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Abstract

Introduction

Malaria is a severe health threat in the World, mainly in Africa. It is the major cause of health

problems in which the risk of morbidity and mortality associated with malaria cases are char-

acterized by spatial variations across the county. This study aimed to investigate the spatial

patterns and predictors of malaria distribution in Ethiopia.

Methods

A weighted sample of 15,239 individuals with rapid diagnosis test obtained from the Central

Statistical Agency and Ethiopia malaria indicator survey of 2015. Global Moran’s I and

Moran scatter plots were used in determining the distribution of malaria cases, whereas the

local Moran’s I statistic was used in identifying exposed areas. The auto logistics spatial

binary regression model was used to investigate the predictors of malaria.

Results

The final auto logistics regression model was reported that male clients had a positive signif-

icant effect on malaria cases as compared to female clients [AOR = 2.401, 95% CI: (2.125–

2.713) ]. The distribution of malaria across the regions was different. The highest incidence

of malaria was found in Gambela [AOR = 52.55, 95%CI: (40.54–68.12)] followed by Bene-

shangul [AOR = 34.95, 95%CI: (27.159–44.963)]. Similarly, individuals in Amhara [AOR =

0.243, 95% CI:(0.195–0.303], Oromiya [AOR = 0.197, 955 CI: (0.158–0.244)], Dire Dawa

[AOR = 0.064, 95%CI(0.049–0.082)], Addis Ababa[AOR = 0.057,95%CI:(0.044–0.075)],

Somali[AOR = 0.077,95%CI:(0.059–0.097)], SNNPR[OR = 0.329, 95%CI: (0.261–0.413)]

and Harari [AOR = 0.256, 95%CI:(0.201–0.325)] were less likely to had low incidence of

malaria as compared with Tigray. Furthermore, for one meter increase in altitude, the odds

of positive rapid diagnostic test (RDT) decreases by 1.6% [AOR = 0.984, 95% CI: (0.984–

0.984)]. The use of a shared toilet facility was found as a protective factor for malaria in Ethi-

opia [AOR = 1.671, 95% CI: (1.504–1.854)]. The spatial autocorrelation variable changes
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the constant from AOR = 0.471 for logistic regression to AOR = 0.164 for auto logistics

regression.

Conclusions

This study found that the incidence of malaria in Ethiopia had a spatial pattern which is asso-

ciated with socio-economic, demographic, and geographic risk factors. Spatial clustering of

malaria cases had occurred in all regions, and the risk of clustering was different across the

regions. The risk of malaria was found to be higher for those who live in soil floor-type

houses as compared to those who lived in cement or ceramics floor type. Similarly, house-

holds with thatched, metal and thin, and other roof-type houses have a higher risk of malaria

than ceramics tiles roof houses. Moreover, using a protected anti-mosquito net was reduc-

ing the risk of malaria incidence.

Introduction

Malaria is transmitted to humans by five species of single-cell, eukaryotic Plasmodium para-

sites (mostly Plasmodium falciparum and Plasmodium vivax) through the bite of an infective

female Anopheles mosquito. Malaria parasites proliferate and reproduce in people, first in the

liver cells and then exponentially in the infected person’s red blood cells. The blood type of the

parasite lifecycle causes the symptoms of malaria in humans when the parasites mature and

leave the liver to infect red blood cells [1]. Malaria is the most public tropical disease and is still

prevalent in tropical and subtropical regions, including parts of Africa, Asia and the Americas.

It is one of the leading causes of illness and death in large parts of developing countries, mainly

in Africa [2].

According to the world health organization report (WHO, 2020), an estimated 1.5 billion

malaria cases and 7.6 million malaria death in the world. Perfect estimates of malaria distribu-

tion are required for planning, implementation and evaluation of malaria control programs.

Hence, there is a need for precise estimates about the number of people at risk of malaria to

optimize the use of limited resources in a high-risk area [3]. Malaria was the leading cause of

outpatient visits, health facility admissions, and in-patient mortality in Ethiopia. According to

the Federal Ministry of Health of 2009, 12% were outpatient visits and 9.9% were admissions.

However, due to the lacks of access to health care, 36% of the population is likely to underesti-

mate the true prevalence of malaria. Increasing our understanding of malaria distribution and

its association with other diseases could lead to improvements in malaria control efforts [4].

In Ethiopia, rainfall and temperature are the most important determinants of malaria trans-

mission, and the distribution is highly seasonal in many regions but may have a nearly con-

stant transmission in some other areas; at the district level. Malaria outpatient caseloads may

vary several-fold from year to year and season to season in unstable epidemic-prone transmis-

sion pattern. Peak malaria transmission occurs season between September and December in

most Ethiopia, after the main summer season from June to August. Malaria is a serious health

problem in Ethiopia, affecting the socio-economic and health status of the country at large.

Based on Ethiopia Malaria Indicator Survey of 2015 (EMIS-2015), nearly 60% of Ethiopia’s

population lives in the malaria region, and 68% of the country’s population is at high risk of

spreading malaria. Malaria is more closely related to altitude and season than rainfall. In gen-

eral, the top of malaria spread follows the main summer season each year (July to September).
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But in many parts of the south and west, the rainy season starts earlier in April and May. Con-

sequently, malaria transmission tends to be highly heterogeneous geospatially, both within

and between years. Furthermore, malaria in Ethiopia is characterized by generalized epidemics

that occur every five to eight years in which the greatest rampant occurs [5].

In this work, in the absence of covariate, global and local autocorrelation metrics were uti-

lized to identify uni-variate spatial autocorrelation. After that, an auto logistics spatial regres-

sion model was estimated and a diagnosis test was run to see if the variables were adequately

represented to reflect the spatial dependency of the dependent variable. When data for geo-

graphical factors is available, spatial auto logistics models describe malaria morbidity variance

by geographical location better than non-spatial model models. The spatial model is used to

measure neighboring effects and is used in a variety of research projects Odhiambo, Kalinda

[6] highlighted that geographically situated data analysis is one of the statistician’s key con-

cerns, and as a result, it is becoming increasingly significant in other disciplines of research.

Tests of spatial autocorrelation tests are used to determine the level of clustering and to make

statistical inferences [7].

Prophylaxis medications have been extremely beneficial and are widely used to monitor

malaria transmission control, however they are no longer effective in many tropical places due

to drug resistance by the parasite. Insecticide-treated nets (ITN) are being more widely touted

as an effective way to reduce malaria incidence [8]. This is accomplished by determining the

regional distribution of malaria. Malaria and disease heterogeneity spatial model models can

be used to count geographic variation threats. Regional states, zones, districts and kebeles were

the administrative divisions of Ethiopia’s federal government (kebeles). Regional states con-

sider and understand the most important characteristics that influence malaria clustering in

the study area in this study. The purpose of this research is to look into the spatial pattern and

predictors of malaria in Ethiopia.

Materials and methods

Data

The data from the Ethiopian malaria indicator survey (EMIS-2015), the third comprehensive

survey conducted as part of the national Ethiopian malaria indicator survey in 2015, was used

in this investigation. This survey evaluated Ethiopia’s progress in scaling up malaria prevention

and control interventions. From 555 enumeration areas selected in the first step, cross-sec-

tional survey data from a secondary source retrieved from EMIS-2015 was employed with a

two-stage cluster sampling process. Between September and December 2015, a poll was per-

formed to assess the national malaria strategic plan.

During the survey, 15,960 individuals had RDTs. The study was population-based cross-

sectional, including participants of all ages, and samples were chosen using a two-stage cluster

probability sampling technique to select 555 enumeration locations from across Ethiopia’s

malaria zones. A weighted sample size of 15,239 people was used in this investigation. This

study included all household areas in the 555 EAs with altitudes of 2,000 and 2,000–2,499

meters, while households with laboratory malaria tested (had RDTs), no specific latitude and

longitude (has no specific cluster number) individual in an EMIS 2015 documented data, and

malaria (>2,500m ASL) were excluded.

Socio-demographic characteristics, insecticide-treated nets condition and availability,

insecticide-treated nets, indoor residual spray, presence of stagnant water, outdoor stay at

night, housing condition, and health information about malaria were extracted from EMIS-

2015.
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Binary data from EMIS, which was documented in 2015, was utilized in this investigation.

A publication of the central statistical agency and EMIS, established in 2015, provided the

shape file for each area and EAs of the country. In 2015, we also collected social and economic

data from the county as potential risk factors for malaria occurrence. Observations that are

recognized at geographic positions R1,R2,R3. . .. . .. . .R11 identify spatial data in R (regions)

coordinates in the plane or polygons are in two, three, or more dimensions [9].

Statistical models

The auto logistics spatial regression model and exploratory geographic data analysis (Moran’s

I, and Local indicators of spatial autocorrelation, primarily Moran scatter plot) were utilized.

Spatial autocorrelation measures and tests how clustered or dispersed points are in space in

proportion to their attribute values using a metric known as the spatial autocorrelation coeffi-

cient. When spatial autocorrelation is minimal or absent, neighboring points in a distribution

tend to have different properties. Moran’s I and Geary’s C statistics are the most generally used

measurements for the proximity of locations and the similarity of their attributes. These statis-

tics primarily challenge the assumption of spatial independence or randomness by measuring

the strength of spatial autocorrelation among neighboring areal units [10].

One of the most extensively utilized models for modeling spatially linked binary data is the

auto logistics spatial regression model. Many researches have shown that including auto covar-

iate variables into the auto logistics regression is effective in modeling binary data with

observed covariates. It’s a variant of the generalized logistic regression model with a spatial

autocorrelation term in the form of Euclidean distance. In statistical analysis, it solves the

problem of spatial autocorrelation effect [11].

We had restricted our attention to a constant auto regression coefficient (rii = r) for all geo-

graphic indexes that can express the conditional probability of the occurrence of malaria dis-

ease as:

pi ¼
exp x0ibþ rAutocovi

� �

1þ exp x0ibþ rAutocovi
� � Where Auto covi ¼

Xki

j¼1
wijpj

Xki

j¼1
wij

Wij ¼
1 if centroid of j is one of the k nearest centroids to that of i

0 otherwise

( )

Where, πi denotes the probability of an event occurring for every region; Xi is independent

variable, Auto covi is the auto covariate variable, β and r are the coefficient of explanatory vari-

able and coefficient of fixed auto covariate variable in the equation, i is the index of geographi-

cal region (cluster) respectively.

Malaria incidences and geographic risk factors for malaria are often positively auto corre-

lated. The values of two similar units in space tend to be more similar than would be predicted

by chance. As a result, models that overlook spatial autocorrelation may be incorrect due to an

overestimation of an environmental variable’s importance. Nonetheless, models that included

the spatial autocorrelation effect were important to the response variable, resulting in accurate

results in estimating the spatial distribution of malaria illnesses, improving model accuracy

and adaptability. By adding any spatial autocorrelation between geographic units by incorpo-

rating an auto covariate variable acquired from the binary logistic regression model, the binary

logistic regression model is modified to the auto logistic regression model [11].
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The auto covariate variable can be calculated from the predicted probability of occurrence,

which is estimated by the binary logistic regression model using this equation.

Auto covi ¼

Xki

j¼1
wijpj

Xki

j¼1
wij

; where

Autocovi is the weighted average of the probability of the geographical units among a set ki
neighbours of the geographical unit i, wij the spatial weight between the geographic unit i and j

is given by wij ¼
1

hij
, where hij is the Euclidean distance between the centroid of geographic unit

i and j, Pj represent the predicted probability estimated by the binary logistics regression

model.

To measure the relevance of over dispersion, we can look at the value of the chi-square sta-

tistic of the dispersion parameter in statistical comparisons between logistics and auto logistics

regression. The preferred model for the data can then be determined using a likelihood ratio

(LR) test [12]. A Boolean map of reality (the presence/absence) of malaria is compared to a

probability map using relative operating characteristics (ROC). R Software was used to model

and analyze key malaria transmission predictors using geographical point pattern data. The

spatial autocorrelation and mapping were studied using ArcGIS. Using backward selection

methods for the variable wealth index and education level to excluded from the study.

Ethical statement

Ethical approval had been obtained from Bahir Dar University Ethical approval committee,

Bahir Dar University, Ethiopia. In data collection, there was no written or verbal consent from

participants because of the use of secondary data obtained from Ethiopian malaria indicator

survey (EMIS-2015).

Results

The study result showed that, among the weighed sample of 15,239 individuals, 2876 were pos-

itive RDTs results. From the total of 2876 malaria cases, 1951(67.84%) households were in

rural. Out of 8362 female households, 510(17.73%) have malaria cases and among 6878 male

households, 2366(15.53%) have malaria cases. Among malaria-positive cases, 1218(42.35%)

were non-educated, 1015(35.29%) had primary level of education, 424(14.74%) had secondary

level of education, and 219(7.61%) had higher education. Similarly, 1879(65.33%) malaria case

households were used surface water, 907(31.54%) were used protected water, 32(1.11%) were

used tanker water, and the remaining 58(2.02%) were had other sources of water (Table 1).

The spatial distribution of malaria in Ethiopia was presented in Fig 1. The red color indi-

cates a negative malaria diagnosis test, and the green one indicates a positive malaria diagnosis

test. Higher positive malaria cases were observed in the abuttal and northern parts of Ethiopia.

Regionally, the highest malaria cases were observed in Somalia, Amhara, Oromiya, Tigray,

Afar, SNNPR Beneshangul and Gambela followed by Afar and Harari. Low malaria cases were

observed in the middle part of the country with the lowest records observed in Addis Ababa

and Dire Dawa.

In the Hot spot (Getis-Ord Gi�) analysis, the spatial hot spot analysis was predicted using

incremental spatial autocorrelation maximum pick distance value 194.41 km and 237.986km

(see S1 Fig). As shown in Fig 2, the red color is intense clustering of the high risk of malaria

incidence (hot spot) in Ethiopia. The malaria rapid diagnosis test was clustered as high risk in

Northern Amhara, Southwestern parts of Oromiya, Western parts of Gambela, Eastern and
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middle parts of Tigray, Western part of Afar, and central part of Somali regional states of Ethi-

opia. Whereas Addis Ababa, Dire Dawa, Southern parts of Amhara, Southern parts of Afar,

Table 1. Socio-demographic characteristics of malaria in Ethiopia.

Variables Categories of variable Malaria positive

Sex Female 510(3.35%)

Male 2366(15.53%)

Education status No education 1218(7.99)

Primary 1015(6.7)

Secondary 424(2.8)

Higher 219(1.44)

Residence Urban 925(0.98)

Rural 1951(17.6)

Source of water surface water 1879(12.33)

Protected 907(5.9)

Tanker 32(0.2)

Other 58(0.4)

https://doi.org/10.1371/journal.pone.0268186.t001

Fig 1. Spatial distribution of malaria test in Ethiopia, from EMIS 2015.

https://doi.org/10.1371/journal.pone.0268186.g001
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Harari, Northern parts of Somali, Central Oromiya, and Northeastern part of Southern

Nations, Nationalities, and people’s Regional states of Ethiopia were less risk area for malaria

cases (Fig 2).

The geographical distribution of malaria cases on spatial clustering of malaria in Ethiopia

based on the Local Moran’s I Statistic. The spatial pattern on the right side the critical value is

greater than 2.58. It show that high rate of malaria occurred over study area. The critical value

is the global autocorrelation show that there is spatial autocorrelation exists over the whole

regions. As S2A Fig, shows Moran’s I of response variable code as 0 and 1 whereas S2B Fig,

shows Moran’s I of response variable code as -1 and 1 both positive spatial autocorrelation

indicates that region are located near to other region with similar values, either regions with

high values on the variable being located near to regions also with high values or the opposite

condition low values nearby other low values.

As shown in Fig 3, the red color indicates high value surrounded by high value (HH), the

green color indicates low value surrounded by low value (LL), the yellow color indicates high

value surrounded by low value (HL) and the blue color shows low value surrounded by high

value (LH). Therefore from the figure red and green colors are higher than the remaining two

colors that indicate positive spatial autocorrelation. The hot spot regions were SNNP (all pan-

els) and Oromiya, Beneshangul (middle and right), Harari, Somali, Gambella (south panels),

north-west Amhara, and Central Tigray regions. The two town administrations (Addis Ababa

and Dire Dawa), central Oromiya, Eastern Amhara, and Harari (left and right panels) regions

were indicated as cold spot regions. The outliers were found on Addis Ababa and Dire Dawa

(left), Oromiya, Harari, Amhara, Beneshangul-gumuz, SNNP, Afar (left and right), Gambella

and Somali (left) regions. From Fig 3, the LISA of malaria was low value surrounded by low

value in central parts of Amhara and Oromiya. Whereas, LISA of malaria was high value sur-

rounded by high value in borders of all regions in Ethiopia. Each point on the map represents

a single enumeration area with a number of malaria cases. The red (HH) color indicates

Fig 2. Hotspot analysis of malaria diagnosis test, from EMIS 2015.

https://doi.org/10.1371/journal.pone.0268186.g002
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malaria hotspot areas, the green (LL) color indicates malaria cold spot areas, the yellow (HL)

and blue (LH) colors indicate outliers.

Spatial autocorrelation (auto covariate) of malaria is almost predictable as human popula-

tions -live in spatial clusters rather than in random distributions of regions. As shown in Fig 4,

the spatial distribution of the auto covariate variable represents the residual spatial autocorrela-

tion term in the auto logistics regression model. The red colors showed Gambella, Beneshan-

gul Gumuz, the common boundary of Afar and Amhara, the west part of Somalia and

Oromiya in the south and east region were at high risk. Announcing the spatial auto covariate

variable reflects data smoothing process, reducing local spatial dependence between geograph-

ical units to present the inherent spatial difference and tendency. The spatial auto covariate

variable has the same unit of the malaria rapid diagnostics test, which also represents the prob-

ability of the malaria disease occurrence.

The final auto logistics regression model was reported that male clients had a positive sig-

nificant effect on malaria cases as compared to female clients [AOR = 2.401, 95% CI: (2.125–

2.713) ] which is above two times more likely to have malaria positive cases. The study result

also revealed that the type of toilet facility had a significant effect on positive malaria tests. The

larger estimated odds ratio for pit latrine toilet users [AOR = 3.14, 95% CI: (2.56–3.838)] and

for bucket toilet facility users [AOR = 0.752, 95% CI: (0.6638–0.851)] shows that the probabil-

ity of malaria positives test of bucket toilet facility user were less likely than flush toilet users.

Fig 3. Spatial clustering of malaria in Ethiopia based on the Local Moran’s I statistic, from EMIS 2015.

https://doi.org/10.1371/journal.pone.0268186.g003
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In contrast, clients who used pit latrine toilets were more likely to have positive malaria test

than flush toilet users. The results also found Gambela[AOR = 52.548, 95%CI:(40.537–

68.118)] and Beneshagul [AOR = 34.946, 95%CI:(27.159–44.963)] region of the country were

related to the higher likelihood of malaria positive test results. Individuals who were in

Amhara [AOR = 0.243, 95% CI:(0.195–0.303], Oromiya [AOR = 0.197, 955 CI:(0.158–0.244)],

Dire Dawa [AOR = 0.064,95%CI(0.049-0-0.082)], Addis Ababa[AOR = 0.057, 95%CI(0.044–

0.075)] Somali [AOR = 0.077,95%CI:(0.059–0.097)], SNNPR[AOR = 0.329, 95%CI: (0.261–

0.413)] and Harari [OR = 0.256, 95%CI:(0.201–0.325)] are less likely to have malaria case as

compared to individuals who were in Tigray. Based on the result of Table 2 the odds of having

malaria decreased by 82.4% for individual with a one year increased age [AOR = 0.176, 95%

CI: (0.1758–0.177)] holding other covariates constant.

Furthermore, for a one meter increase in altitude, the odds of positive RDT decreases by

1.6% [AOR = 0.984, 95% CI: (0.984–0.984)]. With reference to individuals who used protected

water, malaria RDT was higher than individuals who used surface water [AOR = 1.207, 95%

CI: (1.070–1.361)] followed by tanker [AOR = 1.375, 95% CI: (1.028–1.839)]. The results also

showed individuals whose residence was urban were 0.717 times lower risk of being malaria

positive test as compared to rural[AOR = 0.717,95% CI:(0.630–0.814)]. The probability of

malaria positives test of metal [AOR = 6.521, 95% CI: (5.049–8.421)], thatched [AOR = 5.674,

95% CI:(4.361–7.382] and other [AOR = 7.299, 95%CI (3.717–14.329)] roof material types

used is higher than cement or ceramic roofs. Furthermore, individuals who live in soil floor

Fig 4. Predicted spatial effects from the malaria case in Ethiopia, from EMIS 2015.

https://doi.org/10.1371/journal.pone.0268186.g004
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Table 2. Parameter estimates for auto logistics regression model.

Parameter AOR 95% CI for AOR P-value

Intercept 0.164 (0.100, 0.267) 0.001

Altitude 0.984 (0.984, 0.984) 0.004

Spatial effect 3.841 (3.1200, 4.727) 0.001

Gender (Ref. = female)

Male 2.401 (2.125, 2.713) 0.001

Age 0.176 (0.1758, 0.177) 0.001

Regions(Ref. = Tigray)

Addis Ababa 0.057 (0.044, 0.075) 0.001

Afar 0.302 (0.229, 0.397) 0.016

Amhara 0.243 (0.195, 0.303) 0.002

Beneshangul 34.946 (27.159, 44.963) 0.001

Dire Dawa 0.064 (0.049, 0.082) 0.001

Gambela 52.548 (40.537, 68.118) 0.001

Hararie 0.256 (0.201, 0.325) 0.002

Oromiya 0.197 (0.158, 0.244) 0.001

SNNPR 0.329 (0.261, 0.413) 0.008

Somali 0.077 (0.059, 0.097) 0.026

Toilet facility (Ref. = flushed)

Bucket toilet 0.752 (0.6638, 0.851) 0.001

No facility 1.481 (0.726, 3.018) 0.279

Pit latrine 3.14 (2.568, 3.838) 0.001

Time to get water 1.001 (1.0001, 1.001) 0.001

Drinking water(Ref. = protected)

Other 0.285 (0.102, 0.789) 0.015

Surface water 1.207 (1.070, 1.361) 0.002

Tanker 1.375 (1.028, 1.839) 0.031

Material of room’s wall(Ref. = mud)

Cement 0.991 (0.701, 1.401) 0.961

Other 1.211 (1.019, 1.438) 0.029

Wood 1.004 (0.847, 1.190 0.959

Mosquito net (Ref. = No net)

Protected net 0.653 (0.591, 0.721) 0.001

Unprotected net 1.014 (0.871, 1.180) 0.85

Cooking(Ref. = wood and charcoal)

Electricity 0.34 (0.291, 0.397) 0.001

Fuel 0.08 (0.05, 0.109) 0.001

Not cooking at home 3.99 (1.481, 10.753) 0.006

Toilet facility(Ref. = no)

Yes 1.671 (1.504, 1.854) 0.001

Residence(Ref. = rural)

Urban 0.717 (0.630, 0.814) 0.001

Material of room’s floor (Ref. = cement)

Soil floor type 29.817 (23.206, 38.312) 0.001

Other 22.69 (16.966, 30.343) 0.001

Wood planks 17.619 (13.481, 23.028) 0.0001

Material of room’s roof (Ref. = ceramic)

Metal and tin 6.521 (5.049, 8.421) 0.001

(Continued)
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type [AOR = 29.817, 95%CI: (23.206–38.31)] are 29.8times more likely to have positive malaria

cases as compared to individuals who lived in cement floor type. Similarly, other types of the

floor are 22.69 times more likely to have malaria positive result [AOR = 22.69, 95%CI:

(16.966–30.343)]. Likewise, households who live in types of rooms with wood walls were 1.2

times more likely to have been malaria positive than those households who lived with mud

walls [AOR = 1.004, 95%CI: (0.847–1.190)].

After adjusting other covariates, households with protected mosquito bed nets have

decreased the odds of having malaria by 34.7% than those in households without mosquito

bed nets [AOR = 0.653, 95%CI: (0.591–0.721)] while households who used unprotected net

were 1.014 times more likely to had malaria as compared to households who did not use net

[AOR = 1.014, 95%CI:(0.871–1.180)].

Similar to Moran’s result, the spatial variable has a positive significant effect where districts

with lower levels of patient status were usually surrounded by districts with lower levels of

patient status and that districts with a higher incidence of malaria cases were usually sur-

rounded by districts with a higher incidence of malaria. By introducing the spatial auto covari-

ate variable, (γ = 1.35) when Euclidean distance in the meter was increase by one unit, that

decreased spatial auto covariate variable but when increased spatial autocorrelation, the odds

were 3.841 times more likely [AOR = 3.841,95%CI: (3.1200–4.727)] of positive malaria diag-

nostic test for individuals. In spatial auto covariate variables, the contribution of the constant

is reduced significantly in the auto logistics model. The spatial autocorrelation variable

changes the constant from AOR = 0.471 for logistic regression to AOR = 0.164 for auto logis-

tics regression. However, the spatial auto covariate variable can be comprehended as the spatial

inherent residual to reflect spatial effect in space data, which can reduce bias in health risk

assessment. The spatial auto covariate variable helped to remove inherent residual errors from

the binary logistic regression model (Table 2).

Discussion

This study aimed to investigate the risk factors of malaria based on the EMIS 2015 data using

an auto logistics spatial analysis approach. The results indicate that both global and local spatial

clustering of malaria incidence among the region was different which helps to the allocation of

resources for prevention based on the rate of exposure.

From our analysis, the spatial effect had a positive significant effect on malaria cases, where

districts with lower levels of patient status were usually surrounded by districts with lower lev-

els of patient status, and that districts with a higher incidence of malaria cases were usually sur-

rounded by districts with a higher incidence of malaria. The finding of this was also supported

by the study finding of Omukunda, Githeko [13]. A result in this study was reported that

malaria incidence varies according to gender and age with significant malaria incidence. It was

also observed that local clustering of malaria incidence between pairs of regions within dis-

tance lags was significant. Furthermore, malaria hot spots were displayed as risk maps that are

Table 2. (Continued)

Parameter AOR 95% CI for AOR P-value

Other 7.299 (3.717, 14.329) 0.001

Thatch 5.674 (4.361, 7.382) 0.001

➢ Ref. = reference

➢ AOR = Adjusted Odds Ratio

https://doi.org/10.1371/journal.pone.0268186.t002
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useful for monitoring and spatial targeting of prevention and control measures. This finding is

consistent with the finding of Yeshiwondim, Gopal [14].

Moreover, the malaria rapid test and altitude had an inverse relationship. The study found

that as altitude increased, the risk of malaria reduced. This could be because the high altitude

environment is unsuitable for Anopheles mosquito breeding due to its steep structure, which

prevents water from being collected after the rainy season. This result is consistent with the

findings of the study and [15] conducted in Ethiopia and Ugwu and Zewotir [16] which took

place in Nigeria. Malaria was found to be distributed differently throughout Ethiopian regions

in this study. Because the specific characteristics of socio-economics, demography and their

locations effect contact between humans and vectors, the study’s findings reveal that the level

of malaria risk or case incidence varies widely throughout regions.

This finding is in line with the result of Ayele, Zewotir [17] and Baidjoe, Stevenson [18]

while contradicting the finding of Aychiluhm, Gelaye [19] and Ayele, Zewotir [17]. Different

study times, as well as sample size differences, could be the cause of the result’s inconsistency.

According to this research, the current state of rooms is commonly described as a malaria sick-

ness caused by poverty and low socioeconomic circumstances. Poor people are disproportion-

ately affected by malaria transmission because they cannot afford mosquito nets, cement walls,

cement floors, or metal roofs. Because poverty is linked to socioeconomic variables, it’s critical

to comprehend the connections between malaria transmissions.

Furthermore, the source of water has been found as a productive factor against malaria

cases among peoples in Ethiopia. It revealed that those who used surface water had a 20.7%

increased risk of malaria positivity as compared to those who did use protected water and

37.5% increased risk of malaria among individuals who used tanker water as compared to

protected water users. This result was contradicted with the study conducted by Aychi-

luhm, Gelaye [19] on determinants of malaria among under-five children in Ethiopia

which stated that those who used unprotected water were 1.07% times less likely to be

infected. The possible reason for the contradiction is due to the difference in the study pop-

ulation, this study was based on all aged group individuals while Aychiluhm et al. was

based on under-five children.

Based on our study, among respondents who mostly use protected mosquito nets and

unprotected mosquito bed nets, the odds of having malaria was decreased by 35% and 1.7%

respectively as compared to those who did use mosquito nets. This study result is similar to the

study result conducted by [20].

The spatial auto logistic regression result reflecting that the transmission of malaria infec-

tion by the mosquitoes over space and the effects of socio-economic demographic and geo-

graphic variable types of toilet use and place of residence are highly associated with

transmission of malaria that determines the survival of mosquito over large areas which is con-

sistent with [21] finding. In a similar case, the main material of the room’s wall, the main mate-

rial of the room’s roof, the main material of the room’s floor, and the use of mosquito nets

were found malaria risk factors which are similar to the study by Ayele, Zewotir [17]. Further-

more, the finding of this study was confirmed that the transmission of malaria in the study

area is significantly clustered indicating high levels in the SNNP, Tigray, Somali, Gambela,

Oromia, and low levels Addis Ababa, Harari, Dire Dawa. In other words, it is cogently dissimi-

lar in the Amhara and Beneshangul Gummz region of Ethiopia. This result is also agreed with

the study of [20].

The limitation of this study is that data was on a secondary source and the survey used a

cross-sectional design to collect data as such no pivotal extrapolations can be made between

malaria infection and its determinants and also not including seasonal variation. Despite these

limitations, the study used survey data collected from a nationally representative sample the
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laboratory investigation for individual malaria rapid diagnosis test results had no latitude and

longitude rather than enumeration area.

Conclusions

This study found that the incidence of malaria in Ethiopia displays a spatial pattern which is

dependent on socio-economic, demographic, and geographic risk variables. Significant local

clustering of malaria transmission occurs among regions and within neighboring regions. Our

study indicates that socio-economic, demographic, and geographic factors are responsible for

the transmission of malaria disease. Additionally, malaria prevalence is low for male house-

holds than a female household and elders are at a lower risk.

Spatial clustering of malaria cases has occurred in all regions, and the risk of clustering was

different across the regions. Therefore, this study result of spatial clustering of malaria in Ethi-

opia can be used in planning and implementation of malaria control strategies at a macro-geo-

graphic scale.

The risk of malaria was found to be higher for those who live in soil floor-type houses as

compared to those who lived in cement or ceramics floor type. Similarly, individuals who live

in thatched, metal and thin, and other roof-type houses have a higher risk of malaria than

ceramics tiles roof houses. Moreover, using a protected anti-mosquito net was reducing the

risk of malaria incidence.
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