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Integrated wafer-scale ultra-flat graphene
by gradient surface energy modulation

Xin Gao1,2,3,8, Liming Zheng1,2,8, Fang Luo4,8, Jun Qian1,2,8, Jingyue Wang 1,
Mingzhi Yan2,5, Wendong Wang6, Qinci Wu1,2, Junchuan Tang1, Yisen Cao2,
Congwei Tan1, Jilin Tang1,2,3, Mengjian Zhu4 , Yani Wang1,2, Yanglizhi Li1,2,3,
Luzhao Sun 2, Guanghui Gao2,5, Jianbo Yin 2, Li Lin 2,7, Zhongfan Liu 1,2,3,
Shiqiao Qin4 & Hailin Peng 1,2,3

The integration of large-scale two-dimensional (2D) materials onto semi-
conductor wafers is highly desirable for advanced electronic devices, but
challenges such as transfer-related crack, contamination, wrinkle and doping
remain. Here, we developed a generic method by gradient surface energy
modulation, leading to a reliable adhesion and release of graphene onto target
wafers. The as-obtained wafer-scale graphene exhibited a damage-free, clean,
and ultra-flat surface with negligible doping, resulting in uniform sheet resis-
tancewith only ~6% deviation. The as-transferred graphene on SiO2/Si exhibited
high carrier mobility reaching up ~10,000 cm2 V−1 s−1, with quantum Hall effect
(QHE) observed at room temperature. Fractional quantum Hall effect (FQHE)
appeared at 1.7 K after encapsulation by h-BN, yielding ultra-high mobility of
~280,000 cm2 V−1 s−1. Integrated wafer-scale graphene thermal emitters exhib-
ited significant broadband emission in near-infrared (NIR) spectrum. Overall,
theproposedmethodology is promising for future integrationofwafer-scale 2D
materials in advanced electronics and optoelectronics.

The integration of two-dimensional (2D) materials into current silicon
technology may embed high mobility, dangling band-free interface,
atomic-scale channel size into practical electronic and optoelectronic
devices1–4. Note that, an essential prerequisite is transferring 2D mate-
rials from their growth substrates to industrial wafers. Yet, a significant
gap still exists in transfer method, which frustrates the recent progress
in wafer-scale single-crystal growth of 2D materials5–10. Conventionally,
wet transfer methods commonly use poly(methyl methacrylate)
(PMMA) film as a transfer medium to support 2D materials when
separated from the growth substrate and scooped from the liquid

surface to a target substrate11,12. For graphene, thewet transfermethods
may significantly degrade its properties due to introduced cracks,
wrinkles, polymer contaminations, and water doping by water adsorp-
tions on the graphene surface13–18. These factors act as extra scattering
centers to limit carrier mobility and decrease device performance. To
overcome these issues, previous attempts have shown that the opti-
mization of PMMA and replacement of PMMA with small molecules or
other polymers would facilitate clean graphene transfer19–27, conformal
contact with the target substrate may reduce the formation of cracks
and wrinkles28–31, and the development of dry transfer methods may
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diminish water doping by preventing the submersion of target sub-
strate in liquids32–39. However, no method has so far entirely solved
these issues, and most approaches are not compatible with high-
volume semiconductor technology at the wafer level40,41.

Here, we designed a multi-functional tri-layer transfer medium
with gradient surface energy distribution, according to the thin-film
adhesion theory that transfer of thin film from one layer to another
layer is mainly dominated by the difference in surface energy of each
layer42,43. In this case, the higher surface energy of a target substrate,
the better it serves as the thin film ‘acceptor’ due to the better wetting
and larger adhesion strength at interface44. Thus, the surface energies
of transfer medium and target substrates should be engineered to
ensure reliable adhesion and release45, critical features for securing the
wafer-scale 2D materials integration1,2,46. As a result, the gradient sur-
face energy (GSE) modulation approach conduced to the integration
of 4-inch single-crystal ultra-flat graphene onto silicon wafers. The
transferred graphene wafer maintained its flatness, exhibiting intact
and clean surfaces with negligible water doping. Consequently, the
resultingwafer-scale graphene illustrated a uniformsheet resistance of
only ~6% deviation over a 4-inch area. The as-transferred graphene on
SiO2/Si exhibited outstanding electrical performances with smaller
Dirac points and much higher carrier mobility (~10,000 cm2 V−1 s−1) at
room temperature when compared to conventional wet transfer
(~2000 cm2 V−1 s−1). ThequantumHall effect (QHE)was alsoobserved at
room temperature in graphene transferred on SiO2/Si, and fractional
quantum Hall effect (FQHE) was recorded at 1.7 K in transferred gra-
phene encapsulated by h-BN with high mobility reaching
~280,000 cm2 V−1 s−1. Furthermore, the integrated thermal emitter
arrays fabricated on a 4-inch graphene/silicon wafer showed sig-
nificant emission with a broad spectrum in NIR region.

Results
Design of wafer-scale graphene integration
To minimize the adverse effects of grain boundaries and wrinkles on
the charge carriermobility, single-crystal ultra-flat graphene films were
grown on 4-inch Cu(111)/sapphire wafers and the details can be found
in Methods. A multi-functional tri-layer transfer medium was designed
to support the wafer-scale graphene during transfer (Fig. 1a, b, Sup-
plementary Figs. 1 and 2). The bottom layer of small molecules (bor-
neol) was adsorbed on the graphene to reduce the surface energy of
graphene, as well as working as a buffer layer to prevent direct con-
taminations caused by the upper PMMA layer (Fig. 1b). The PMMA
layer ensured the integrity of graphene during transfer (Supplemen-
tary Fig. 3), and the topmost polydimethylsiloxane (PDMS) layer
served as a self-supporting layer, allowing dry transfer of graphene and
preventing water doping (Fig. 1a, b).

Most importantly, the surface energy gradually decreased from
the destination SiO2/Si wafer to the topmost PDMS layer (Fig. 1b, c),
whose surface energy was calculated by measuring the contact angles
based on Owen-Wendt and Young’s equations28,44 (Supplementary
Table 1 and 2, Supplementary Fig. 4). The film with low surface energy
tends to adsorb strongly on the substrate with high surface energy,
according to the thin-film adhesion theory31. The driving force for
wetting the interface is the spreading coefficient λAB:

λAB = γB�γA � γAB ð1Þ

where γB and γA are the surface energies of phase B (the adherend) and
A (the adhesive), respectively; and γAB is the interface energy between
phase A and B. The fracture strength σf of the interface is related to λAB
by:

σf =
Km

1� λAB
γB

=
KmγB
γA + γAB

≈
KmγB
γA

ð2Þ

where Km is a function of the mechanical properties. Considering that
γAB ≪ γA, the fracture strength σf is proportional to the surface energy
ratio of the adherend to the adhesive (γB /γA).

For the wafer-scale graphene transfer, both the reliable adhesion
and release of graphene film are critical, which determine the integrity
of transferred wafer-scale graphene. Since the surface energy of SiO2/
Si (γ1) was much larger than that of graphene/borneol (γ2), the com-
plete wetting and reliable adhesion of graphene to the SiO2/Si wafer
was facilitated (Fig. 1b, c). Moreover, the very small surface energy of
PDMS (γ4) that is close to PMMA (γ3) ensured the damage-free release
of wafer-scale graphene onto SiO2/Si wafer (Fig. 1b, c, Supplementary
Fig. 5) due to the weak adhesion bond strength. By comparison, the
use of thermal release tape with larger surface energy and sticky sur-
face as a self-supporting layer led to uncontrolled release of the wafer-
scale graphene with poor macroscopic and microscopic integrity
(Supplementary Fig. 6), indicating that the gradient surface energy is
the key to the successful adhesion and release of wafer-scale 2D
materials during transfer.

The design of gradient surface energy (GSE) allowed successful
integration of the 4-inch single-crystal graphene onto the SiO2/Si
wafer with high intactness (99.8 ± 0.2%, Fig. 1d, e, Supplementary
Figs. 7 and 8). The GSE-transferred graphene also exhibited a clean
surface with significantly reduced polymer residues when com-
pared to conventional PMMA-transferred graphene17,22 (Fig. 1f, g,
Supplementary Figs. 9–12), owing to the much lower adsorption
energy of borneol on graphene than that of PMMA (Supplementary
Fig. 11). In general, the flatness of graphene was influenced by the
density of particles and wrinkles on the surface. In addition to the
negligible surface particles, the GSE-transferred graphene main-
tained its flat morphology with few wrinkles, benefiting from the
ultra-flat nature of graphene/Cu(111)/sapphire with significantly
inhibited graphene wrinkles and Cu step bunches (Fig. 1h, Supple-
mentary Figs. 13–14). In this way, a graphene film with an intact,
clean, and ultra-flat surface was obtained on wafer-scale SiO2/Si
substrate.

The proposed GSE strategy can also be used for the graphene
integration onto 4-inch industrial sapphire substrates (Supplementary
Fig. 15). Meanwhile, wafer-scale graphene grown on Cu foil and h-BN
could also be integrated onto SiO2/Si using the GSE strategy (Supple-
mentary Figs. 16 and 17). Similar resultswere obtainedby using rosin as
small molecule buffer layer20, implying the versatility of the GSE
method (Supplementary Fig. 18). To show more details of the GSE
transfer method, we have included a step-by-step protocol within the
Methods section, Supplementary Movie 1 and 2.

Uniform wafer-scale graphene
The uniformity of transferred graphene is vital for advanced wafer-
scale integrated devices1–4,46. Owing to the intact and clean surface, the
GSE-transferred graphene had a very uniform sheet resistance
(655 ± 39 Ω sq-1), whose standard deviation was only ~6% over the
4-inch wafer (Fig. 2a). By contrast, the sheet resistance of PMMA-
transferred looked inhomogeneous with a much higher standard
deviation of ~22% (600 ± 132 Ω sq-1), resulting from the uneven dis-
tribution of cracks and contaminations introduced during the
transfer20,21 (Fig. 2b). The uniformity of graphene at the microscopic
level was further evaluated by Raman mapping. As shown in Supple-
mentary Fig. 19, no D band peak was observed for GSE-transferred
graphene. Also, the distribution of G-band position became remark-
ably narrower when compared to that of PMMA-transferred graphene
(Fig. 2c, d). These observations further evidenced the advantages of
theproposedGSE strategy for integratingwafer-scale damage-free and
clean graphene with a uniform surface.

To examine the doping and strain level of GSE-transferred gra-
phene, the peak positions of G band (ωG) and 2D band (ω2D) were
extracted from the Raman spectra, and the correlation maps were
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plotted in Fig. 2e. The yellow star reveals the location of intrinsic
graphene (ωG = 1582 cm-1, ω2D = 2677 cm-1), corresponding to neither
doping nor strain47. The PMMA-transferred graphene films are often
deeply p-dopedwhen using wet transfermethods due towater doping
at the interface13,18,21, leading to changes in the Fermi level of graphene
and declined carrier mobility. As shown in Fig. 2e, the PMMA-
transferred graphene film on SiO2/Si wafer experienced deeply
p-doping. By comparison, GSE-transferred graphene on SiO2/Si wafer
nearly experienced no p-doping and strain, thereby close to the
intrinsic graphene (Fig. 2e). The histograms of 2D peak’s full width at
half maximum (Γ2D) of transferred graphene were gathered in Fig. 2f.
The average Γ2D of GSE-transferred graphene (~30 cm-1) was smaller
than that of PMMA-transferred graphene (~40 cm-1), indicating GSE-
transferred graphene with little random strain fluctuation and poten-
tially high charge carrier mobility33,48,49.

Electronic properties of GSE-transferred graphene
The electrical performances of devices fabricatedwithGSE-transferred
graphene were investigated. Hall-bar devices were fabricated with
standard electron beam lithography (EBL) to measure the field-effect
carrier mobility of graphene on SiO2/Si. The typical transfer char-
acteristics of 60 Hall-bar devices fabricated with GSE- and PMMA-
transferred graphene are summarized in Fig. 3a. The Dirac point of
GSE-transferred graphenewas near zero, and the carrier concentration
was about 3 × 1011 cm−2, revealing a very small doping level of graphene
consistent with the Raman results. The extracted hole mobility
reached up 10,000 cm2 V−1 s−1 (Fig. 3a), comparable to previously
reported values of state-of-the-art CVD graphene5,16,21. By contrast, the
Dirac point of deeply-doped PMMA-transferred graphene was close to
35 V, and the carrier concentration (~3 × 1012cm−2) was an order of
magnitude higher than that of GSE-transferred graphene, showing a
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Fig. 1 | Wafer-scale graphene integration by gradient surface energy modula-
tion. a Schematic illustration ofwafer-scale ultra-flat graphene transfer via gradient
surface energy modulation. b The structure of transfer medium, in which different
layers with gradient surface energy are designed (γ1 > γ2, γ3 ≥ γ4). Left and right
figures show the adhesionand releaseprocedures inpanel (a). Note that the surface
energy of SiO2/Si (γ1) is larger than that of graphene/borneol (γ2), enabling reliable
adhesion as the middle picture shows. Also, the surface energy of PDMS (γ4) is the
lowest, leading to the intact release of graphene onto the target substrate. c The
surface energies of different surfaces calculated from measured contact angles.
Insets: images showing contact angles of water on different surfaces. Error bars

indicate standard deviations of surface energies and contact angles for different
surface. d Optical image of 4-inch transferred graphene on SiO2/Si wafer.
eHistograms of coverage of transferred graphene. Inset: opticalmicroscopy image
of transferred graphene. f Scanning electronmicroscopy imagesof GSE-transferred
graphene and PMMA-transferred graphene. g Histograms of particle number per
10 × 10 μm2 from 80 AFM images of GSE-transferred and 50 AFM images of PMMA-
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AFM images of transferred ultra-flat and rough graphene. Insets: AFM images of
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relatively low μ of 1930 cm2 V−1 s−1. Accordingly, the average hole
mobility of GSE-transferred graphene reached ~6000 cm2 V−1 s−1

(Fig. 3b), a value 3-fold higher than thatof PMMA-transferred graphene
(~2000 cm2 V−1 s−1). In addition, the mobility of wet-transferred gra-
phene by only using PMMA/borneol as the transfer medium is
~3950 cm2 V−1 s−1, much lower than that of GSE-transferred graphene,
which indicate the water-adsorption-induced doping will significantly
degrade the electrical properties of graphene (Supplementary Fig. 20).

As shown in Fig. 3c, the Hall mobility of the GSE-transferred gra-
phene on SiO2/Si extracted from the Hall effect measurement was
9500 cm2 V−1 s−1 at room temperature. Bymeasuring theHall resistance
(Rxy) and magnetoresistance (Rxx) at different temperatures (Fig. 3c,
Supplementary Fig. 21a), we confirmed that the nonlinearity in the
large magnetic field at room temperature was caused by the quantum
Hall effect (QHE), further demonstrating the outstanding electrical
performances and little scattering centers of GSE-transferred
graphene50 (Supplementary Fig. 22). The Hall mobilities and carrier
concentrations at different temperature was shown in Supplementary
Fig. 21b, and Hall mobility can reach up 19,500 cm2 V−1 s−1 at 2 K.

To further confirm the intrinsic mobility of transferred graphene,
hexagonal boron nitride (h-BN) flake was employed to pick up and
encapsulate the transferred graphene from SiO2/Si substrate (Fig. 3d)
to fabricateHall-bar deviceswith 1D edge contact (inset of Fig. 3e). The
Hall mobility at 300K was calculated as ~58,000 cm2 V−1 s−1, and the
carrier concentration was about 8.4 × 1010 cm−2, indicating excellent
electricalproperties of transferredgraphene (Fig. 3e). According to the
longitudinal magnetoresistance and Hall curve at 1.7 K (Fig. 3f), the
extracted Hall mobility reached as high as 280,000 cm2 V−1 s−1, thus
rivaling mechanically exfoliated graphene51,52. In the Longitudinal (Rxx)
and Hall (Rxy) magnetoresistance measurements at 1.7 K with a fixed
magnetic field (B = 8.5 T), quantized Hall platform and magnetoresis-
tance zeros were observed at all possible integer fillings of n =0 and
n = 1 Landau Levels (LLs) (Fig. 3g). Furthermore, quantization of Rxy to

(1/υ)h/e2 withminimum Rxx at fractionalfilling factors υ = 2/3 and 4/3 in
n = 0 LL, as well as υ = 7/3, 8/3, 10/3, and 11/3 in n = 1 LL were observed,
confirming the fractional quantumHall effect (FQHE) feature. Theback
gate (Vg) dependent resistant measurements at the different magnetic
fields on h-BN-encapsulated transferred grapheneHall-bar devicewere
then performed to resolve the broken Landau level degeneracy and
FQHE in the Landau fan diagram (Fig. 3h). The observation of FQHE
further demonstrated the mobility of GSE-transferred graphene
should be comparable to the high-quality exfoliated graphene53,54 with
average mobilities exceeding 100,000 cm2 V−1 s−1. These data con-
firmed the ultrahigh quality of the as-transferred graphene.

Wafer-scale integrated graphene thermal emitter devices
Graphene-based silicon-chip blackbody emitters in the near-infrared
region, including telecommunication wavelength hold promise in
applications in on-Si-chip, small footprint, and high-speed emitters of
highly integrated optoelectronics and silicon photonics55. As shown in
Fig. 4a, the passage of a current I through graphene thermal emitter
device with narrow constrictions led to enhancements in the Joule
heating, as well as localized light emission of graphene at themiddle of
the constriction56. As shown in Fig. 4b, the integrated graphene emitter
device arrays with 4-inch GSE-transferred graphene wafer were suc-
cessfully obtained. The representative device array was enlarged in
Fig. 4c, showing an array of 8 × 8 graphene emitter devices with a
graphene channel length of 120μmandwidth of 10μmat the center of
graphene.

To protect the graphene channel of the thermal emitter device, a
~70-nm-thick Al2O3 layer was deposited on the graphene before vol-
tage application (Supplementary Fig. 23a). Under continuous DC bias
voltage, significant emission from Al2O3-capped graphene device
between two electrodes was observed with an Infrared (IR) camera
under vacuum at power density P = 3.0 kWcm−2 (Fig. 4d). Note that the
blue and yellow dashed lines indicated the graphene and metal
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electrode, respectively. The emission from these devices induced a
broad spectrum in NIR region, including telecommunication wave-
length. In addition, the emission intensity increased with the applied
voltage (Fig. 4e). The graphene lattice temperature obtained from the
peak position shift of 2D band of biased graphene57 (Supplementary
Fig. 23b) depicted a linear change with the applied power density due
to the Joule heating effect58 that reached ~750K under vacuum at the
power density of 7.7 kWcm−2 (Fig. 4f). Thus, the graphene-based
emitter is promising for high-density emitters on silicon chips, and the
GSE-transferred graphene integration strategywill provide a key to the
fabrication of wafer-scale graphene thermal emitter devices.

Discussion
A general method was successfully developed for the wafer-scale
graphene integration onto silicon wafers, compatible with current
semiconductor technologies. The physical adhesion model and data
revealed the importance of the gradient surface energy in the transfer
of wafer-scale graphene, enabling reliable adhesion and release during

transfer. Accordingly, 4-inch damage-free graphene with preserved
intrinsic properties was obtained, contributing to a uniform sheet
resistance with ~6% deviation over a 4-inch area.

The transferred graphene enhanced the electrical performance
due to the negligible doping level and much fewer scattering centers
when compared to conventional PMMA-transferred graphene. The
Hall-bar devices fabricated with graphene on SiO2/Si exhibited small
Dirac points and high carrier mobilities (up to ~10,000 cm2 V−1 s−1),
allowing the observation of quantum Hall effect (QHE) at room tem-
perature. Fractional quantum Hall effect (FQHE) also appeared at 1.7 K
in the transferred graphene encapsulated by h-BN, with mobility
reaching ~280,000 cm2 V−1 s−1. Furthermore, integrated thermal emit-
ter arrays with the 4-inch graphene/silicon wafer illustrated significant
emission with a broad spectrum in NIR region. In sum, the proposed
methodology can be used as a universal approach for the integration
of other intrinsic 2Dmaterials, such as h-BN and 2DMoS2 on the wafer
level, paving the way for the development of integrated high-
performance electronics and optoelectronics.
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Fig. 3 | Electrical properties of transferred graphene. a Transfer characteristics
comparison of two typical Hall-bar devices fabricated with PMMA- and GSE-
transferred graphene. Inset: image of graphene Hall-bar device on SiO2/Si.
bHistogramsof FETmobilityof GSE- andPMMA-transferredgraphene.The average
mobility of 42 GSE-transferred and 18 PMMA-transferred graphene devices are
6000 cm2V−1 s−1 and 2000cm2V−1 s−1, respectively. cThechange inHall resistance as
a function of magnetic field of GSE-transferred graphene on SiO2/Si at different
temperature. Inset: image of graphene Hall-bar device on SiO2/Si. d The fabrication
schemeof h-BN-encapsulated transferred graphene. eThe change inHall resistance

as a function of magnetic field (B) of h-BN-encapsulated transferred graphene at
300K. Inset: image of h-BN encapsulated graphene Hall-bar device. f The variation
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Furthermore, our GSE transfer method was successfully repro-
duced by an independent research group (as shown in the Peer Review
file), demonstrating the robust reproducibility of GSE method in the
transfer of large-area 2D materials.

Methods
Preparation of single-crystal Cu(111) film on sapphire
The Cu(111) film was deposited on a single-crystal sapphire (4 inch, c
plane with misorientation <0.5°, 600μm thickness, epi-ready with
Ra < 0.2 nm) using a sputtering system (ULVAC QAM-4W). The
deposition rate was 0.3 nm s-1 with a power of 300W at 8 × 10−4Torr,
and a ~500-nm-thick Cu film was obtained on sapphire after 30min.
After that, the Cu/sapphire was then annealed at 1000 °C with
2000 sccm Ar and 10 sccm H2 for 2 h at atmospheric pressure in a
homemade annealing furnace to obtain Cu(111) single crystal.

Growth of ultra-flat single-crystal graphene wafers
The 4-inch Cu(111)/sapphire was heated to 1000 °Cwith 2000 sccmAr
at atmospheric pressure, then 40 sccm CH4 (0.1% diluted in Ar) and
40 sccm H2 was introduced for graphene growth. Fully covered gra-
phene was obtained after ~2 h, and CH4 gas flow was turned off while
the sample cooled to room temperature.

Preparation of single-crystal Cu(111) foil
Commercially available polycrystalline Cu foils were placed in a
homemade annealing furnace equipped with a 6-inch quartz tube.
Three heating zones were asynchronously heated up from room
temperature to target temperatures (1040 °C, 1020 °C, 1000 °C,
respectively) in 40minand kept for 1 h, which leads to the formationof
a temperature gradient through the Cu foils (about 2 °C/cm) and
promotes the anomalousCugrain growth59. The heating and annealing
processes were carried out under 500 sccm H2 and 100 sccm Ar.

Growth of rough graphene on single-crystal Cu foil
The rough graphene was grown on Cu(111) foil using a low-pressure
CVD system. Firstly, The Cu(111) foil was heated to 1000 °C with
500 sccm Ar, followed by annealing with 500 sccm H2 for 30min.
Then the growth of graphene was initialed by the introduction of
1 sccm CH4. Fully covered graphene was produced after 1-h growth.
Finally, the system was cooled down to room temperature.

Transfer of ultra-flat single-crystal graphene wafers with GSE
strategy
A step-by-step protocol is available as a Supplementary Protocol
in Supplementary Information. First, a layer of (-)-borneol (>97%
purity, Alfa Aesar) dissolving in isopropyl alcohol (Crystal Clear
ElectronicMaterial Co., Ltd.) (25 wt%) and a layer of PMMA (950 K A4,
Microchem Inc.) were sequentially spin-coated on graphene/Cu(111)/
sapphire at 1000 rpm for 1min, and baked at 130 °C for 3min to form
a composite support film. After that, PMMA/Borneol/graphene film
was detached from growth substrate by etching the Cu film for 8~12 h
in an aqueous solution of 1mol/L (NH)4S2O8 (Rawhn, Shanghai Yien
Chemical Technology Co., Ltd.). After washing with deionized water
to remove residual etchant, the PMMA/Borneol/graphene film was
attached to the Si substrates, and the PDMS (WF-40×40-0060-X4,
Gel-Pak) was laminated on the surface of PMMA after the graphene
was dried using the commercial laminator (LM-330ID, Rayson Co.,
Ltd.). The composite film of PDMS/PMMA/Borneol/Graphene was
detached from Si substrate in water because the water will intercalate
into the interface of graphene and Si substrate due to the hydrophilic
surface of SiO2/Si (Supplementary Fig. 2, Supplementary Movie 1).
The composite film is fully dried in atmosphere, followed by lami-
nating onto SiO2/Si (sapphire), and the PDMSwas exfoliated from the
PMMA at 180 °C in 5min. To further enhance the interaction of
graphene and substrate, we baked the graphene at 180 °C for 3 h
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phene thermal emitter arrays on GSE-transferred graphene. c Optical microscopy
image of 8 × 8 graphene thermal emitters. Inset: single graphene thermal emitter
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before removing PMMA and borneol with the vapor of hot acetone
(UP, 99%, Crystal Clear Electronic Material Co., Ltd.), leaving the
monolayer graphene on target substrate.

The detachment of graphene from Cu(111)/sapphire can also be
achieved by electrochemical bubbling delamination when PDMS/
PMMA/borneol was used as a composite support layer, which reduced
the time of transfer of graphene and preserved the Cu(111)/
sapphire wafer.

Transfer of ultra-flat and rough single-crystal graphene wafers
with PMMA
First, a layer of PMMA was spin-coated on graphene/Cu(111)/sapphire
or graphene/Cu(111) foil at 1000 rpm for 1min, and baked at 170 °C for
3min. After that, PMMA/graphene film was detached from growth
substrate by etching the Cu film in an aqueous solution of 1mol/L
(NH)4S2O8. After washing with deionized water to remove residual
etchant, the PMMA/graphene film was attached to the SiO2/Si sub-
strates at the surface of water. To further enhance the interaction of
graphene and SiO2/Si, the PMMA/graphene/SiO2/Si was baked at
180 °C for 3 h before removing PMMA with the vapor of hot acetone,
leaving the monolayer graphene on SiO2/Si.

DFT calculation of adsorption energies of borneol and PMMAon
graphene surface
To evaluate the adsorption energies of borneol and PMMA on gra-
phene surface Ead, short chain of PMMA (C22H38O8) terminated with
-CH3 without introducing additional polarity of the polymer was used
in ourfirst-principles calculations.Bothborneol and PMMAshort chain
were placed on the surface of graphene with a ~3.3 A distance, mea-
sured from the center plane of molecule to the plane of graphene. The
adsorption energy is defined as:

Ead = Etransfer medium + Egraphene � Etransfer medium on graphene ð3Þ

All the structures were optimized using the density functional
theory (DFT) implemented in VASP. To keep consistency, all the peri-
odic cells are of the same size with a = 24.56Å, b = 24.56 Å, c = 21.70Å.
The 11 × 11 supercell of graphene was chosen for all the calculations.
The PBE with the optB86b-vdW correction functional was used to
determine the total energies for each structure, taking into account the
Van der Waals interaction between polymer and graphene.

Fabrication of Hall-bar devices and electrical transport
measurement
Hall-bar devices were fabricated on the graphene/SiO2/Si with marks
for alignment. Electron-beam lithography and plasma etching with air
(Diener Pico) were employed to pattern graphene into a Hall-bar
geometry. After a PMMA mask (PMMA 950K A4 @ 4000 rpm) was
patterned by EBL, Pd/Au (5/40 nm) electrodes were deposited by
thermal evaporation (ZHD300, Beijing Technol Science Co., Ltd), fol-
lowed by a standard lift-off technique. Limited by the stage size of
electronbeam lithography, we fabricated 42 grapheneHall-bar devices
on 10 slices from the same 4-inch GSE-transferred graphene wafer and
18 graphene Hall-bar devices on 5 slices from another 4-inch PMMA-
transferred graphene wafer. The area of each slice is 1 × 1 cm2.

Electrical transport at room temperature was determined using a
vacuum-probe station (Lakeshore CRX-VF) with a semiconductor
characterization system (B1500A, KeySight). Electrical transport at low
temperature and magneto-transport data were acquired using a low
temperature and strong magnetic electronic measurement system
(AttoDry2100, Attocube). Device resistance was measured using a
lock-in amplifier (Stanford Research 830) with an AC driving current
of 0.1–1μA.

Fabrication of thermal emitters and thermal radiation
measurement
The arrays of graphene thermal emitters were fabricated by UV
lithography machine, and Al2O3 layer was grown by atomic layer
deposition method. The Raman spectroscopy of graphene were
measured by a confocal microRaman spectroscope (Renishaw inVia
Qontor, UK) with a solid-state laser at 532 nm. The Raman signals
were dispersed by a grating of 1800 lines/mm ensuring a high
spectral resolution of ~1.0 cm−1. The spectrometer was calibrated by
a quartz tungsten lamb at temperature of 3200 K before measure-
ment. The thermal emission spectra were recorded using a spec-
trometer and a liquid nitrogen cooled Si CCD with a 50× objective
lens. The radiation signal was acquired using an infrared camera. All
measurements were carried out at room temperature and in
vacuum.

Characterization
Opticalmeasurement. Optical microscopywas conducted on aNikon
Olympus LV100ND. Raman spectra of transferred graphene were col-
lected on a Horiba LabRAM HR Evolution Raman system using a
532nm laser with a laser spot size 1μm, and a 100x objective and 600
lines/mm grating were used to collect the Raman signal.

Contact angle measurement. The contact angle images of tested
liquids on different surfaces were obtained using Biolin THETA optical
tensiometer, the volume of the droplet on surface was controlled at
about 4μL.

SEM and TEM measurement. SEM images were obtained on an FEI
Quattro S field-emission scanning electron microscope using a 5 kV
acceleration voltage. The aberration-corrected STEM images of gra-
phene were performed using a Nion U-HERMS200 microscope
at 60 kV.

AFMmeasurement. The AFMmorphology images were collected on a
Brucker Dimension Icon using the ScanAsyst mode.

Sheet resistance measurement. The sheet resistances of transferred
graphene on 4-inch wafers were collected by CDE ResMap 178 four-
probe resistance tester.

Data availability
The data that support the findings of this study are available within the
article and its Supplementary Information files. The source data of
Fig. 1c, e, g, h, 2a–f, 3a–c, e–h, 4e, f, and Supplementary Figs. 8b, 10a,
12c, 14c, 15b, d, 16b, 18c, 19a, b, 20b, c, 21a, b, and 23b are provided as
“Source Data File”. All raw data generated during the current study are
available from the corresponding authors upon request. Source data
are provided with this paper.
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