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Abstract The site-selective and metal-free C—H nitration
reaction of quinoxalinones and pyrazinones as biologically
important N-heterocycles with #-butyl nitrite is described. A
wide range of quinoxalinones were efficiently applied in this
transformation, providing C7-nitrated quinoxalinones with-
out undergoing C3-nitration. From the view of mechanistic
point, the radical addition reaction exclusively occurred at
the electron-rich aromatic region beyond electron-deficient
N-heterocycle ring. This is a first report on the C7—-H func-
tionalization of quinoxalinones under metal-free condi-
tions. In contrast, the nitration reaction readily takes place
at the C3-position of pyrazinones. This transformation is
characterized by the scale-up compatibility, mild reaction
conditions, and excellent functional group tolerance. The
applicability of the developed method is showcased by the
selective reduction of NO, functionality on the C7-nitrated
quinoxalinone product, providing aniline derivatives. Com-
bined mechanistic investigations aided the elucidation of a
plausible reaction mechanism.
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Introduction

Since the landmark discovery by Mitscherlich and Laurent in
1834 (Patel et al. 2021), nitro compounds are important and
versatile building blocks in organic chemistry (Ono 2001),
and their derivatives are widely utilized in various pharma-
ceuticals, agrochemicals, pigments, and dyes as well as a
variety of fine chemicals such as solvents, perfumes, explo-
sives, and polymers, as shown in Fig. 1 (Fan et al. 2004;
McNamara et al. 2011; Nepali et al. 2019). For example,
chloramphenicol (Rebstock et al. 1949) and metronidazole
(Freeman et al. 1997) are well-known antibiotic and anti-
protozoal drugs for the treatment of a number of infectious
diseases. The biological properties of these molecules are
closely related with (hetero)aryl motifs tethered with nitro
functionality, but vary depending on the nature and position
of substituents on (hetero)aryl rings.

Traditional methods for nitration reactions rely on an
excess use of nitric acid or its mixture with sulfuric acid or
dinitrogen pentoxide (Olah et al. 1990). However, from a
synthetic point of view, these protocols represent the limited
functional group tolerance and the generation of undesirable
by-products as well as incomplete regioselectivity. To over-
come these limitations, new nitrating agents such as nitrate
(Manna et al. 2012; Zolfigol et al. 2012), nitrite salts (Fors
et al. 2009; Li et al. 2013), and fert-butyl nitrite (TBN) have
been intensively investigated (Wu and Neumann et al. 2011;
Wu and Schranck et al. 2011; Shen et al. 2014).

With great advance on C—H functionalization reactions
(Mishra et al. 2017, 2018; Pandey et al. 2018; Sambia-
gio et al. 2018; Lee et al. 2019), direct C—H nitration of
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Fig. 2 C-H nitration methods of (hetero)arenes using nitrating agents

(hetero)arenes has been recently developed. The metal-free
oxidative C—H nitration of phenols or amines has been
explored, as shown in Fig. 2 (Koley et al. 2009; Kilpatrick
et al. 2013; Li et al. 2014). However, none of these pro-
tocols represent a general strategy to allow for complete
site-selectivity between the ortho- and para-positions.
A great deal of effort on site-selectivity of nitration has
been devoted to the transition-metal-catalyzed ortho-C-H
nitration of N-heterocycles. For example, Liu reported
the Pd(II)-catalyzed ortho-C—H nitration of nitrogen-con-
taining heterocycles with silver nitrite in the presence of
K,S,05 as an external oxidant (Liu et al. 2010). The ortho-
C-H nitration of (hetero)arenes using nitrite salts was also
realized with the Cu(II), Rh(III), Ru(0), and Ni(II) cata-
lytic systems (Zhang et al. 2011; Xie et al. 2013; Katayev
et al. 2014; Majhi et al. 2014; Fan and Ni 2016; Wan et al.
2017). In addition, the Pd(II)-catalyzed aerobic oxidative
ortho-C-H nitration of arenes with fert-butyl nitrite and

toluene as the radical precursors was demonstrated (Liang
et al. 2015). The azaindole-assisted ortho-C—H nitration
of arenes with fert-butyl nitrite affording various nitrated
azaindole derivatives was disclosed (Chun et al. 2018).

Despite the compelling progress on the C—H nitration
reaction of various N-heterocycles, the site-selective nitra-
tion reaction of quinoxalinones and pyrazinones under
milder reaction conditions is still unexplored. Driven
by our ongoing interest in the C—H functionalization of
N-heterocycles (Han et al. 2018; Ghosh et al. 2019, 2021;
An et al. 2020; Park et al. 2021), we herein describe the
metal-free and site-selective C—H nitration reaction of
quinoxalinones and pyrazinones with ferz-butyl nitrite
as a readily available nitrating agent. Notably, the gram-
scale reaction, selective reduction of a nitro group, and
thiocarbonylation demonstrate the synthetic utility of the
developed method.

Materials and methods
General methods

Commercially available reagents were used without
additional purification, unless otherwise stated. Quinox-
alinones (1a—1m) and 5-aryl pyrazinones (4a-4j) were
prepared according to the reported literature (Ghosh et al.
2021; Guo et al. 2021). -Butyl nitrite was purchased from
Aldrich, Switzerland. All the reactions were performed
in an oil bath by using hot plate magnetic stirrer (IKA
universal, Guangzhou city, China). Sealed tubes were pur-
chased from Fischer Scientific (13 X 100 mm, 1495925A;
Mexico) and dried in oven for overnight and cooled at
room temperature prior to use. Thin layer chromatogra-
phy was carried out using plates coated with silica gel 60
Fys, (Merck KGaA, 64271 Darmstadt, Germany). For flash
column chromatography, silica gel 60 A (230-400 mesh,
Merck, Germany) was used. Nuclear magnetic resonance
spectra (IH, 13C, and '°F NMR) were recorded on a Bruker
Unity 400, 500, and 700 MHz spectrometers in CDCl;,
CD;COCD;, and DMSO-dg solution and chemical shifts
are reported as parts per million (ppm). Resonance pat-
terns are reported with the notations s (singlet), br (broad),
d (doublet), t (triplet), q (quartet), sext (sextet), dd (dou-
blet of doublets), dt (doublet of triplets), dq (doublet of
quartets), qd (quartet of doublets), td (triplet of doublets),
tt (triplet of triplets), and m (multiplet). In addition, the
notation br is used to indicate a broad signal. Coupling
constants (J) are reported in hertz (Hz). IR spectra were
recorded on a Varian 2000 Infrared spectrophotometer
and are reported as cm~!. High-resolution mass spectra
(HRMS) were recorded on a JEOL JMS-600 spectrometer.
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General procedure and characterization data
for the C7-nitration of quinoxalinones (3a—3m)

To an oven-dried sealed tube charged with 1-methylqui-
noxalin-2(1H)-one (1a) (32.0 mg, 0.2 mmol, 100 mol %)
was added 7-butyl nitrite (2a) (71.4 pL, 0.6 mmol, 300 mol
%) and CH;CN (2 mL) under O, atmosphere at room tem-
perature. After using O, balloon, the reaction mixture was
allowed to stir at 60 °C for 20 h. The reaction mixture was
cooled to room temperature, diluted with EtOAc (4 mL)
and concentrated in vacuo. The residue was purified by
flash column chromatography (n-hexanes/EtOAc=10:1 to
2:1) to afford 3a (31.2 mg) in 76% yield.

1-Methyl-7-nitroquinoxalin-2(1H)-one (3a)

31.2 mg (76%); eluent (n-hexanes/EtOAc=10:1 to 2:1);
brown solid; mp =228.9-231.1 °C; 'H NMR (400 MHz,
DMSO-dg) 6 8.43 (s, 1H), 8.32 (d, /J=2.4 Hz, 1H), 8.16
(dd, J=8.8, 2.4 Hz, 1H), 8.06 (d, /J=8.8 Hz, 1H), 3.68
(s, 3H); '*C NMR (100 MHz, DMSO-dg) 6 154.1, 153.9,
147.9, 136.0, 133.9, 130.9, 117.7, 110.6, 28.9; IR (KBr) v
2924, 2854, 1666, 1587, 1512, 1462, 1354 cm™!; HRMS
(quadrupole, EI) m/z: [M]* Caled for CgH,N;05 205.0487;
Found 205.0486.

1-Ethyl-7-nitroquinoxalin-2(1H)-one (3b)

32.9 mg (75%); eluent (n-hexanes/acetone =10:1 to 1:1);
brown solid; mp =165.5-167.9 °C; 'H NMR (400 MHz,
CDCl;) 6 8.41 (s, 1H), 8.24 (d, J=2.4 Hz, 1H), 8.18
(dd, J=8.8, 2.4 Hz, 1H), 8.04 (d, /J=8.8 Hz, 1H), 4.36
(q, J=17.2 Hz, 2H), 1.43 (t, J=7.2 Hz, 3H); 13C NMR
(100 MHz, CDCl;) & 154.1, 153.9, 148.7, 136.9, 132.8,
132.1, 118.1, 109.7, 37.8, 12.6; IR (KBr) v 2989, 2924,
1668, 1589, 1523, 1471, 1442, 1344, 1244, 1103 cm™;
HRMS (quadrupole, EI) m/z: [M]* Calcd for C;,HoN;O5
219.0644; Found 219.0639.

1-Isobutyl-7-nitroquinoxalin-2(1H)-one (3c)

36.6 mg (74%); eluent (n-hexanes/acetone=10:1 to
1:1); light brown solid; mp=121.8-124.0 °C; '"H NMR
(400 MHz, CDCl;) 6 8.41 (s, 1H), 8.21 (d, J=2.4 Hz,
1H), 8.15 (dd, /=8.8, 2.4 Hz, 1H), 8.02 (d, /J=8.8 Hz,
1H), 4.15 (d, J=7.6 Hz, 2H), 2.27 (sep, J=6.4 Hz, 1H),
1.04 (s, 3H), 1.02 (s, 3H); '*C NMR (100 MHz, CDCI,)
5 154.8, 153.9, 148.5, 136.9, 133.4, 132.0, 118.1, 110.3,
49.3,27.4,20.2; IR (KBr) v 3114, 2956, 2927, 2871, 1664,
1591, 1562, 1522, 1464, 1441, 1338, 1315, 1236, 1132,
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1099, 1057 cm™!; HRMS (quadrupole, EI) m/z: [M]*
Calcd for C,H;N;0; 247.0957; Found 247.0954.

1-Butyl-7-nitroquinoxalin-2(1H)-one (3d)

35.2 mg (71%); eluent (n-hexanes/acetone=10:1 to 3:1);
yellow solid; mp=112.3-114.3 °C; 'H NMR (400 MHz,
CDCl;) 6 8.40 (s, 1H), 8.22 (d, /=2.0 Hz, 1H), 8.16 (dd,
J=28.8, 2.0 Hz, 1H), 8.03 (d, /=8.4 Hz, 1H), 4.28 (dd,
J=6.0 Hz, 2H), 1.80-1.73 (m, 2H), 1.51 (sext, J=7.2 Hz,
2H), 1.02 (t, J=7.6 Hz, 3H); '>*C NMR (100 MHz, CDCly) &
154.3, 153.8, 148.6, 136.9, 133.1, 132.0, 118.1, 109.9, 42.5,
29.5,20.3, 13.8; IR (KBr) v 2956, 2925, 1668, 1593, 1527,
1462, 1346, 1265 cm™'; HRMS (quadrupole, EI) m/z: [M]*
Calcd for C|,H;3N;05 247.0957; Found 247.0954.

1-(4-Bromobutyl)-7-nitroquinoxalin-2(1H)-one (3e)

51.2 mg (78%); eluent (n-hexanes/acetone=10:1 to 1:1);
yellow solid; mp =126.3-128.5 °C; 'H NMR (400 MHz,
CDCl,) 6 8.42 (s, 1H), 8.26 (d, J=2.4 Hz, 1H), 8.18 (dd,
J=8.4, 2.0 Hz, 1H), 8.05 (d, /J=8.4 Hz, 1H), 4.33 (1,
J=7.6 Hz, 2H), 3.50 (t, J=5.6 Hz, 2H), 2.08-1.95 (m, 4H);
13C NMR (100 MHz, CDCl5) § 154.3, 153.7, 148.7, 136.9,
132.9,132.2, 118.3, 109.7, 41.6, 32.6, 29.6, 25.9; IR (KBr)
0 2922, 2854, 1666, 1593, 1564, 1525, 1444, 1344, 1317,
1103 cm™!; HRMS (quadrupole, EI) m/z: [M]* Calcd for
C,,H,,BrN;0; 325.0062; Found 325.0061.

1-Benzyl-7-nitroquinoxalin-2(1H)-one (3f)

30.9 mg (55%); eluent (n-hexanes/EtOAc=10:1 to 2:1); light
brown solid; mp=165.7-167.9 °C; 'H NMR (400 MHz,
CDCl,) 6 8.52 (s, 1H), 8.23 (d, /J=2.0 Hz, 1H), 8.12 (dd,
J=28.8,2.0 Hz, 1H), 8.03 (d, J=8.4 Hz, 1H), 7.38-1.28 (m,
5H), 5.51 (s, 2H); '*C NMR (100 MHz, CDCl;) § 154.6,
153.9, 148.5, 136.9, 134.2, 133.1, 131.9, 129.5, 128.5,
127.3, 118.4, 110.6, 46.1; IR (KBr) v 2922, 2854, 1666,
1593, 1564, 1523, 1450, 1342, 1317, 1219, 1103 cm™;
HRMS (quadrupole, EI) m/z: [M]* Calcd for C,sH,,;N;0;
281.0800; Found 281.0800.

3-((7-Nitro-2-oxoquinoxalin-1(2H)-yl)methyl)benzonitrile
(38)

19.2 mg (31%); eluent (n-hexanes/acetone =10:1 to 2:1);
yellow solid; mp=193.8-196.1 °C; 'H NMR (400 MHz,
CDCl;) 6 8.53 (s, 1H), 8.17 (dd, /=5.2, 1.2 Hz, 1H),
8.09 (d, /=0.8 Hz, 1H), 8.08 (d, /=2.8 Hz, 1H), 7.61 (dt,
J=4.4 Hz, 1H), 7.60-7.58 (m, 1H), 7.54-7.53 (m, 1H),
7.51 (t, J=4.4 Hz, 1H), 5.53 (s, 2H); >*C NMR (100 MHz,
CDCl,) & 154.4, 153.7, 148.7, 136.9, 135.8, 132.8, 132.4,
132.3,131.7, 130.6, 130.3, 118.8, 118.1, 113.9, 109.9, 45 .4,
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IR (KBr) v 2924, 2854, 2231, 1670, 1593, 1566, 1525, 1448,
1344 cm~!; HRMS (quadrupole, EI) m/z: [M]* Calcd for
C,¢H,oN,0; 306.0753; Found 306.0748.

1-(4-Ethoxyphenyl)-7-nitroquinoxalin-2(1H)-one (3h)

34.4 mg (56%); eluent (n-hexanes/EtOAc=10:1 to 2:1);
orange solid; mp =182.0-183.9 °C; 'H NMR (700 MHz,
CD;COCD;) 6 8.40 (s, 1H), 8.14 (dd, J=8.4, 2.1 Hz, 1H),
8.09 (d, /=8.4 Hz, 1H), 7.56 (d, /=2.8 Hz, 1H), 7.39 (dt,
J=9.1, 2.8 Hz, 2H), 7.20 (dt, /=9.1, 3.5 Hz, 2H), 4.18
(q, J=7.0 Hz, 2H), 1.44 (t, J=7.0 Hz, 3H); °C NMR
(175 MHz, CD;COCD;) 8 160.9, 155.6, 155.1, 149.1, 137.3,
136.6, 131.9, 130.5, 128.2, 118.4, 116.8, 111.8, 64.6, 15.1;
IR (KBr) v 2925, 2854, 1676, 1593, 1523, 1508, 1477, 1435,
1344, 1302, 1246, 1043 cm™'; HRMS (quadrupole, EI) m/z:
[M]* Caled for C,(H,;N;0, 311.0906; Found 311.0904.

7-Nitro-1-(4-nitrophenyl)quinoxalin-2(1H)-one (3i)

18.8 mg (30%); eluent (n-hexanes/EtOAc=10:1 to 3:1);
yellow solid; mp =244.2-245.6 °C; '"H NMR (400 MHz,
CDCl,) & 8.55 (dt, J=8.8, 2.8 Hz, 2H), 8.52 (s, 1H), 8.20
(dd, J=8.8,2.4 Hz, 1H), 8.12 (d, J=8.8 Hz, 1H), 7.58-7.54
(m, 3H); *C NMR (100 MHz, CDCl,) & 154.0, 153.6, 148.9,
148.6, 139.6, 136.3, 133.6, 132.1, 129.8, 126.3, 119.2,
110.7; IR (KBr) v 3111, 3082, 2924, 1680, 1595, 1523,
1435, 1348 cm™'; HRMS (quadrupole, EI) m/z: [M]* Calcd
for C,,HgN,O5 312.0495; Found 312.0490.

7-Nitro-1-(m-tolyl)quinoxalin-2(1H)-one (3j)

33.8 mg (60%); eluent (n-hexanes/EtOAc=10:1 to 3:1);
yellow solid; mp=183.1-185.6 °C; '"H NMR (400 MHz,
CDCl,;) & 8.51 (s, 1H), 8.14 (dd, J=8.8, 2.4 Hz, 1H), 8.07
(d, /J=8.8 Hz, 1H), 7.60 (d, /J=2.4 Hz, 1H), 7.56 (td, /=8.0,
1.6 Hz, 1H), 7.43 (d, /=7.6 Hz, 1H), 7.10-7.08 (m, 2H),
2.47 (s, 3H); '3C NMR (100 MHz, CDCl,) § 154.4, 154.3,
148.5, 141.4, 136.3, 134.7, 134.1, 131.5, 130.8, 128.5,
124.9, 119.9, 118.5, 111.6, 21.6; IR (KBr) v 2924, 2854,
1678, 1593, 1562, 1527, 1433, 1344 cm™'; HRMS (quadru-
pole, EI) m/z: [M]* Calcd for C,sH,,N;05 281.0800; Found
281.0803.

Ethyl 3-(7-nitro-2-oxoquinoxalin-1(2H)-yl)benzoate (3k)

29.2 mg (43%); eluent (n-hexanes/acetone=10:1 to 2:1);
yellow oil; '"H NMR (400 MHz, CD;COCD;) & 8.45 (s,
1H), 8.28 (dt, J=17.6, 1.6 Hz, 1H), 8.19-8.12 (m, 3H),
7.88 (t, J=7.6 Hz, 1H), 7.81 (dq, J=7.6, 1.2 Hz, 1H), 7.47
(d, J=2.4 Hz, 1H), 7.47 (qd, J=7.2, 1.6 Hz, 2H), 1.36 (t,
J=17.2 Hz, 3H); >*C NMR (100 MHz, CDCl;) § 165.7,
155.5, 154.9, 149.1, 137.2, 136.4, 135.9, 134.1, 133.9,

132.1, 131.7, 131.6, 130.6, 118.7, 111.5, 62.0, 14.5; IR
(KBr) v 3066, 2924, 2854, 1716, 1680, 1593, 1562, 1525,
1436, 1344, 1269, 1211, 1182, 1103, 1082, 1022 cm™;
HRMS (quadrupole, EI) m/z: [M]* Calcd for C,;H,3N;O054
339.0855; Found 339.0852.

6-Bromo- 1-methyl-7-nitroquinoxalin-2(1H)-one (31)

19.9 mg (35%); eluent (n-hexanes/EtOAc=10:1 to 2:1); light
brown solid; mp =229.4-231.2 °C; '"H NMR (400 MHz,
CD;COCDs;) 6 8.33 (s, 1H), 8.24 (s, 1H), 8.16 (s, 1H),
3.72 (s, 3H); *C NMR (100 MHz, CD;COCD;) & 155.3,
154.9, 147.8, 135.9, 134.9, 112.8, 106.2, 23.3; IR (KBr)
02922, 2852, 1664, 1585, 1554, 1533, 1456, 1344 cm™!;
HRMS (quadrupole, EI) m/z: [M]* Caled for CogHBrN;O,
282.9593; Found 282.9593.

7-Chloro- 1-methyl-5-nitroquinoxalin-2(1H)-one (3m)

21.6 mg (45%); eluent (n-hexanes/EtOAc=10:1 to 3:1); light
brown solid; mp=229.4-231.5 °C; 'H NMR (700 MHz,
CD;COCD;) & 8.24 (s, 1H), 7.91 (d, J=1.2 Hz, 1H), 7.83
(d, J=1.2 Hz, 1H), 3.74 (s, 3H); °*C NMR (175 MHz,
CD;COCDs5) 6 154.9, 153.5, 150.2, 137.0, 136.7, 124.3,
118.3, 117.4, 23.3; IR (KBr) v 2918, 2861, 1676, 1603,
1537, 1454, 1379, 1267 cm™'; HRMS (quadrupole, EI) m/z:
[M]* Caled for CoH4CIN;0; 239.0098; Found 239.0096.

General procedure and characterization data
for the C3-nitration of 5-aryl pyrazinones (5a-5j)

To an oven-dried sealed tube charged with 1-methyl-5-phe-
nylpyrazin-2(1H)-one (4a) (37.2 mg, 0.2 mmol, 100 mol %)
was added #-butyl nitrite (2a) (119.0 uL, 1.0 mmol, 500 mol
%) and CH;CN (2.5 mL) under O, atmosphere at room tem-
perature. After using O, balloon, the reaction mixture was
allowed to stir at 60 °C for 28 h. The reaction mixture was
cooled to room temperature, diluted with EtOAc (4 mL) and
concentrated in vacuo. The residue was purified by flash
column chromatography (n-hexane/acetone =10:1 to 3:1) to
afford 5a (33.4 mg) in 72% yield.

1-Methyl-3-nitro-5-phenylpyrazin-2(1H)-one (5a)

33.4 mg (72%); eluent (n-hexane/acetone=10:1 to 3:1);
yellow solid; mp=191.2-193.8 °C; '"H NMR (700 MHz,
DMSO-d¢) & 8.93 (s, 1H), 7.83-7.81 (m, 2H), 7.50-7.47
(m, 2H), 7.39 (tt, J=7.7, 0.7 Hz, 1H), 3.69 (s, 3H); °C
NMR (125 MHz, DMSO-d,) 6 148.4, 148.1, 135.9, 133.6,
128.9, 128.4, 127.9, 124.6, 38.3; IR (KBr) v 3060, 2927,
1674, 1604, 1543, 1493, 1419, 1267 cm™'; HRMS (quadru-
pole, EI) m/z: [M]* Calcd for C,;HyN;05 231.0644; Found
231.0641.

@ Springer



1016

J. Moon et al.

1-Methyl-3-nitro-5-(4-(trifluoromethoxy)phenyl)
pyrazin-2(1H)-one (5b)

32.2 mg (51%); eluent (n-hexanes/acetone =10:1 to 3:1);
yellow oil; 'H NMR (500 MHz, CDCl;) 6 7.90 (s, 1H),
7.74 (dt, J=17.2, 2.4 Hz, 2H), 7.31-7.28 (m, 2H), 3.79 (s,
3H); 1*C NMR (125 MHz, CDCl;) § 150.2, 149.9, 148.3,
131.8, 131.4, 129.2, 129.1 (q, Jop=33.0 Hz), 126.8,
121.7, 39.1; '°F NMR (470 MHz, CD;COCD;) § —58.5
(s); IR (KBr) v 3060, 2925, 1680, 1608, 1545, 1500, 1346,
1263, 1110 ecm™'; HRMS (quadrupole, EI) m/z: [M]*
Calcd for C,HgF;N;0, 315.0467; Found 315.0462.

5-(4-Chlorophenyl)- 1-methyl-3-nitropyrazin-2(1H)-one
(5¢)

23.9 mg (45%); eluent (n-hexanes/acetone = 10:1 to 3:1);
yellow solid; mp=238.1-241.4 °C; 'H NMR (400 MHz,
CD;COCD;) 6 8.78 (s, 1H), 7.86 (dt, J=8.8, 2.8 Hz,
2H), 7.50 (dt, J=8.4, 2.8 Hz, 2H), 3.81 (s, 3H); 1*C
NMR (100 MHz, CD,COCD;) & 159.5, 135.5, 134.7,
133.8, 129.9, 128.3, 127.3, 105.0, 38.8; IR (KBr) v 2925,
2856, 1678, 1606, 1543, 1489, 1340, 1267, 1196, 1086,
739 cm™!; HRMS (quadrupole, EI) m/z: [M]* Calcd for
C,,HCIN;0;5 265.0254; Found 265.0250.

1-Methyl-3-nitro-5-(3-(trifluoromethyl)phenyl)
pyrazin-2(1H)-one (5d)

34.2 mg (57%); eluent (n-hexanes/acetone=10:1 to
3:1); yellow solid; mp =159.2-161.2 °C; 'H NMR
(500 MHz, CD,COCD5) & 8.93 (s, 1H), 8.17-8.13 (m,
2H), 7.73 (dd, J=3.5, 1.5 Hz, 2H), 3.83 (s, 3H); *C NMR
(125 MHz, CD;COCD;) 6 150.7, 149.3, 142.5, 136.2,
131.6 (q, Jc.g=31.2 Hz), 130.9, 129.4, 127.8, 126.3
(q, Jo.g=270.5 Hz), 125.7 (q, Jcp=3.2 Hz), 122.2 (d,
Jep=23.2 Hz), 38.9; 'F NMR (470 MHz, CD;COCD>)
8 —-63.1 (s); IR (KBr) v 3060, 2927, 1680, 1608, 1545,
1325, 1271, 1180, 1036 cm™!; HRMS (quadrupole, EI)
m/z: [M]* Caled for C,,HgF;N;05 299.0518; Found
299.0515.

1-(Methoxymethyl)-3-nitro-5-phenylpyrazin-2(1H)-one (5e)

27.8 mg (53%); eluent (n-hexanes/acetone=10:1 to 1:1);
yellow oil; 'H NMR (500 MHz, CD;COCD;) 6 8.06 (s,
1H), 7.88-7.85 (m, 2H), 7.50-7.46 (m, 2H), 7.39 (tt, J=17.0,
1.5 Hz, 1H), 5.54 (s, 2H), 3.52 (s, 3H); '>*C NMR (125 MHz,
CD;COCD;) 6 149.1, 134.8, 131.6, 130.1, 129.9, 129.5,
125.9, 124.4, 80.9, 58.3; IR (KBr) 0 2924, 2854, 1684, 1604,
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1545, 1460, 1273 cm™'; HRMS (quadrupole, EI) m/z: [M]*
Calcd for C,H;;N;0, 261.0750; Found 261.0747.

1-Benzyl-5-(2-methoxyphenyl)-3-nitropyrazin-2(1H)-one
(5f)

30.4 mg (45%); eluent (n-hexanes/acetone=10:1 to 1:1);
yellow oil; '"H NMR (400 MHz, CD;COCD3) 6 8.20 (s, 1H),
7.62 (dd, J=7.6, 1.6 Hz, 1H), 7.58 (ddd, /=9.2, 7.6, 2.0 Hz,
1H), 7.43-7.41 (m, 2H), 7.35 (td, J=7.2, 2.0 Hz, 2H), 7.27
(tt, J=6.8, 1.6 Hz, 1H), 7.14 (d, J=8.4 Hz, 1H), 7.07 (td,
J=7.6,0.8 Hz, 1H), 4.54 (d, J=6.0 Hz, 2H), 3.73 (s, 3H);
13C NMR (100 MHz, CD;COCD;) & 192.7, 165.9, 160.7,
140.0, 135.5, 131.1, 129.2, 128.6, 127.9, 126.1, 121.5,
113.3,56.4, 43.2; IR (KBr) v 3240, 3074, 2584, 2318, 1683,
1645, 1580, 1485, 1462, 1439, 1310, 1250, 1207, 1165,
1117, 1022, 928 cm™'; HRMS (quadrupole, EI) m/z: [M]*
Calcd for CgH,5N;0, 337.1063; Found 337.1062.

2-((3-Nitro-2-oxo-5-phenylpyrazin-1(2H)-yl)methyl)
benzonitrile (5g)

40.6 mg (61%); eluent (n-hexanes/acetone =10:1 to 3:1);
yellow oil; '"H NMR (400 MHz, CD,COCD;)  8.90 (s, 1H),
7.88-7.85 (m, 3H), 7.73-7.67 (m, 2H), 7.58 (td, J=17.6,
2.0 Hz, 1H), 7.51-7.47 (m, 2H), 7.50 (tt, J=7.2, 1.6 Hz,
1H), 5.66 (s, 2H); '3*C NMR (100 MHz, CD;COCD>) §
153.1, 148.9, 138.5, 134.8, 134.5, 134.3, 134.1, 130.4,
130.3, 129.9, 129.8, 129.5, 125.9, 117.9, 112.9, 53.7; IR
(KBr) v 2956, 2924, 2225, 1668, 1593, 1525, 1448, 1344,
1213 cm™'; HRMS (quadrupole, EI) m/z: [M]* Calcd for
C,3H,,N,05 332.0909; Found 332.0907.

1-(4-Methoxyphenyl)-3-nitro-5-phenylpyrazin-2(1H)-one
(5h)

33.2 mg (51%); eluent (n-hexanes/acetone=10:1 to 3:1);
yellow solid; mp=149.4-150.6 °C; '"H NMR (400 MHz,
CDCl,) 6 7.92 (s, 1H), 7.75-7.72 (m, 2H), 7.47-7.38 (m,
5H), 7.05 (dt, J=8.8, 3.6 Hz, 2H), 3.88 (s, 3H); '3*C NMR
(100 MHz, CDCl,) & 162.5, 160.9, 147.9, 133.1, 131.1,
130.5, 130.4, 129.3, 127.0, 125.3, 121.6, 115.2, 55.9; IR
(KBr) v 3060, 1682, 1606, 1512, 1467, 1265 cm™'; HRMS
(quadrupole, EI) m/z: [M]* Calcd for C,,H,5N;0, 323.0906;
Found 323.0906.

1-(4-Acetylphenyl)-3-nitro-5-phenylpyrazin-2(1H)-one (5i)

30.2 mg (45%); eluent (n-hexanes/acetone=10:1 to 4:1);
yellow oil; "H NMR (500 MHz, CD;COCD;) 6 8.63 (s,
1H), 8.21 (dt, J=9.0, 2.0 Hz, 2H), 7.91 (dq, J=8.5, 1.0 Hz,
2H), 7.88 (dt, J=8.5, 2.5 Hz, 2H), 7.50-7.46 (m, 2H), 7.40
(tt, J=7.5, 1.0 Hz, 1H), 2.68 (s, 3H); 3C NMR (125 MHz,
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CD;COCD;) 6 197.2, 148.6, 143.2, 138.9, 134.7, 132.9,
130.2, 130.1, 129.8, 129.5, 127.8 (two carbons overlap),
126.0, 26.9; IR (KBr) v 2924, 2854, 1685, 1599, 1545, 1360,
1265, 1194 cm™'; HRMS (quadrupole, EI) m/z: [M]* Calcd
for C,4H,5N;0, 335.0906; Found 335.0905.

3-Nitro-5-phenyl-1-(m-tolyl)pyrazin-2(1H)-one (5j)

31.4 mg (51%); eluent (n-hexanes/acetone=10:1 to 4:1);
yellow solid; mp=141.3-144.1 °C; '"H NMR (400 MHz,
CD;COCD;) & 8.56 (s, 1H), 7.93-7.90 (m, 2H), 7.53-7.52
(m, 1H), 7.50-7.49 (m, 2H), 7.47-7.44 (m, 2H), 7.39 (tt,
J=17.2, 1.2 Hz, 2H), 2.44 (s, 3H); '*C NMR (100 MHz,
CD;COCD;) 6 150.2, 148.7, 140.4, 139.9, 134.8, 133.4,
131.2,130.1, 129.8, 129.4, 127.7, 125.9, 124.8, 124.3, 21.2;
IR (KBr) v 3059, 2925, 2854, 1684, 1603, 1545, 1489, 1454,
1342, 1269, 1194 cm™"; HRMS (quadrupole, EI) m/z: [M]*
Calcd for C;;H;3N;05 307.0957; Found 307.0956.

General procedure for the gram scale experiment of 1a

To an oven-dried round bottom flask charged with 1-meth-
ylquinoxalin-2(1H)-one (1a) (1.0 g, 6.3 mmol, 100 mol %)
was added ¢-butyl nitrite (2a) (2.25 mL, 18.9 mmol, 300 mol
%) and CH;CN (60 mL) under O, atmosphere at room tem-
perature. After using O, balloon, the reaction mixture was
allowed to stir at 60 °C for 20 h. The reaction mixture was
cooled to room temperature, diluted with EtOAc (25 mL)
and concentrated in vacuo. The residue was purified by flash
column chromatography (n-hexanes/EtOAc=10:1to 2:1) to
afford 3a (0.69 g) in 68% yield.

General procedure for the gram scale experiment of 4a

To an oven-dried sealed tube charged with 1-methyl-5-phe-
nylpyrazin-2(1H)-one (4a) (1.0 g, 5.4 mmol, 100 mol %)
was added #-butyl nitrite (2a) (3.2 mL, 27.0 mmol, 500 mol
%) and CH;CN (65 mL) under O, atmosphere at room tem-
perature. After using O, balloon, the reaction mixture was
allowed to stir at 60 °C for 28 h. The reaction mixture was
cooled to room temperature, diluted with EtOAc (25 mL)
and concentrated in vacuo. The residue was purified by flash
column chromatography (n-hexane/acetone =10:1 to 3:1) to
afford 5a (0.81 g) in 65% yield.

General procedure and characterization data
for the reduction of nitro group on 3a

To an oven-dried sealed tube charged with 1-methyl-7-nit-
roquinoxalin-2(1H)-one (3a) (41.0 mg, 0.2 mmol, 100 mol
%), iron (46.9 mg, 0.84 mmol, 420 mol %), ammonium chlo-
ride powder (71.7 mg, 1.34 mmol, 670 mol %) were added
MeOH/THF/H,0 (1:1:1, 4.5 mL) at room temperature. The

reaction mixture was allowed to stir in an oil bath for 12 h at
60 °C. The reaction mixture was cooled to room tempera-
ture, filtered through Celite, rinsing with methanol, and the
volatiles were removed under reduced pressure. The aque-
ous residue was diluted with water, saturated NaHCO; solu-
tion, and extracted with EtOAc (3 X 15 mL). The combined
organic layer was washed with brine, dried over MgSO,,
and concentrated in vacuo. The residue was purified by flash
column chromatography (n-hexanes/acetone=10:1 to 2:1)
to afford 6a (22.8 mg) in 65% yield.

7-Amino-1-methylquinoxalin-2(1H)-one (6a)

22.8 mg (65%); eluent (n-hexanes/acetone=10:1 to 2:1);
brown oil; '"H NMR (400 MHz, DMSO-dy) 6 7.74 (s, 1H),
7.44 (d, J=8.4 Hz, 1H), 6.60 (dd, /J=8.8, 2.4 Hz, 1H), 6.47
(d, J=2.4 Hz, 1H), 6.13 (brs, 2H), 3.46 (s, 3H); '*C NMR
(100 MHz, DMSO-dy) 6 155.0, 152.1, 141.3, 135.4, 130.9,
125.2,111.3,95.6, 28.2; IR (KBr) v 3367, 3197, 2924, 2854,
1732, 1604, 1535, 1462, 1379, 1342, 1267 cm™'; HRMS
(quadrupole, EI) m/z: [M]" Calcd for CyHyN;0 175.0746;
Found 175.0744.

General procedure and characterization data
for the thiocarbonylation of 3a into 6b

To an oven-dried sealed tube charged with 1-methyl-7-nit-
roquinoxalin-2(1H)-one (3a) (41.0 mg, 0.2 mmol, 100 mol
%) and Lawesson’s reagent (242.7 mg, 0.6 mmol, 300 mol
%) was added toluene (2 mL) under air at room temperature.
The reaction mixture was allowed to stir in an oil bath for
12 h at 120 °C. The reaction mixture was cooled to room
temperature, diluted with EtOAc (5 mL) and concentrated
in vacuo. The aqueous residue was extracted with EtOAc
(3% 15 mL). The combined organic layer was washed with
brine, dried over MgSO,, and concentrated in vacuo. The
residue was purified by flash column chromatography
(n-hexanes/acetone=10:1 to 1:2) to afford 6b (25.8 mg) in
58% yield.

1-Methyl-7-nitroquinoxaline-2(1H)-thione (6b)

25.8 mg (58%); eluent (n-hexanes/acetone=10:1 to 1:2);
orange oil; '"H NMR (400 MHz, CD,COCDj;) & 8.79 (s,
1H), 8.60 (d, /=2.4 Hz, 1H), 8.27 (dd, /=8.8, 2.4 Hz, 1H),
8.10 (d, J=8.8 Hz, 1H), 4.30 (s, 3H); '*C NMR (100 MHz,
CD;COCD;) 8 179.7, 160.1, 140.9, 132.3 (two carbons over-
lap), 120.5, 112.4 (two carbons overlap), 37.7; IR (KBr)
0 3060, 2924, 2854, 1684, 1550, 1516, 1460, 1350, 1267,
1103 cm™'; HRMS (quadrupole, EI) m/z: [M]* Calcd for
CoH,;N;0,S 221.0259; Found 221.0256.
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General procedures for the control experiment using
a radical scavenger TEMPO

To an oven-dried sealed tube charged with 1-methylqui-
noxalin-2(1H)-one (1a) (32.0 mg, 0.2 mmol, 100 mol %)
and TEMPO (312.5 mg, 2.0 mmol, 10.0 equiv.) were added
t-butyl nitrite (2a) (71.4 uL, 0.6 mmol, 300 mol %) and
CH;CN (2 mL) under O, atmosphere at room temperature.
After using O, balloon, the reaction mixture was allowed to
stir in an oil bath for 8 h at 60 °C. The reaction mixture was
cooled to room temperature, diluted with EtOAc (4 mL) and
concentrated in vacuo. On TLC the desired product 3a was
not detected.

General procedure and characterization data
for the reaction of 1a and 2a with radical
polymerization mediator 1,1-diphenylethylene (2b)

To an oven-dried sealed tube charged with 1-methylquinox-
alin-2(1H)-one (1a) (32.0 mg, 0.2 mmol, 100 mol %) and
1,1-diphenylethylene (2b) (72.1 mg, 0.4 mmol, 200 mol %)
were added #-butyl nitrite (2a) (71.4 uL, 0.6 mmol, 300 mol
%) and CH;CN (2 mL) under O, atmosphere at room tem-
perature. After using O, balloon, the reaction mixture was
allowed to stir in an oil bath for 8 h at 60 °C. The reac-
tion mixture was cooled to room temperature, diluted with
EtOAc (5 mL) and concentrated in vacuo. The aqueous resi-
due was extracted with EtOAc (3 X 15 mL). The combined
organic layer was washed with brine, dried over MgSO,,
and concentrated in vacuo. The residue was purified by flash
column chromatography (n-hexanes/acetone=10:1 to 4:1)
to afford 7a (25.2 mg) in 56% yield.

(2-Nitroethene-1,1-diyl)dibenzene (7a)

25.2 mg (56%); eluent (n-hexanes/acetone=10:1 to 4:1);
yellow oil; '"H NMR (400 MHz, CD;COCD;) 8 7.72 (s, 1H),
7.51-7.42 (m, 6H), 7.40-7.37 (m, 2H), 7.27-7.24 (m, 2H);
13C NMR (100 MHz, CD,COCD;) § 149.9, 137.9, 136.9,
136.0, 131.6, 129.8, 129.7, 129.6, 129.5, 129.3; IR (KBr)
0 3059, 2925, 2854, 1610, 1574, 1510, 1495, 1444, 1308,
1267 cm™'; HRMS (quadrupole, EI) m/z: [M]* Calcd for
C4H,;,NO, 225.0790; Found 225.0791.

Results

Our optimization was performed by investigating the cou-
pling reaction of 1-methylquinoxalin-2(1H)-one (1a) with
tert-butyl nitrite (2a), as shown in Table 1.

The nitration reaction of 1a was initiated by using ferz-
butyl nitrite (2a) to deliver C7-nitrated quinoxalinone 3a in
12% yield, and no formation of other regioisomers including
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C5-nitrated adduct 3aa was observed (Table 1, entry 1). The
chemical structure of C7-nitrated quinoxalinone 3a (CCDC
2099185) was elucidated by the X-ray crystallographic
analysis (Fig. 3).

Solvent screening revealed that this coupling reaction dis-
played the increased reactivity in CH;CN solvent to give 3a
in 40% yield (Table 1, entries 2 —4). Addition of oxidants
such as K,S,0g, Na,S,0;4, and AgNO, were found to be
unsatisfactory in this transformation (Table 1, entries 5 —7).
To our delight, this reaction smoothly proceeded with three
equiv. of 2a to afford the desired product 3a in 76% yield
along with C5-nitrated compound 3aa in 9% yield (Table 1,
entry 8). The reaction temperature is quite pivotal for this
transformation, as shown in entries 9 and 10. It should be
noted that molecular oxygen was needed for the formation
of both 3a and 3aa (Table 1, entry 11), revealing that a NO
radical, derived from the decomposition of terz-butyl nitrite,
could be readily oxidized into a reactive NO, radical by
molecular oxygen (O, gas). Finally, when the reaction was
performed with increased loading of 2a, the lower forma-
tion of our desired product was observed (Table 1, entries
12 and 13).

With the optimal reaction conditions in hand, the scope of
quinoxalinones was examined as shown in Table 2. The lin-
ear and branched N-alkylated quinoxalinones 1b — 1e were
found to be suitable substrates for this coupling reaction to
afford C7-nitrated quinoxalinones 3b —3e in high yields. It
is noteworthy that a linear alkyl halide 1e was completely
compatible under the current reaction conditions, and the
tolerance of bromo moiety presents valuable opportunities
for further versatile synthetic transformations. In addition,
N-benzylated quinoxalinones 1f and 1g were also coupled
with 2a to provide the corresponding products 3f (55%) and
3g (31%). To our pleasure, the current protocol could be
applied to N-arylated quinoxalinones 1h — 1Kk, producing
the desired products 3h — 3k without undergoing the C—H
nitration on the N-aryl ring. It is mentioned that electron-
deficient NO, (1i) and CO,Et (1k) groups on the N-aryl
moiety were found to be comparatively less reactive in this
transformation, presumably due to the destabilization of
radical and carbocation intermediates. To observe the steric
and electronic effects on the quinoxalinone framework, the
reactions of 11 with 2a under the standard and modified
reaction conditions were subjected to afford the C7-nitrated
adduct 31 in 20% and 35% yields. It should be mentioned
that the nitration reaction of C7-substituted quinoxalinone
1m preferentially occurred at the C5-position, affording the
nitrated product 3m as a single regioisomer in 45% yield.

With successfully screening results of quinoxalinone sub-
strates, the substrate scope of various 5-aryl pyrazin-2-ones
4a — 4j was evaluated, as shown in Table 3. The reaction of
5-phenyl pyrazinone 4a with 2a under the modified reaction
conditions (5 equiv. of 2a, 28 h) provided 5a in 72% yield.
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Table 1 Selected optimization of the reaction conditions

Me Me l\'/le

[ [ N __O

@[NTO ‘BUONO (2a) OzN\@NTO | | j
N/ reaction conditiong N/ * N
1a 3a NO2 322
Entry 2a (Equiv.) Additive (Equiv.) T°C Solvent Yield (%)*
3a 3aa

1 2a (2) - 60 PhCl 12 N.R
2 2a (2) - 60 CICH,CH,Cl1 25 5
3 2a (2) - 60 1,4-Dioxane Trace N.R
4 2a (2) - 60 CH;CN 40 8
5 2a(2) K,S,04 (1) 60 CH;CN 40 14
6 2a (2) Na,S,04 (1) 60 CH,;CN Trace 5
7 2a(2) AgNO, (1) 60 CH,CN 35 10
8 2a (3) - 60 CH;CN 76 9
9 2a (3) - 40 CH,CN 30 5
10 2a (3) - 80 CH,CN 55 12
11° 2a (3) - 60 CH,CN 22
12 2a (4) - 60 CH,CN 68 9
13 2a (5) - 60 CH;CN 65 9

Reaction conditions: 1a (0.2 mmol), 2a (quantity noted), additive (quantity noted), solvent (2 mL) under O, atmosphere at indicated temperature

for 20 h in reaction tubes

“Isolated yield by flash column chromatography

"The reaction was performed under N, atmosphere. N.R.=no reaction

Entry 8 is the final optimized reaction conditions

Fig. 3 X-ray crystallographic data of 3a

Additionally, N-alkyl-5-aryl-substituted pyrazinones 4b—4e
reacted with 2a to afford C3-nitrated pyrazinone adducts
Sb—5e in moderate to good yields. In addition, N-benzyl-
substituted pyrazinones 4f and 4g were also compatible
under the current reaction conditions to give the correspond-
ing products 5f (45%) and 5g (61%). The complete regiose-
lectivity was observed in all cases. Finally, the C3-nitration

reaction of N-aryl-substituted pyrazinones 4h—4j smoothly
proceeded, resulting in the formation of the desired prod-
ucts Sh-5j. The functional group compatibility of nitrile and
acetyl moieties (5g and 5i) allows further synthetic elabora-
tion of the products.

To demonstrate the robustness and practicality of this
process, the scale-up experiments and synthetic transfor-
mations were performed (Fig. 4). The nitration reaction of
1a was readily scaled up to 1 g (6.3 mmol) for the forma-
tion of 3a (0.69 g) in 68% yield. In addition, the gram-scale
reaction of 4a (1 g, 5.4 mmol) with 2a was successfully
achieved to afford 0.81 g of 5a in 65% yield. Meanwhile, the
selective reduction of a nitro moiety of the product 3a was
performed by the single electron reduction protocol using by
Fe/NH,CI to furnish the desired aniline adduct 6a in 65%
yield. Moreover, treatment of 3a with Lawesson’s reagent
resulted in the formation of 7-nitroquinoxaline-2(1H)-thione
6b in 58% yield.
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Table 2 Scope of

quinoxalinones®
S PR ﬁ %
2a 60 °C, 20 h, 02
1a-1m 3a 3m, %°
Me
Me Me
Me
OoN N ON N._O Me)\ O,N \/\N o
T "y vy Oy
= P Z
N N \@ j N
N
3a, 76% 3b, 75% 3¢, 74% 3d, 71%
CN OEt
Br ( j @
O O,N
@ G O e O
ROGR P
N N
3e, 78% 3f, 55% 39, 31% 3h, 56%
NO,
I\I/Ie
N 0]
T j
O5N N (0] N
ces
N
. 3j, 60% (R = Me) c
[ 0, 0, 0,
3i, 30% 43% (R = CO,EY) 31, 20% (35%) 3m, 45%
#Reaction conditions: 1a—1m (0.2 mmol), 2a (0.6 mmol, 3 equiv.), CH;CN (2 mL) under O, atmosphere
at 60 °C for 20 h in reaction tubes
®Isolated yield by flash column chromatography
2a (1.0 mmol, 5 equiv.) was used
Discussion presence of molecular oxygen, a reactive NO, radical can

To support the mechanistic pathway for this reaction, the
nitration reaction of 1a and 2a was performed in the pres-
ence of a radical scavenger TEMPO (Fig. 5). No formation
of C7-nitrated quinoxalinone 3a was observed. The nitration
reaction was completely inhibited by 1,1-diphenylethylene
(2b) as a radical polymerization mediator, and 1,1-diphe-
nyl-2-nitroethylene (7a) was obtained in 56% yield. These
results support that a radical pathway is involved in this
process.

Based on preliminary mechanistic investigation and
reported literatures (Liang et al. 2015; Chun et al. 2018),
a proposed reaction mechanism is outlined in Fig. 6. In the
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be derived from the thermal decomposition of ‘BuONO,
followed by subsequent aerobic oxidation of a NO radical.
A NO, radical can undergo the radical addition into the
C7-position on quinoxalinone 1a, affording intermediate
A. The single-electron transfer (SET) process by the assis-
tance of NO, or ‘BuO radical followed by aromatization
provides the C7-nitrated product 3a. In case of the nitra-
tion of pyrazinone 4a, the radical addition can occur at the
C3-position, delivering a nitrogen radical species C, which
further undergoes the SET reaction and elimination reac-
tion to produce 6a. The site-selectivity between the C7- and
C3-positions of quinoxalinone 1a can be rationalized by the
electronic density between the electron-rich aromatic ring



Site-selective and metal-free C—H nitration of biologically relevant N-heterocycles 1021

Table 3 Scope of 5-aryl R2 R?
pyrazin-2-ones® l{l 0 lll 0
RLE T ‘BUONO CHLCN RLE I
~ + ° - P
N 2a 60 °C, 28 h, O, N~ “NO,
4a-4j 5a-5j, %"
I\I/Ie |\|/|e I\I/Ie
Nfo NIO N.__O
S ® (X
NZ NO, /@iN NO, /@iN NO,
F;CO Cl
5a, 72% 5b, 51% 5¢c, 45%
Me Meoj Phﬁ
|
N O N 0 N (0]
e M X X X
3 \©)iN NO, ©)iN/ NO, N™ "NO,
OMe
5d, 57% 5e, 53% 5f, 45%
R
CN Me
NIO INIO N.__O
@ ) (X
©):N NO, ©):N NO, ©):N NO,
5h,51% (R = OMe) )
59, 61% 5i, 45% (R = COMe) 5}, 51%

¥Reaction conditions: 4a —4j (0.2 mmol), 2a (1.0 mmol, 5 equiv.), CH;CN (2.5 mL) under O, atmosphere

at 60 °C for 28 h in reaction tubes

®Isolated yield by flash column chromatography

and electron-deficient N-heterocycle ring in the electrophilic
radical addition step. Moreover, the C7-selectivity over
C6,C8-positions on aromatic ring of 1a can be explained
by the relative stability of a radical intermediate A. How-
ever, the site-selectivity between C7- and C5-position still
remains unclear, and the detailed mechanistic investigations
on the site-selectivity of this process are underway.

In summary, we described the synthesis of biologi-
cally relevant C7-nitrated quinoxalinones and C3-nitrated
pyrazinones through metal-free C—H nitration with 7-butyl
nitrite. From the mechanistic point of view, the radical

addition to quinoxalinones with #-butyl nitrite exclusively
occurred at the electron-rich aromatic region beyond elec-
tron-deficient N-heterocycle ring. In contrast, the nitration
reaction of pyrazinones readily takes place at the C3-posi-
tion via the single electron transfer process of a nitrogen
radical intermediate followed by elimination reaction. This
protocol is characterized by the scale-up compatibility,
mild reaction conditions, and excellent functional group
tolerance. The selective reduction of a NO, group and
thiocarbonylation on the synthesized products highlight
the importance of the developed methodology.
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