascular events, while psychiatric presentations often consist of
anxiety and depression (2). A neuropsychiatric SLE (NPSLE) phe-
notype can be a presenting feature of lupus, and is eventually found
in up to 40% of SLE patients (3). Research into the underlying
mechanisms of NPSLE has taken several different and potentially
complementary directions. Human, murine and in vitro systems
have all been utilized to examine the effects of autoantibodies,
cytokines, vascular disease, and cellular effectors in the develop-
ment of NPSLE symptoms. TNF-like weak inducer of apoptosis,
better known as TWEAK, is a TNF family member cytokine which
together with its sole confirmed receptor Fn14 have recently shown
to be instrumental in the pathogenesis of murine NPSLE. Fur-
thermore, it is increasingly evident that blood brain barrier (BBB)
disruption is an essential component of NPSLE pathogenesis (4),
and that TWEAK may play an important role in this process (5).

NPSLE IN HUMAN LUPUS AND EXPERIMENTAL MODELS
Studying NPSLE in humans poses some obvious limitations,
including the scarcity of CNS tissue samples and the heterogeneity
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of NPSLE presentations. Most available data from NPSLE patients
consist of blood and cerebrospinal fluid (CSF) analysis, and radio-
logic imaging, including magnetic resonance imaging (MRI). CSF
is often remarkable for the presence of increased immunoglobu-
lins, elevated concentrations of cytokines, and evidence of BBB
disruption, as measured by increased albumin concentrations.
MRI data has additionally proven useful in identifying the brain
regions most frequently involved in NPSLE, as well as which CNS
tissues are affected (6). Additionally, extensive work has gone into
the correlation between certain systemic autoantibody titers and
NPSLE phenotypes (7).

There are several spontaneous mouse models of SLE, including
the NZB×NZW F1 (NZB/W F1), BXSB, and MRL/Tnfrsf6lpr/lpr

(MRL/lpr) strains. These three models all develop some measure
of neuropsychiatric disease. BXSB mice, for example, demonstrate
problems with both spatial and non-spatial learning tasks (8). One
issue with the BXSB model, however, is the sex bias toward males,
which is inconsistent with the strong female predominance found
in human SLE. Additionally, BXSB and NZB/W F1 mice may have
congenital structural abnormalities of the brain (9), potentially
confounding structure-function analyses. Both NZB/W F1 and
MRL/lpr mice demonstrate neurological deficits (10, 11), though
the MRL/lpr model has a greater incidence of neuropsychiatric
disease (12). The MRL/lpr has the added benefit of a congenic
control (MRL+/+), which does not develop disease.

The MRL/lpr strain develops a disease phenotype consistent
with the affective and behavioral pathologies seen in human lupus
(13). Gao et al. found that depressive symptoms appear as early as
6 weeks of age in female MRL/lpr mice, preceding onset of renal
pathology. Additionally, we found a correlation between depressive
symptoms and several autoantibodies, including anti-NMDAR
and anti-dsDNA (14). Similarly, depression and other neuropsy-
chiatric symptoms can appear early in the disease course in human
disease (15). MRL/lpr mice demonstrate increased immobility
on the forced swim test, which is a widely accepted indicator of
depression in rodents (if strength and locomotion are otherwise
normal). Additionally, MRL/lpr mice display decreased prefer-
ence for sweetened water (anhedonia), as well as an acquired
anosmia, both manifestations of murine depressive-like behav-
ior (16, 17). Finally, cognitive tests in MRL/lpr mice reveal clear
deficits in the object placement task indicating deficits in spa-
tial memory, relatable to the cognitive decline found in NPSLE
patients.

Another experimental model of NPSLE is induced by treatment
with anti-N -methyl-d-aspartate (anti-NMDA; also known as anti-
NR2) receptor antibodies coupled with BBB disruption in BALB/c
mice (18). Depending on the method of BBB disruption, result-
ing symptoms may include impaired performance on memory
tasks or altered fear responses (19, 20). More recently, Kivity et al.
showed that intracerebroventricular transfer of the 16/6 idotype
(a human anti-ssDNA antibody) into C3H mice resulted in hip-
pocampal inflammation and decreased performance in memory
tasks (21).

NEUROPATHIC ANTIBODIES IN NPSLE
As previously mentioned, NPSLE deficits can be defined as either
focal or diffuse in nature. Focal findings in NPSLE are most readily

associated with the presence of antiphospholipid (aPL) antibodies,
including anti-cardiolipin antibodies, anti-β2glycoprotein I anti-
bodies, and lupus anticoagulant (22). These antibodies dramati-
cally increase susceptibility to thrombosis, resulting in an increased
rate of cerebrovascular accidents (CVA) and transient ischemic
attacks (TIA). It is thought that aPL antibodies may act through
increasing oxidative stress, as measured by increased level of oxi-
dized low-density lipoprotein, which itself is associated with ath-
erosclerosis and thrombosis (23). While these patients will present
with typical focal findings, such as motor and cranial nerve deficits,
seropositivity for aPL antibodies is not typically associated with
diffuse psychiatric and cognitive presentations (7).

Other circulating and intrathecal antibodies are also associated
with NPSLE manifestations. Anti-ribosomal-P (anti-P) antibod-
ies have long been associated with NPSLE presentations (24–26),
and more recently have been found to induce depression in mice
when injected intraventricularly (16). Recent work by Matus et al.
found that anti-P antibodies from human lupus serum induced
calcium influx and subsequent apoptosis in p331 positive neurons
in rats, which they characterized as a new P-antigen. Death of these
neurons, found in the hippocampus, amygdala, and certain neo-
cortical layers, account for a broad range of potential symptoms,
including depression, memory deficits, and cognitive decline (27).
Anti-NMDA receptor antibodies are also associated with psychi-
atric symptoms, such as depression and memory dysfunction in
SLE patients, and altered fear responses when transferred to mice,
due to excitotoxic glutamatergic effects on neurons (14, 19, 28–
30). Anti-U1-RNP antibodies have been reported by Sato et al. as
a more specific marker of NPSLE than anti-P or anti-NR2 anti-
bodies (31), and may potently induce expression of interferons
(32). Anti-ganglioside (anti-GM1) antibodies were once thought
to be associated with NPSLE pathogenesis (4, 33) through disrup-
tion of voltage gated Na+ channels found near nodes of Ranvier
(34), though it has since been found that they are more likely
associated with peripheral neuropathies than central NPSLE pre-
sentations (35). Other antibodies associated with NPSLE include
anti-dsDNA, anti-Microtubule-associated Protein 2, anti-Triose-
phosphate isomerase, and brain reactive autoantibodies (BRAA)
(36–38). The reader is referred to a number of excellent reviews for
further detail regarding these and other neuropathic antibodies
(39–42). Regardless of the antigenic specificity of these neuro-
pathic autoantibodies, the question remains how they gain entry
into the central nervous system (CNS) from the systemic circula-
tion, implicating a failure in the BBB as a key component of NPSLE
pathogenesis.

THE BLOOD BRAIN BARRIER
The CNS is maintained as a privileged environment due to the
combination of tight junctions between endothelial cells (ECs)
limiting paracellular transport, and astrocytic processes, which
regulate transcellular transport from systemic circulation. The
choroid plexus (CP) and arachnoid epithelia similarly maintain
this barrier through tight junctions, as well as secrete and reabsorb
CSF, respectively. Another element that seems essential to a com-
petent blood brain barrier is the presence of resident microglia.
Microglia populations of monocytic origin are found perivas-
cularly within the CNS parenchyma, limit paracellular transport
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across ECs, and may serve as a bridge between CNS and systemic
immune activity (43).

The isolating nature of brain microvascular ECs is attribut-
able to the tight junctions, including members of the zonula
occludens (ZO-1) and claudin (claudin-5) families, resulting in
impermeability to macromolecules (44). Additionally, these multi-
laminated junctional complexes provide very high electrical resis-
tance, dependent on the basal parenchymal presence of astrocytes,
yielding remarkably low permeability to smaller and ionic mol-
ecules (45, 46). Astrocytes are also required to provide the envi-
ronmental cues ECs need to develop and maintain their unique
CNS phenotype, and are involved in bidirectional cytokine signal-
ing with ECs (47). Microglia are involved as well in modulating
EC through secretion of TNF, which upregulates MHC-I presenta-
tion on ECs and promotes entry of T-cells into brain parenchyma
during pathological states (48).

Beyond serving as a barrier, ECs are directly responsible for reg-
ulating the immune response in the brain. ECs help maintain the
CNS in its basal state of suppressed immunity through secretion
of TGFβ (49) and soluble cellular adhesion molecules (50). Brain
ECs can, however, activate an immune response, such as under
LPS stimulation, which induces production of IL-6 and GM-CSF.
Interestingly,Verma et al. showed that LPS itself does not appear to
induce disruption of EC junctional complexes; rather, further sig-
naling by luminal and parenchymal effector cells likely potentiates
BBB disruption following LPS stimulation (51).

The CP vasculature is unique within the CNS, as it consists
of fenestrated ECs necessary for CSF volume maintenance. This
vasculature is isolated from brain parenchyma by a blood-CSF bar-
rier (BCSFB). The BCSFB consists of cuboidal CP epithelial cells,
which are interconnected by tight junctions, effectively providing
for a barrier similar to the BBB (52, 53). CSF not only provides
physical support to CNS tissue by reducing its apparent weight, it
is also able to rapidly transmit hormonal signals within the CNS
(54) and provide for drainage, much as the lymphatics do sys-
temically (55). Additionally, CSF is enriched with memory T-cells
due to one of its primary roles, immune surveillance of the CNS.
Normally, non-autoreactive T-cells are allowed to pass through
the CP epithelial barrier unhindered (56). It is believed, however,
that through increased expression of cellular adhesion molecules,
CP ECs are involved in the pathogenesis of certain autoimmune
conditions, such as multiple sclerosis (57).

EVIDENCE OF BBB DAMAGE IN SLE
There are several markers available to monitor the integrity of
the BBB. Albumin is a large and extensively charged protein
that is not synthesized intrathecally, and whose transport into
the CNS is tightly regulated. As such, an elevated albumin con-
centration gradient (Qalb) between CSF and plasma (normal
[Alb]CSF/[Alb]Plasma≤ 7.6× 10−3) serves as an indicator of BBB
disruption, and has been found repeatedly in NPSLE patients (31,
58, 59) and MRL/lpr mice (60). While Qalb provides a useful mea-
surement of relatively large scale leakage across the BBB, it lacks
the finer resolution needed to appreciate small and transient leak-
age (4). The IgG index [CSF(IgG/Albumin)]/[Serum(IgG/Albumin)] is
another useful measure of BBB permeability that can also iden-
tify the relative intrathecal vs. systemic origin of IgG within the

CNS (61, 62), and is found elevated in both NPSLE patients and
experimental models (31, 60). Sato et al. found both an elevated
Qalb and an elevated IgG index in 8 and 9 of 14 NPSLE patients,
respectively (31). Similarly, Sidor et al. found elevated Qalb and
IgG index measurements in MRL/lpr mice when compared with
MRL+/+ mice, along with increased neurodegeneration in those
mice with a disrupted BBB (60). Jacob et al. further demonstrated
that IgG enters CNS parenchyma in MRL/lpr mice (63). Finally,
Ma et al. have shown extensive penetration of CD3+ cells into the
CP and in brain parenchyma, as well as the presence of CD19+-B-
cells in MRL/lpr mice, providing further evidence of BBB failure
in NPSLE (64).

The availability of new and improved modalities with finer
resolution will likely continue to be an asset in measuring BBB
function non-invasively in NPSLE. Since the calcium binding pro-
tein S100B is predominately found in astrocytes, its presence in
serum serves as valuable indicator of BBB injury (65–67). Schen-
atto et al., examining a cohort of 89 SLE patients, identified
elevated S100B levels in NPSLE vs. non-NPSLE, a finding which
was even more prominent during acute episodes (68). Evolution
of MRI is also proving to be useful in the clinical characteriza-
tion of BBB breaches. The increasing availability of 3.0 T MRI
magnets and newer gadolinium (Gd) containing contrast agents,
which visualizes contrast flow into CNS parenchyma with T1-
weighted imaging, are improving the ability to highlight areas of
BBB insufficiency (69). Recently, Toledano et al. utilized multi-
ple MRI modalities in imaging NPSLE patient brains, and found
vascular damage in a third of patients with the vast majority con-
sisting of small vessel damage (70). One could reasonably speculate
that evidence of BBB disruption may be obscured due to transient
changes in BBB integrity, or the reparative effects of treatment.
Indeed, findings of BBB disruption by Gd-contrast enhancement
are likely under-reported, since the frequent use of corticosteroids
in SLE treatment likely results in stabilization of BBB damage (71).

MECHANISMS OF BRAIN EC ACTIVATION AND BBB
DISRUPTION IN SLE
EC ACTIVATION IN SLE
As described above, brain ECs are not mere bystanders in the regu-
lation of the CNS environment; they play an active role in concert
with both CNS and luminal effector cells and molecules. Infection
and systemic inflammation are potent activators of ECs, resulting
in upregulated expression of cytokines and chemokines, thereby
potentiating a local immune response (51, 72). IL-1, TNF, and
LPS signaling each result in upregulation of E-selectin, ICAM-1,
and VCAM-1 in microvascular ECs in vitro (73). MRL/lpr mice
are found to have elevated expression of ICAM-1 and VCAM-1
in predominately CP associated ECs when compared to congenic
controls (74). Sun et al. have recently shown that immune com-
plexes in SLE induce production of inflammatory cytokines and
cellular adhesion molecules in ECs via NF-κB signaling, due to
HMGB1-RAGE axis activation (75).

TREX1 is a major endogenous 3′–5′ DNA exonuclease. Muta-
tions in TREX1 are associated with chilblain lupus erythematosus,
a rare form of cutaneous disease, as well as with sporadic SLE
(76). In addition, TREX1 variants are found in two other diseases
with neurological manifestations, autosomal dominant retinal
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vasculopathy with cerebral leukodystrophy and Aicardi–Goutieres
syndrome (77). TREX1 deficiency or dysfunction may lead to
accumulation of cytosolic DNA and enhanced alpha-interferon
signaling. Furthermore, TREX1 deficiency in lymphocytes mod-
ulates vascular EC angiogenesis (78), suggesting an interesting
possible link between the genetic susceptibility for lupus asso-
ciated with TREX1, ECs, and CNS disease (76). Irrespective of the
cause, endothelial activation results in increased vascular perme-
ability and diapedesis, and increased local aggregation of humoral
and cellular effectors.

ENVIRONMENTALLY INDUCED BBB DISRUPTION
Diamond et al. have done extensive work on anti-NMDA recep-
tor antibodies as effectors of NPSLE symptomatology. In their
early studies, CNS disease was induced by direct injection of anti-
NMDA receptor antibodies into the cerebral cortices of healthy
mice, thereby bypassing the BBB (79). They then utilized several
models of extraneous BBB disruption, including LPS as model of
infection and epinephrine as a model of stress. When LPS was
used to induce BBB disruption, mice showed poorer performance
on the Morris water maze and T-maze tasks, indicative of learning
and memory deficits, and consistent with hippocampal damage.
Neuron loss in the hippocampus was found histologically and
was evident as structural abnormalities on MRI (80). When using
epinephrine, neuron loss occurred selectively in the amygdala,
inducing alterations in conditioned fear responses in mice, while
sparing hippocampal neurons (81). These findings provide a pos-
sible explanation for the phenotypic differences between NPSLE
patients, and the role environmental mediators may play.

ANTI-ENDOTHELIAL CELL ANTIBODIES
Conti et al. found that 64.7% of NPSLE patients sera are positive
for anti-endothelial cell antibodies (AECAs), as compared to only
29.4% of non-NPSLE patients (82). AECAs have been previously
characterized as inducers of increased EC cellular adhesion mol-
ecules, including E-selectin, ICAM-1, and VCAM-1. Nara et al.
stimulated HUVEC with monoclonal antibodies targeted toward
thrombomodulin, a proposed antigenic substrate of some AECAs
in SLE patients (83), and found increased endothelial produc-
tion of IL-6 and IL-8 mediated through the NF-κB pathway (84).
More recently, Yoshio et al. found that anti-NR2 antibodies recog-
nize antigenic targets on HUVECs, and can induce IL-6 and IL-8
expression with IL-1β co-treatment (85). Collectively, AECAs may
induce endothelial activation, which is pivotal in many inflamma-
tory processes, but in the brain is an important component of BBB
disruption as well (86).

COMPLEMENT
One of the hallmarks of increased disease activity in SLE patients
is the depletion of complement components from serum, due to
consumption by circulating immune complexes, deposition in tar-
get tissues and targeting by anti-C1q antibodies (87, 88). Low
circulating levels of complement components C3 and C4 have
also been suggested as potential biomarkers of human NPSLE
activity (89). Alexander et al. first demonstrated that complement
inhibition can attenuate NPSLE presentations in MRL/lpr mice
(90). Jacob et al. then showed that C5aR activation induces EC

cytoskeletal alteration in vitro and laminin disruption in MRL/lpr
brain vasculature, both indicators of BBB damage. Additionally,
C5aR activation results in increased CCL2 and CXCL2 produc-
tion by mouse microvascular ECs, when pretreated with IL-6
(91). Finally, in further characterizing the BBB disruption that
occurs with C5aR activation, Jacob et al. found increased expres-
sion of MAP-kinase, increased nuclear NF-κB translocation and
decreased zona occludin (ZO) levels, indicative of EC junctional
complex interruption, which would dramatically increase BBB
permeability (92).

CYTOKINES AND CHEMOKINES
Stimulation of human brain microvessel ECs (HBMEC) with
cytokines such as IL-1β, IL-8, TNF, and IFN-γ are known to induce
increased permeability across monolayers (86, 93). CCL2 signaling
has been shown to play a role in BBB disruption both in vitro and
in CCR2−/−mice (94, 95). Zameer et al. found elevated expression
levels of ICAM-1 and VCAM-1 in the CNS of MRL/lpr mice, pro-
viding further evidence of an inflammatory process involving the
BBB (74, 96). Trysberg et al., analyzing CSF from lupus patients,
found elevated levels of IL-6 and IL-8 which were correlated with
elevated MMP-9 levels, the latter associated with degradation of
BBB extracellular matrix (97).

In most, if not all of the above models of BBB disruption, it
is clear that the cytokine and chemokine environment is criti-
cal. While complement and AECAs may indeed be effectors of
BBB disruption, they cannot do so on their own; cytokines are
needed to fully activate and disrupt the BBB. Amongst these
cytokines, TWEAK has recently been demonstrated as a potent
effector of multiple downstream pathways needed for BBB dis-
ruption, including activating intracellular signaling cascades and
inducing production of additional cytokines, chemokines, and
metalloproteinases.

The causes and consequences of EC activation are summarized
in Table 1.

TWEAK, NPSLE, AND BBB DISRUPTION
TWEAK is a pro-inflammatory cytokine member of the TNF
superfamily. Through activation of its sole receptor, Fn14, TWEAK
variably induces cellular proliferation, angiogenesis, inflamma-
tion, and apoptosis (98). As previously mentioned, MRL/lpr
mice develop a neuropsychiatric phenotype remarkably similar
to human SLE. We recently found increased TWEAK and Fn14
expression in the cerebral cortices of MRL/lpr mice. Furthermore,
in MRL/lpr Fn14-knockout (Fn14KO) mice we found significantly
improved cognitive function, decreased depression, and less anhe-
donia, as demonstrated by object placement tasks, the forced swim
test, and preference for sweetened water, respectively (17). The
attenuated neuropsychiatric phenotype in Fn14 deficient lupus
mice may be due to decreases in brain expression of CCL5 and C3,
which have been found associated with depression and cognitive
decline (99–101). Other mechanisms by which the Fn14KO is pro-
tective of NPSLE development in MRL/lpr mice are under active
investigation.

Fn14 is expressed both in the human cerebral microvascular
EC line (hCMEC/D3) and astrocytes, while TWEAK is secreted by
only the latter (5, 102). As described above, we found decreased
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Table 1 | Potential routes of endothelial cell activation in SLE.

Cause of endothelial

activation

Model Findings

Environmental

mediators

BBB disruption by treatment with LPS or epinephrine, in

models of infection and stress, respectively (19, 81)

Treatment with human lupus serum containing anti-NMDAR

antibodies following BBB disruption results in IgG deposition,

hippocampal neuron loss, and memory impairment (LPS), or

amygdala neuron loss and altered fear responses (epinephrine)

AECAs In vitro treatment of HUVEC with anti-

thrombomodulin (83, 84) or anti-NR2 antibodies (85)

Increased IL-6 and IL-8 expression

Complement Mouse brain endothelial cells and MRL/lpr mice (63, 92) C5aR activation yields increased CCL2 and CXCL2, NFκB

signaling, and decreased ZO expression

Cytokine and

chemokines

MRL/lpr mice (74) and CSF from human lupus patients (97) Elevated ICAM-1 and VCAM-1 in MRL/lpr CNS; increased IL-6,

IL-8, and MMP-9 in lupus CSF

TWEAK In vitro hCMEC/D3 cells (5) Elevated ICAM-1, CCL2, IL-6, IL-8, and MMP-9, ZO-1

degradation and decreased occludin levels

FIGURE 1 | ZO-1 and occludin expression after treatment with
Fc-TWEAK. ZO-1 and occludin expression was measured by western blot.
Treatment with Fc-TWEAK (100 ng/mL, 48 h) decreased ZO-1 and occludin
expression in hCMEC/D3 cells (A). ZO-1 and occludin expression was

decreased in hBMEC cells after treatment with Fc-TWEAK (100 ng/mL,
24 h) as well (B). Similarly, immunofluorescent detection of ZO-1 and
occludin in hBMECs was reduced after treatment with Fc-TWEAK
(100 ng/mL, 24 h) (C).

Qalb ratios in MRL/lpr Fn14KO mice as well as decreased CSF titers
of anti-dsDNA antibodies (17). More recently, we characterized
the effects of TWEAK on endothelial cytokine expression and bar-
rier disruption using hCMEC/D3 brain ECs, and found TWEAK-
induced increases in ICAM-1, CCL2, IL-6, and IL-8 (5). Further-
more, TWEAK-induced activation of the MAPK pathway yielded
increased expression of MMP-9, which degraded ZO-1, decreased
occludin expression (Figure 1), and increased permeability (5).
A similar finding was seen by Polavarapu et al. in their investi-
gation of cerebral ischemic injury, where intracerebral injection

of TWEAK in wild type mice increased MMP-9 activity and BBB
permeability (103). Furthermore, TWEAK induced expression of
ICAM-1, IL-8, and IL-6 in cultured astrocytes, typical of reactive
astrocytes, another effector of BBB disruption (104). Together,
this data supports the conclusion that TWEAK is instrumental
in the development of lupus associated neuropsychiatric disease,
with BBB disruption as an important mechanistic contribution of
this cytokine. The lack of effect of TWEAK on systemic autoan-
tibodies (17) and our current understanding of the mechanism
of action of the TWEAK/Fn14 signaling pathway also suggest that
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attenuated neuropsychiatric disease in MRL/lpr Fn14 KO mice is
not due to a reduced systemic autoantibody response, but rather
local (i.e., brain) effects of blocking this pathway such as the effect
on the BBB discussed here. Finally, it is important to note that
not only is TWEAK/Fn14 signaling involved in NPSLE, but this
cytokine/receptor pair has been implicated in the pathogenesis
of injury in other major lupus target organs, including the kid-
ney [for which there is evidence both in murine models (105,
106), and in human disease (107)], and in cutaneous lupus as well
(108).

The success of mAb treatment targeting pathogenic cytokines
such as TNF, IL-1, and BLyS in inflammatory rheumatic diseases,
together with the data presented above, strongly suggest the need
to examine anti-TWEAK antibody treatment as novel treatment
approach in NPSLE. Antibodies given intravenously can have ther-
apeutic effects on the brain, especially if the blood brain barrier
is already breached (as in NPSLE) (109). Alternatively, it would
be necessary to bypass the BBB, or develop a delivery system to
deliver the antibody to the CNS despite the compartmentalization
of the brain from the blood (e.g., bispecific antibodies using the
transferrin receptor) (110).

CONCLUSION
Neuropsychiatric SLE is often associated with the presence of
neuropathic antibodies within the CNS, making the question
of how they gain entry into this anatomically privileged space
increasingly important. Evidence points to entry of autoantibod-
ies across the BBB, with entry into different brain regions and
specific autoantibody subtypes potentially associated with the
variable phenotypes found in both murine experimental mod-
els and NPSLE patients. There is strong support for the roles of
AECAs, complement components, and environmental mediators
in increasing permeability across the BBB, though in each of these
cases, cytokines and chemokines have an essential role as well.
TWEAK appears to be one such cytokine that is necessary for
the development of NPSLE; one mechanism central to the con-
tributions of the TWEAK/Fn14 axis appears to be its role in BBB
disruption.

Interestingly, TWEAK/Fn14 signaling has been implicated
in other neurologic diseases besides NPSLE, including hypoxic
brain damage and autoimmune brain disease. Elsewhere in this
special issue, Yepes describes how TWEAK/Fn14 signaling in
middle cerebral artery occlusion (a model of ischemic stroke)
induces inflammation and MMP-9 mediated basal lamina dis-
ruption (111). Desplat-Jego et al. demonstrated the involvement
of TWEAK in the development of experimental autoimmune
encephalomyelitis (EAE), a murine model of multiple sclero-
sis, and that TWEAK over-expression in transgenic mice fur-
ther exacerbates the EAE phenotype (102). In both these dis-
ease models, preventing TWEAK signaling via Fn14 deficiency,
treatment with a Fn14-Fc decoy receptor, or treatment with
anti-TWEAK monoclonal antibodies results in attenuated dis-
ease. Ameliorating the disruption of the BBB may be a valuable
tool in the control of NPSLE as well other neurologic disor-
ders, and targeting the TWEAK pathway may be one way to
do so.
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