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As a moderately toxic organophosphorus pesticide, profenofos (PFF) is widely used

in agricultural practice, resulting in the accumulation of a high amount of PFF in

agricultural products and the environment. This will inevitably damage our health.

Therefore, it is important to establish a convenient and sensitive method for the

detection of PFF. This paper reports a photoresponsive surface-imprinted polymer

based on poly(styrene-co-methyl acrylic acid) (PS-co-PMAA@PSMIPs) for the detection

of PFF by using carboxyl-capped polystyrene microspheres (PS-co-PMAA), PFF,

4-((4-(methacryloyloxy)phenyl)diazenyl) benzoic acid, and triethanolamine trimethacrylate

as the substrate, template, functional monomer, and cross-linker, respectively.

PS-co-PMAA@PSMIP shows good photoresponsive properties in DMSO/H2O (3:1, v/v).

Its photoisomerization rate constant exhibits a good linear relationship with PFF

concentration in the range of 0∼15 µmol/L. PS-co-PMAA@PSMIP was applied for the

determination of PFF in spiked tomato and mangosteen with good recoveries ranging

in 94.4–102.4%.

Keywords: photoresponsive materials, surface molecularly imprinted polymer, azobenzene, profenofos,

organophosphorus pesticide

INTRODUCTION

Profenofos (PFF), [O-(4-bromo-2-chlorophenyl) O-ethyl S-propyl phosphorothioate], is widely
used to control pest strains that are resistant to chlorpyrifos and other organophosphorus pesticides
in fruit trees, vegetables, and cotton (He et al., 2010; Dadson et al., 2013). However, PFF is
moderately to highly toxic to animals with an LD50 of 500 mg/kg (Gotoh et al., 2001; Ma et al.,
2019). Thus, it is essential to detect PFF in agricultural products. Common detection methods
for PFF include gas chromatography (Yang et al., 2012), high-performance liquid chromatography
(HPLC) (Raharjo et al., 2009), biosensors (Li C. et al., 2018; Selvolini et al., 2018; Xiong et al., 2018),
and colorimetric and fluorescent sensors (Zhang et al., 2014; Li X. et al., 2018; Kovida and Koner,
2020). Although those methods are sensitive, they are time- and reagent-consuming and require
a professional operator, and sample preparation is complex. Furthermore, most of them demand
expensive instruments.
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Molecularly imprinted polymers (MIPs) are synthesized
by copolymerizing functional monomers and cross-linkers in
the presence of template molecules. The elution of template
molecules makes it possible for the formation of tailor-made
recognition cavities complementary to the template molecule
in shape, size, and chemical functionality in the highly cross-
linked polymer matrix. Meanwhile, those imprinted cavities are
endowed with the established ability to recognize the target
analyte, i.e., template molecules (Xu et al., 2013). MIPs are widely
applied in purification and separation (Li et al., 2015; Gong et al.,
2017a; He et al., 2018; Zhang et al., 2018; Gomez-Arribas et al.,
2019), chiral recognition (Rutkowska et al., 2018; Zhao et al.,
2019; Li et al., 2020), chemo- and bio-sensing (Altintas et al.,
2016; Gong et al., 2017b; Ding et al., 2020; Kalecki et al., 2020),
and catalysis and degradation (Liu et al., 2015; Zheng et al., 2017;
Boitard et al., 2019; Muratsugu et al., 2020) due to its physical
stability, thermal stability, low cost, and ease of preparation.

Stimulus-responsive molecularly imprinted polymers are
generally prepared by introduction of stimulus-responsive
moieties into MIPs. These MIP materials can respond to specific
external stimuli such as temperature, light, magnetic field, solvent
composition or solvent polarity, pH, or electric field through
altering itself greatly at solubility, molecular chain structure,
surface structure, and swelling or dissociation behavior. Among
them, photoresponsive MIPs (PMIPs) attract great research
attention because of the advantages of clean, remote control
and no damage to sample (Schumers et al., 2010). PMIPs
make it possible for template extraction, recognition, and
release under external photo-irradiation at a certain wavelength
(Alaei et al., 2018). The photoresponsive azobenzene moiety
is generally introduced into MIP/SMIP by using azobenzene
derivatives as a functional monomer (Gong et al., 2006,
2016). Good achievements have been obtained in PMIPs in
recent years. Azobenzene derivatives containing hydrophilic –
SO3H and –COOH groups were designed as the functional
monomers to realize the photo-response of PMIPs in aqueous
solution (Tang et al., 2012, 2016). The o-methyl and o-methoxy
azobenzene derivatives were designed to realize visible-light
response for both trans to cis and cis to trans photoisomerization
(Liu et al., 2018, 2020; Gong et al., 2019). Photoresponsive
SMIPs (PSMIPs) and hollow MIPs were fabricated to solve
the problem of template being embedded in traditional PMIPs
(Gong et al., 2016, 2017c; Yang et al., 2018). PSMIPs have
potential applications in drug delivery, electrochemical sensor,
and environmental pollutant detection. However, the application
in detecting pesticide residues by PMIPs or PSMIPs has been
rarely reported.

In this article, we focused on developing a method to
detect trace PFF in agricultural products such as mangosteen
and tomato by using a photoresponsive surface molecularly
imprinted polymer PS-co-PMAA@PSMIP. In the presence of the
PFF template, MPABA and TEAMA were copolymerized on the
surface of PS-co-PMAA by using potassium persulfate (KPS)
as the initiator. PS-co-PMAA@PSMIPs were obtained after the
subsequent removal of the PFF template, and specific recognition
sites with memory of the shape, size, and functionality
of PFF template were formed within PS-co-PMAA@PSMIPs.

PS-co-PMAA@PSMIPs were applied to detect trace PFF
in complex vegetable and fruit sample matrices. PS-co-
PMAA@PSMIPs have a good binding capacity for PFF, a quick
mass transfer rate, and excellent cycling stability on photo-
regulated release and uptake of PFF.

EXPERIMENT

Materials and Instruments
Phenol (≥99.5%), p-aminobenzoic acid (99%), methacrylic
anhydride (99%), triethylamine (99%), hydrochloric acid, KPS
(99.5%), thionyl chloride (SOCl2, 99%), methacrylic acid (99%),
styrene (≥99%), triethanolamine (98%), PFF (98%), chlorpyrifos
(CPF, 95%), chlorpyrifos-methyl (CPFm, 98%), MgSO4, NaNO2,
NaOH, ethanol, N,N-dimethylformamide (DMF), and dimethyl
sulfoxide (DMSO) were purchased from Aladdin Co. Ltd.
(Shanghai, P. R. China). High-purity hydrogen and high-purity
nitrogen were purchased from local gas companies.

1H NMR and 13C NMR were recorded on a Bruker AV-
600 NMR instrument at an ambient temperature (25◦C)
using tetramethylsilane as an internal standard. Ultraviolet–
visible (UV–Vis) spectra were obtained using a UV-4802
spectrophotometer (UNICO (Shanghai) Instruments Co.
Ltd., P. R. China). A CEL S-500 Xe light was used as a
light source (Beijing Zhong Jiao Jin Yuan Ke Ji Co. Ltd.,
P. R. China), and wavelengths of 365 and 440 nm were,
respectively, selected using 365- and 440-nm filters. The
morphologies of silica microspheres, PS-co-PMAA@PSMIPs,
and photoresponsive surface non-imprinted polymers based
on PS-co-PMAA (PS-co-PMAA@PSNIPs) were identified by
scanning electron microscopy (SEM; S-4800, Hitachi, Tokyo,
Japan) and transmission electron microscopy (TEM; FEI Talos
F200X, USA). Fourier transform infrared spectroscopy (FT-IR)
was recorded on a Perkin-Elmer Model GX spectrometer
using a KBr pellet method. Nitrogen adsorption–desorption
analysis was conducted at 77K on an Autosorb-1 apparatus
(Quantachrome, USA). Specific surface areas and pore diameters
were calculated using the Brunauer–Emmett–Teller (BET) and
Barrett–Joyner–Halenda (BJH) models, respectively.

Synthesis of Functional Monomer,
PS-co-PMAA Substrate, and Cross-Linker
The functional monomer MPABA was synthesized according
to the method reported by Gong et al. (2006) by using
p-aminobenzoic acid as the starting material. The cross-linker
TEAMA was synthesized according to the method reported by
Li et al. (2015) by using methacrylic acid, thionyl chloride, and
triethanolamine as the starting materials. PS-co-PMAA substrate
was synthesized according to the method reported by Yang et al.
(2018) by using styrene andmethacrylic acid as the rawmaterials.

Synthesis of PS-co-PMAA@PSMIPs and
PS-co-PMAA@PSNIPs
PS-co-PMAA (50.00mg) was dispersed in 10mL DMSO/H2O
(3:1, v/v) solution in a 100-mL three-necked bottle, sonicated
for 30min, and then stirred for 2 h to ensure the formation
of stable suspension. MPABA (31.0mg, 0.10 mmol) and PFF
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(7.5mg, 0.02 mmol) were dissolved in a mixed solvent of
DMSO/H2O (10mL; 3:1, v/v), which was slowly added to the
PS-co-PMAA suspension. The suspension was stirred for 12 h
to ensure a complete interaction between MPABA and PFF
through hydrogen bond. Subsequently, ∼5mL TEAMA solution
(70.7mg, 0.20 mmol) in DMSO/H2O (3:1, v/v) was added by
a syringe. The mixture was stirred for 30min and evacuated
for 10min, and then nitrogen gas was bubbled below the liquid
level of the suspension for 10min to remove oxygen. During this
process, 5mL KPS solution (14.0mg KPS was dissolved in 5mL
distilled water) was added. The mixture was placed in an oil bath
at 80◦C for 24 h in a nitrogen atmosphere. After being cooled
to room temperature, the product was separated by centrifuging
at 10,000 rpm for 5min, washed with ethanol and water (1:1,
v/v) until the supernatant was colorless, dried at 50◦C, and
ground to powder. This powder was further Soxhlet-extracted
with methanol and acetic acid (4:1, v/v) solution for 48 h and
then Soxhlet-extracted with methanol for 24 h to fully elute the
PFF. Finally, the eluted powder was dried at 50◦C to obtain
PS-co-PMAA@PSMIPs (123.2mg). PS-co-PMAA@PSNIPs were
synthesized using the same way but without the addition of
template PFF.

Spectroscopic Characterization and
Photoisomerization Studies
Spectroscopic characterization and photoisomerization of
MPABA and PS-co-PMAA@PSMIPs were performed in
DMSO/H2O (3:1, v/v) according to the method reported by
Gong et al. (2016). The photoisomerization kinetic rate constants
(k) from trans to cis and cis to trans are calculated according to
Equation 1,

ln
A0 − A∞

At − A∞

= kt (1)

where A0, At, and A∞ are the absorbance of the azobenzene
chromophores at their corresponding wavelengths at times 0 and
t and at the photo-stationary stage, respectively, and k is the rate
constant of the photoisomerization process.

Binding Kinetics of PS-co-PMAA@PSMIPs
and PS-co-PMAA@PSNIPs for PFF
The adsorption kinetics of PS-co-PMAA@PSMIPs was studied.
Approximately 5mL PFF solution (300 µmol/L) in DMSO/H2O
(3:1, v/v) and 20.0mg PS-co-PMAA@PSMIPs were placed in
each plastic centrifuge tube, sealed, and dispersed ultrasonically
evenly. The obtained suspensions were incubated for different
predetermined times (5, 15, 30, 45, 60, 90, 120, and 240min,
respectively) in the dark and then centrifuged at 10,000 rpm
for 5min. The supernatant was filtered through a 0.22-µm
polyethersulfone syringe filter and then analyzed by UV-Vis
spectrophotometry. The adsorption kinetics experiment of PS-
co-PMAA@PSNIPs was measured using the same method. All
experiments were repeated three times, and the averaged value
was used. The binding capacity was calculated according to
Equation 2 (Long et al., 2016),

Q (mg g−1) =
(C0 − Cs) V

m
(2)

where C0 and Cs represent the initial and equilibrium
concentrations of PFF in solution (mg mL−1), V is the volume
of the bulk solution (mL), andm is the mass (g) of the material.

Adsorption Isotherms of PS-co-
PMAA@PSMIPs/PS-co-PMAA@PSNIPs for
PFF
Approximately 20.0mg of PS-co-PMAA@PSMIPs or PS-co-
PMAA@PSNIPs was suspended in 5-mL PFF solutions in

FIGURE 1 | Synthetic procedure for PS-co-PMAA@PSMIPs and PS-co-PMAA@PSNIPs.
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FIGURE 2 | SEM microphotographs of PS-co-PMAA (A) and PS-co-PMAA@PSMIPs (D). TEM microphotographs of PS-co-PMAA (B) and PS-co-PMAA@PSMIPs

(E) and the normal size distribution of PS-co-PMAA (C) and PS-co-PMAA@PSMIPs (F).

FIGURE 3 | The infrared spectra of PS-co-PMAA (a), MPABA (b),

PS-co-PMAA@PSMIPs (c), and PS-co-PMAA@PSNIPs (d).

DMSO/H2O (3:1, v/v) with various PFF concentrations,
ultrasonically dispersed evenly, and sealed. The obtained
suspension was incubated for 2 h in the dark and then centrifuged
at 10,000 rpm for 5min. The supernatant was filtered through
a 0.22-µm polyethersulfone syringe filter and then measured by
UV-Vis spectrophotometry. All experiments were repeated three
times, and the averaged value was used. The adsorption kinetic

capacity of PS-co-PMAA@PSMIPs for PFF (Q) was calculated
according to Equation 3:

Q

Cs
=

Qmax − Q

Kd
(3)

where Qmax, Q, Cs, and Kd represent the maximal chemical
binding capacity of PS-co-PMAA@PSMIPs for PFF (mg/g), the
equilibrium adsorption capacity of PFF bound to polymers
(mg/g), the equilibrium concentration of PFF in solution (mg/L),
and the dissociation constant (mg/L).

The binding specificity of PS-co-PMAA@PSMIPs and PS-co-
PMAA@PSNIPs was investigated by using the structural analogs
CPF and CPFm as reference compounds. The specific research
method is the same as described above, but 5mL CPF or CPFm
solution (300 µmol/L) in DMSO/H2O (3:1, v/v) was used.

Photoregulated Release and Uptake
Studies
For the purpose of studying the photoregulated release
and uptake, 20.0mg of PS-co-PMAA@PSMIPs or PS-co-
PMAA@PSNIPs was suspended in 5mL PFF solution (300
µmol/L) in DMSO/H2O (3:1, v/v). The obtained suspension
was ultrasonically dispersed, sealed, and incubated for 2 h
in the dark and centrifuged at 10,000 rpm for 5min. The
supernatant was filtered through a 0.22-µm polyethersulfone
syringe filter and then measured by UV-Vis spectrophotometry.
The adsorption capacity of PS-co-PMAA@PSMIPs or PS-co-
PMAA@PSNIPs to PFF was calculated. PS-co-PMAA@PSMIPs
or PS-co-PMAA@PSNIPs were re-dispersed in the supernatant
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FIGURE 4 | Nitrogen adsorption–desorption isotherms of PS-co-PMAA@PSMIPs (A) and PS-co-PMAA@PSMIPs (B) at 77K. The pore size distribution of

PS-co-PMAA@PSMIPs (C) and PS-co-PMAA@PSMIPs (D) based on the BJH method using the nitrogen adsorption data.

to form a uniform suspension and then alternately irradiated
at 365 nm for 100min and 440 nm for 45min. In the interval
of alternating irradiation, the adsorption capacity of PS-co-
PMAA@PSMIPs or PS-co-PMAA@PSNIPs to PFF was measured
and calculated in the same way as described above.

Determination of PFF in Tomato and
Mangosteen
Approximately 20.00 g of the homogeneous tomato or
mangosteen sample was added to two 50-mL plastic centrifuge
tubes, to which 0.1 and 0.25mg standard samples of PFF were,
respectively, added. After incubating for 4 h, the spiked samples
were extracted ultrasonically with 15mL DMSO/H2O (3:1, v/v)
solution for about 20min. The above extraction was repeated
two times. The mixture was centrifuged at 12,000 r/min for
5min. The supernatant was subsequently filtered through a
0.22-µm polyethersulfone syringe filter, transferred into a 50-mL
volumetric flask, and diluted to the mark with DMSO/H2O
(3:1, v/v).

TABLE 1 | The surface area, pore diameter, and pore volume of

PS-co-PMAA@PSMIPs and PS-co-PMAA@PSNIPs.

Materials Surface area

(m2/g)

Pore volume

(cc/g)

Pore size

(nm)

PS-co-PMAA@PSMIPs 72.6 1.21 6.8

PS-co-PMAA@PSNIPs 45.1 0.10 4.0

RESULTS AND DISCUSSION

Synthesis of PS-co-PSMIPs and
PS-co-PSNIPs
The preparation process of PS-co-PMAA@SMIPs is shown in
Figure 1. A series of exploration experiments was conducted,
and finally the optimum synthesis conditions were determined:
PS-co-PMAA/MPABA = 5:3 (mass ratio) and MPABA/TEAMA
= 1:2 (molar ratio) and using DMSO/H2O (3:1, v/v) as
the solvent.
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Characterization of PS-co-PSMIPs and
PS-co-PSNIPs
As shown in Figure 2, PS-co-PMAA with a smooth surface
has a narrow distribution of 215–225 nm and the particle
size is mainly about 218 nm in diameter, while the polymer

particles PS-co-PMAA@PSMIPs and PS-co-PMAA@PSNIPs

(Supplementary Figure 1) have a rough surface with a

distribution of 265–295 nm and the particle size is mainly

about 280 nm in diameter. This indicates that the copolymer
layer of MPABA and TEAMA was uniformly grown on the

FIGURE 5 | UV–vis spectra of MPABA (35 µmol/L) in DMSO/H2O (3:1, v/v) upon irradiation at 365 nm (A) and then at 440 nm (B). UV–vis spectra of

PS-co-PMAA@PSMIPs (0.2 mg/mL) in DMSO/H2O (3:1, v/v) upon irradiation at 365 nm (C) and then at 440 nm (D). Reversibility of the photoisomerization processes

of azobenzene chromophores in the MPABA (E) and PS-co-PMAA@PSMIPs (F) [0.2 mg/mL in DMSO/H2O (3:1, v/v)] upon alternate irradiation at 365 and

440 nm, respectively.
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TABLE 2 | Photoisomerization rate constant of MPABA and

PS-co-PMAA@PSMIPs.

Materials k (trans→ cis) (s
−1) k (cis→ trans) (s

−1)

MPABA (3.38 ± 0.08) × 10−3 (12.87 ± 0.20) × 10−3

PS-co-PMAA@PSMIPs (1.71 ± 0.09) × 10−3 (12.67 ± 0.14) × 10−3

FIGURE 6 | The relationship between binding capacity of

PS-co-PMAA@PSMIPs/PS-co-PMAA@PSNIPs and binding time for PFF.

substrate surface with a thickness of∼30 nm, since the carboxyl-
modified polystyrene microspheres have good compatibility with
the copolymer layer, which is conducive to the formation of a
uniform shell layer on polystyrene matrices.

As shown in Figure 3, in the polymer particles of PS-co-
PMAA@PSMIPs and PS-co-PMAA@PSNIPs, the out-of-plane
C–H bending vibration peaks of MPABA at 756 cm−1 and 699
cm−1 and the benzene-ring carbon skeleton stretching vibration
peaks from PS-co-PMAA at 1,590 and 1,495 cm−1 are retained
(Yang et al., 2018), and the stretching vibration peak at 1,737
cm−1 owing to C=O from cross-linkers is enhanced (Wang et al.,
2019). This indicated that the monomer and the cross-linkers
were successfully copolymerized on PS-co-PMAA.

The porous nature of PS-co-PMAA@PSMIPs and PS-co-
PMAA@PSNIPs was investigated by N2 adsorption–desorption
analysis. As shown in Figure 4, the isotherms of PS-co-
PMAA@PSMIPs and PS-co-PMAA@PSNIPs approached to type
IV isotherms. The analysis results of the BET method for surface
areas and the BJH method for pore volume are summarized in
Table 1. PS-co-PMAA@PSMIPs had larger values in surface area,
pore volume, and pore size owing to imprinted cavities.

Photoisomerization Analysis
The spectroscopic responses of PS-co-PMAA@PSMIPs were
consistent with MPABA (Figures 5A–D). This indicated that
photoresponsive properties of azobenzene chromophores were
successfully retained in PS-co-PMAA@PSMIPs, while the
photoisomerization ability declined slightly since the rotation
of azobenzene was prevented by a rigid three-dimensional

FIGURE 7 | Static adsorption isotherms of

PS-co-PMAA@PSMIPs/PS-co-PMAA@PSNIPs for profenofos

(50∼450 µmol/L).

imprinted copolymer layer (Table 2). The trans→ cis and
cis→ trans photoisomerization rate constants of PS-co-
PMAA@PSMIPs were 1.98- and 1.02-fold smaller than those of
MPABA. The trend was consistent with previous reports (Gong
et al., 2006, 2016; Li et al., 2015). Compared with the trans→ cis
photoisomerization rate constant, the possible reason for the
smaller decrease in cis→ trans photoisomerization rate constant
was that sufficient free volume was created after trans→ cis
photoisomerization. Nonetheless, under alternating irradiation
at 365 and 440 nm, the photoisomerization reversibility of
PS-co-PMAA@PSMIPs did not significantly decrease after five
cycles (Figures 5E,F).

Binding Kinetics
In DMSO/H2O (3:1, v/v), the adsorption intensity of
PFF at 277 nm increased as its concentration increased
(Supplementary Figure 3A), and a good linear relationship
was observed between the absorbance at 277 nm and
PFF concentration (Supplementary Figure 3B). Therefore,
the absorbance at 277 nm was used to estimate the PFF
concentration in the corresponding solution by using
Supplementary Figure 3B as the standard curve. As shown
in Supplementary Figure 4, the absorbance at 277 nm decreased
as the incubation time increased; this illustrates that PFF in
the solution was gradually absorbed by PS-co-PMAA@PSMIPs.
An equilibrium was obtained after 60min. Based on these
data, the binding capacity of PS-co-PMAA@PSMIPs/PS-co-
PMAA@VPSNIPs toward PFF was calculated using Equation
2. It is seen from Figure 6 and Supplementary Table 1

that the binding capacity of PS-co-PMAA@PSMIPs/PS-co-
PMAA@VPSNIPs toward PFF shows a trend of increasing first
within 60min and then stabilizing. The binding capacity of
PS-co-PMAA@PSMIPs (10.56 mg/g) was significantly higher
than the PS-co-PMAA@VPSNIP material (4.38 mg/g) owing
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FIGURE 8 | Scatchard plot for profenofos in PS-co-PMAA@PSMIPs (A) and PS-co-PMAA@PSNIPs (B).

FIGURE 9 | Selective adsorption capacity of

PS-co-PMAA@PSMIPs/PS-co-PMAA@PSNIPs for PFF, CPFm, and CPF.

to the imprinted cavities. PS-co-PMAA@PSMIPs reached
the adsorption equilibrium in about 45min, while PS-co-
PMAA@VPSNIPs took about 90min. This was ascribed to the
strong affinity of the imprinted cavities that made the template
quickly bind to PS-co-PMAA@PSMIPs.

Equilibrium Rebinding Study and
Scatchard Analysis
As shown in the static isotherm of PS-co-PMAA@PSMIPs/PS-
co-PMAA@PSNIPs to PFF (Figure 7), as the initial
concentration of PFF increased, the binding capacity of
PS-co-PMAA@PSMIPs/PS-co-PMAA@PSNIPs increased
rapidly, then increased slowly, and finally reached a plateau.
PS-co-PMAA@PSMIPs exhibited a faster binding rate than PS-
co-PMAA@PSNIPs. The maximum binding capacity of
PS-co-PMAA@PSMIPs toward PFF for was 11.82 mg/g, which
was about twice of PS-co-PMAA@PSNIPs (5.43 mg/g).

As shown in Figure 8, the isothermal adsorption data of
PS-co-PMAA@PSMIPs was analyzed by the Scatchard model.
Two straight lines with different slopes were observed, which
indicated that there were two types of binding sites on

FIGURE 10 | Photoregulated release and uptake of PFF by

PS-co-PMAA@PSMIPs and PS-co-PMAA@PSNIPs.

FIGURE 11 | Photoisomerization rate constant (trans→ cis) of the

PS-co-PMAA@PSMIPs vs. PFF concentration.

PS-co-PMAA@PSMIPs for PFF, namely, high-affinity sites and
low-affinity sites. The steeper straight line originated from the
strong affinity of the imprinted cavities to PFF, from which Kd

was calculated as 61.35 mg/L, and Qmax was 14.98 mg/g, while
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the flatter line showed the weak affinity binding capacity owing to
physical adsorption on the surface of PS-co-PMAA@PSMIPs. PS-
co-PMAA@PSNIPs had only a weak physical binding property
due to the absence of the imprinted cavities of PFF.

Binding Selectivity
The binding capacity of PS-co-PMAA@PSMIPs to PFF, CPFm,
and CPF was, respectively about 39.7, 8.3, and 7.6% (Figure 9).
The binding capacities of PS-co-PMAA@PSMIPs to PFF were,
respectively, 4.8- and 5.2-fold larger than those of PFF CPFm
and CPF. The difference in binding capacity came from the
matching degree of the imprinted cavities, shape, and size to
the binding molecule. The above results indicated that PS-co-
PMAA@PSMIPs had a specific binding capacity to PFF, while
the binding capacity of PS-co-PMAA@PSNIPs to PFF, CPFm,
and CPF was, respectively about 13.0, 7.4, and 7.0%. This
demonstrated that PS-co-PMAA@PSNIPs only had nonspecific
binding capacity to PFF.

Photoregulated Release and Uptake of PFF
The photoregulated release and uptake of PS-co-PMAA@PSMIPs
for PFF were investigated under alternating irradiation at 365
and 440 nm in DMSO/H2O (3:1, v/v) solution. The process was
repeated five times. As shown in Figure 10, when the material
reached the adsorption equilibrium in the dark, imprinting
cavities on PS-co-PMAA@PSMIPs were fully filled with PFF.
Under irradiation at 365 nm, the azobenzene chromophore in
PS-co-PMAA@PSMIPs underwent a configuration change from
trans to cis. During this process, the shape and size of the
PFF-imprinted cavities changed; this caused the PFF bound in
the imprinted cavities to be squeezed or loosened and then
fall from the cavities into the solution. Therefore, the binding
capacity of PS-co-PMAA@PSMIPs for PFF was reduced from
11.06 mg/g to 5.05 mg/g. Upon irradiation at 440 nm, the
azobenzene chromophore in PS-co-PMAA@PSMIPs underwent

TABLE 3 | Detection of PFF in the spiked real samples at different concentrations

(n = 3).

Samples Determined Spiked

(mg/L)

Measured

(mg/L)

Recovery

(%)

RSD

(%)

Tomato Not detected 2.00 2.05 102.4 5.9

Not detected 5.00 4.94 98.8 2.4

Mangosteen Not detected 2.00 1.89 94.4 7.4

Not detected 5.00 4.86 99.6 3.7

a configuration change from cis to trans, which caused the PFF-
imprinted cavities to return to its original shape and size. During
this process, PFF was rebound in the imprinted cavities due to
the affinity of the cavities. So the binding capacity of PS-co-
PMAA@PSMIPs for PFF was increased from 5.05 to 11.04 mg/g.
During a repeating in the photo-switching cycle, the release and
uptake of PFF were similar to the previous cycle. This excellent
capacity, however, was not working on PS-co-PMAA@PSNIPs
because of its non-imprinted cavities.

Determination of Trace PFF in Spiked
Mangosteen and Tomato Samples
As shown in Figure 11, the imprinted cavities inside the PS-co-
PMAA@PSMIPs were gradually filled as the PFF concentration
increased, and the photoisomerization rate constant (k) of PS-
co-PMAA@PSMIPs decreased firstly. As the PFF concentration
increased to 20 µmol/L, k tended to be invariant. When the
concentration of PFF reached a certain level, the imprinted
cavities of PS-co-PMAA@PSMIPs were filled with PFF. There
was insufficient free volume for azobenzene chromophore of
the imprinted materials to rotate, thus making isomerization
more difficult. k showed a good linear relationship with the PFF
concentration in the range of 0∼15 µmol/L. The detection limit
was 0.40 µmol/L (0.35 mg/kg), which is below the maximum
residue limit (10 mg/kg) for PFF in mangosteen and tomato
samples stipulated by the National Standards of the People’s
Republic of China (GB-2763-2019). The feasibility of the test
method was evaluated by detecting trace PFF in mangosteen
or tomato samples at two spiked concentrations (2.00 mg/L,
5.00 mg/L). As shown in Table 3, the recovery data for spiked
PFF standards ranged from 94.4 to 102.4 and relative standard
deviation (RSD%) ranged from 2.4 to 5.9%. Therefore, the
concentration of PFF in the detection system can be calculated
by measuring the photoisomerization rate constant of PS-co-
PMAA@PSMIPs. Hence, a convenient method for determining
trace PFF by ultraviolet light response was established.

In comparison with reported methods for detecting PFF
(Raharjo et al., 2009; Yang et al., 2012; Zhang et al., 2014; Li C.
et al., 2018), the method in this work had a higher detection
limit (Table 4). However, this value (0.35 mg/kg) is below the
maximum residue limit (10 mg/kg) for PFF in mangosteen
and tomato samples stipulated by the National Standards of
the People’s Republic of China (GB-2763-2019) and can satisfy
the requirement in this field. It is noteworthy that the sample
preparation is simple, and expensive instruments or special
materials (e.g., biomaterials) are required.

TABLE 4 | Comparison of reported methods for detection of PFF with this work.

Detection method Instrument Sample preparation Detection limit (mg/kg) References

PS-co-PMAA@PSMIP-based method UV-Vis spectrophotometry Simple 0.35 This work

Gas chromatography Gas chromatography Tedious 0.001–0.025 Yang et al., 2012

HPLC HPLC Complicated 0.018 Raharjo et al., 2009

Biosensor Microcantilever-array instrument Simple 0.003 Li C. et al., 2018

Fluorescent sensor Mithras LB 940 multimode microplate reader Biomaterial required 0.012 Zhang et al., 2014
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CONCLUSION

In summary, photoresponsive surface molecularly imprinted
polymers (PS-co-PMAA@PSMIPs) with a uniform shell
thickness were prepared by combining stimulus-responsive
polymers with surface molecular imprinting technology. The
hydrogen bond driving effect from the PS-co-PMAA surface
and MPABA and the good compatibility between the PS-
co-PMAA-based organic substrate and the copolymer layer
are all conducive to the formation of a homogeneous shell
polymer, which contributed to the binding capacity of PS-co-
PMAA@PSMIPs. The photoresponsive properties of azobenzene
chromophore were well-retained. PS-co-PMAA@PSMIPs can
specifically bind PFF. PS-co-PMAA@PSMIPs were applied
to detect trace PFF in fruit and vegetable samples with
complex matrices with good recoveries and low relative
standard deviation.
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