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1  |  INTRODUC TION

Tropical coral reefs are in rapid decline due to climate change im-
pacts and multiple local-scale stressors (Cinner et al., 2018; Hoegh-
Guldberg et al., 2007; Hughes, Barnes, et al., 2017). The increasing 
magnitude and frequency of mass coral bleaching events have re-
sulted in unprecedented mortality on many reefs (Heron et al., 2016; 
Hughes, Anderson, et al., 2018; Hughes, Barnes, et al., 2017) to the 
point that returning to their past configurations may no longer be 
possible (Hughes, Kerry, et al., 2017, 2018; Hughes et al., 2019). 
Although recovery of coral abundance, diversity and reef ecological 

functioning is conceivable in certain cases (Buglass et al., 2016; 
Cunning et al., 2016; Gilmour et al., 2013; Pisapia et al., 2016), suc-
cessful recruitment of coral larvae from less impacted reef areas 
is key (Holbrook et al., 2018). However, larval dispersal capacities 
of corals at and surrounding affected sites are often unknown or 
not prioritized by resource managers during conservation planning 
(Balbar & Metaxas, 2019; McCook et al., 2009). In fact, a recent 
review found that only 11% of 739 marine protected areas (MPAs) 
have considered demographic or genetic connectivity as an ecolog-
ical criterion, risking lower resilience and recovery chances for coral 
reefs (Balbar & Metaxas, 2019). This knowledge gap also hinders 

Received: 16 February 2020  | Accepted: 24 June 2021

DOI: 10.1111/eva.13276  

S P E C I A L  I S S U E  O R I G I N A L  A R T I C L E

Barriers and corridors of gene flow in an urbanized tropical reef 
system

Lutfi Afiq-Rosli1,2  |   Benjamin John Wainwright1,3 |   Anya Roopa Gajanur1 |    
Ai Chin Lee2  |   Seng Keat Ooi2 |   Loke Ming Chou1,2  |   Danwei Huang1,2,4

This is an open access article under the terms of the Creat​ive Commo​ns Attri​bution License, which permits use, distribution and reproduction in any medium, 
provided the original work is properly cited.
© 2021 The Authors. Evolutionary Applications published by John Wiley & Sons Ltd

1Department of Biological Sciences, 
National University of Singapore, 
Singapore, Singapore
2Tropical Marine Science Institute, 
National University of Singapore, 
Singapore, Singapore
3Yale-NUS College, National University of 
Singapore, Singapore, Singapore
4Centre for Nature-based Climate 
Solutions, National University of 
Singapore, Singapore, Singapore

Correspondence
Lutfi Afiq-Rosli, Department of Biological 
Sciences, National University of 
Singapore, Singapore, Singapore.
Emails: lutfiafiqrosli@u.nus.edu; lutfi.
afique@gmail.com

Funding information
National Research Foundation Singapore, 
Grant/Award Number: MSRDP-P03 and 
MSRDP-P04; Mind the Gap—Sustainable 
Earth Fund

Abstract
Information about the distribution of alleles among marine populations is critical for 
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reef system, we analysed single nucleotide polymorphisms (SNPs) from two species 
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coral, we found cryptic lineages that were differentially distributed at inshore and 
central-offshore sites that could be attributed to contemporary surface current re-
gimes. Near panmixia was observed for Pocillopora acuta with differentiation of col-
onies at the farthest site from mainland Singapore, a possible consequence of the 
brooding nature and relatively long pelagic larval duration of the species. Furthermore, 
analysis of recent gene flow showed that 60–80% of colonies in each population were 
nonmigrants, underscoring self-recruitment as an important demographic process in 
this reef system. Apart from helping to enhance the management of Singapore's coral 
reef ecosystems, findings here pave the way for better understanding of the evolution 
of marine populations in South-East Asia.
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informed interventions such as temporary site closures to aid recov-
ery, even in areas with strong legal protection.

Coral populations are genetically connected through the ex-
change of coral recruits over multiple generations, and the degree 
of connectivity can be inferred by comparing allele frequencies 
between populations (Selkoe et al., 2016). A recent analysis of 
the common coral Acropora millepora revealed very low levels of 
genetic divergence along the Great Barrier Reef (GBR), suggest-
ing high gene flow through exchange of coral propagules (Matz 
et al., 2017). Conversely, populations with high disparity in allele 
frequencies are poorly connected and exchange few to no coral 
recruits over time, which can be attributed to ancient vicariance 
events or contemporary dispersal barriers (Lohman et al., 2011). 
For example, late-Miocene coral reef populations in the Tropical 
Eastern Pacific (TEP) were well connected to the wider Caribbean 
reefs prior to the early-Pliocene closure of the Isthmus of Panama, 
which has since become a dispersal barrier between these popu-
lations (Knowlton et al., 1993; Lessios, 2008; O'Dea et al., 2016). 
Relatedly, modern-day TEP remains poorly connected to the 
Central Tropical Pacific (CTP) due to the Eastern Pacific Barrier 
that acts as a contemporary dispersal barrier (Baums et al., 2012; 
Romero-Torres et al., 2018). Further, the broadcast-spawning coral 
Mussismilia hispida can be divided into five genetically differen-
tiated populations along the Southwestern Atlantic—consistent 
with present-day oceanographic current patterns, zones of up-
welling and historical sea-level changes (Peluso et al., 2018). 
At much smaller spatial scales, physical characteristics such as 
the prevailing tidal magnitude can be important drivers of ge-
netic differentiation. For example, reefs off the Kimberley coast 
of north-western Australia that are experiencing higher tidal 
heights have greater connectivity with the metapopulation, and 
their population dynamics are generally influenced by the strong 
oceanographic currents in the region (Underwood et al., 2020). 
Estimates of genetic connectivity can aid in understanding lar-
val dispersal patterns, which are otherwise impractical to track 
across a complex reef system (von der Heyden et al., 2014). This 
information can be incorporated into the design of MPAs and for 
defining management areas to help ensure continuous larval sup-
ply, enhancing the capacity of populations to recover from dis-
turbances (Berumen et al., 2012; Hughes et al., 2010; Van Oppen 
& Gates, 2006) and improving the effectiveness of a broad range 
of conservation interventions (Christie et al., 2010; Magris et al., 
2018). For instance, Bonin et al. (2016) highlighted the resilience 
of anemonefish populations at the Keppel Islands (GBR) that are 
supplied and maintained by recruits from distant source popula-
tions even if local breeders are lost. Additionally, Hock et al. (2017) 
showed that 112 reefs in the GBR have sufficient dispersal ability 
to facilitate recovery of disturbed areas, providing evidence for 
systemic resilience within the large reef system. In some cases, 
self-recruitment within a population might be more prevalent on 
ecological timescales (over just a few generations) even though 
it may be well connected to other populations over evolutionary 
time (Christie et al., 2010). Indeed, because larvae of many coral 

species develop to allow high levels of self-recruitment (Figueiredo 
et al., 2013), there can be two opposing influences on genetic di-
versity and resilience—adaptation when local environments differ, 
and reduction in genetic diversity in the absence of exogenous 
genetic exchange (Underwood et al., 2018). Given these effects, it 
is important to consider self-recruitment patterns when assessing 
the genetic connectivity of reefs.

Advances in DNA sequencing technology and bioinformatics 
now permit the analysis of thousands of genetic loci, so previously 
unresolved patterns of genetic connectivity are now coming to light 
and can support conservation goals (Beltrán et al., 2017; Lopez et al., 
2018). Earlier work on Singapore reefs using seven microsatellite 
loci found panmixia in a broadcast-spawning coral Platygyra sinen-
sis (Tay et al., 2015), a possible consequence of specific life history 
characteristics or limited resolution in the markers used (Durante 
& Baums, 2017). More resolved patterns of connectivity and gene 
flow can help improve current biodiversity management and con-
servation practice. For instance, if two populations are not well con-
nected, it is preferable that they are treated as distinct management 
units (Eastwood et al., 2016). Among highly connected populations, 
source sites and sites with high levels of self-recruitment should be 
prioritized for conservation (Jones et al., 2007; Krueck et al., 2017; 
Lequeux et al., 2018).

In this study, our aim is to assess fine-scale (~180 km2) population 
genetic connectivity of two common reef-building corals Porites sp. 
and Pocillopora acuta in Singapore using genome-wide single nucle-
otide polymorphisms (SNPs). These two species have distinct repro-
ductive modes (broadcast spawning and brooding, respectively; Kerr 
et al., 2011; Poquita-Du et al., 2019). Variations in geographic con-
nectivity patterns could thus be explained partly by their evolved 
life history strategies (Thomas et al., 2020; Underwood et al., 2020). 
Furthermore, these two species also have different dispersal capaci-
ties whereby Poc. acuta larvae can survive twice as long in its pelagic 
state compared with Porites sp. (Polato et al., 2010; Richmond, 1987). 
Integrating insights from multiple species—especially those with dif-
ferent life histories and dispersal capacities—will provide more ro-
bust inferences on population connectivity compared with the use 
of a single species (Magris et al., 2016). More broadly, our findings 
are expected to help enhance the management of Singapore's coral 
reefs and lay a foundation for clearer understanding of the evolution 
of coral populations in South-East Asia.

2  |  MATERIAL S AND METHODS

2.1  |  Study location and sampling

We focused on the highly urbanized reef system in Singapore where 
we targeted seven to eight sampling sites depending on the abun-
dance and availability of Porites sp. and Pocillopora acuta (Figure 1; 
see Table 1 for details on species sampling and identification and 
File S1 for morphometric analyses of Porites sp.). All samples were 
preserved in 100% molecular grade ethanol and stored at −80℃.
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2.2  |  DNA extraction, library 
preparation and sequencing

Genomic DNA was extracted on the abGenix™ automated nu-
cleic acid extraction system (AITbiotech Pte Ltd) following the 

manufacturer's animal tissue genomic DNA extraction kit protocol. 
NextRAD genotyping-by-sequencing libraries (SNPsaurus, LLC) 
were prepared as in Russello et al. (2015). Briefly, DNA (~10 ng) was 
first fragmented and adapter-ligated with the Nextera DNA Library 
Prep Kit (Illumina, Inc.). Fragmented DNA was then amplified for 26 
cycles at 73℃, with one of the primers matching the adapter and 
extending nine nucleotides into the genomic DNA with the selective 
sequence 5′-GTGTAGAGG-3′. Thus, only fragments starting with a 
sequence that can be hybridized by the selective sequence of the 
primer would be efficiently amplified. The nextRAD libraries were 
sequenced on one HiSeq 4000 lane for 150-bp single-end reads 
(University of Oregon).

2.3  |  Genotyping and quality control

A sample of 1000 randomly selected reads from each individual 
sample was isolated and searched using BLASTn against the NCBI 
nucleotide database. Species information of the best BLAST hit 
was subsequently collected and used to check for contamina-
tion from bacteria, Symbiodiniaceae and other nontarget taxa (see 
File S1). The genotyping analysis used custom scripts (SNPsaurus, 
LLC) that trimmed the reads using bbduk (BBTools package; Brian 
Bushnell, Walnut Creek, CA, USA) (see File S1). Next, all remaining 

F I G U R E  1  Sampling map for Porites sp. and Pocillopora acuta corals in Singapore's coral reef systems

TA B L E  1  Sampling sites and number of samples. Identification 
of Pocillopora acuta was performed in situ following Poquita-Du et 
al. (2017); Poc. acuta was the only Pocilloporidae species remaining 
in Singapore (Poquita-Du et al., 2019). Identification of Porites sp. 
required additional examination and verification (see File S1)

Site Porites sp. Pocillopora acuta

Hantu 20 4

Jong 20 12

Kusu 20 20

Satumu/ Raffles 20 20

Semakau 20 15

Sisters 20 20

Sultan Shoal 20 –

Tanah Merah 20 –

TPT – 7

Total 160 98
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reads were mapped to the respective Porites lutea genome (from 
Liew et al., 2016: http://reefg​enomi​cs.org) and Poc. acuta de novo-
assembled reference (see File S1). Genotype calling was performed 
using Samtools and bcftools (Li et al., 2009) and compiled in Variant 
Call Format (VCF) files using custom parameters (see File S1). The 
VCF files were filtered to remove alleles with a population frequency 
of less than 3%. Loci that were heterozygous in all samples or had 
more than two alleles in a sample (suggesting collapsed paralogs) 
were also removed. PGDSpider (v2.1.1.5) (Lischer & Excoffier, 2012) 
was used to reformat the VCF files for downstream analyses. The 
remaining SNPs were evaluated for significant deviations from the 
Hardy–Weinberg equilibrium and linkage using arlecore (v3.5.2.2), 
with SNPs that deviated (excess or deficit) in more than five a priori 
populations removed as in Bongaerts et al. (2017). The clonecorrect 
function in R package poppr (v2.8.1) (Kamvar et al., 2014, 2015) was 
used to remove potential clones from the data set, with clonal groups 
reduced to a single representative per population. Finally, only SNPs 
with <1% missing data and samples with <15% missing data were 
retained to ensure high-quality downstream analyses.

2.4  |  Data analyses

Three data sets with varying filtering parameters were assembled 
for analysis: overall data set (all loci), neutral data set (loci under se-
lection removed) and outlier data set (only loci identified as under 
selection). BayeScan (v2.1) (Foll & Gaggiotti, 2008) using default pa-
rameters (see File S1) and Bayes factor cut-off of 0.05 were used to 
identify loci under possible selection.

To assess genetic structure for each data set, Bayesian clustering 
analysis was performed in STRUCTURE v. 2.3.4 for up to eight pos-
sible genetic clusters (K) according to the total number of collection 
sites for each species. We considered correlated allele frequencies in 
the admixture model, using sampling locations as priors, and ran 10 
iterations of 100,000 MCMC repetitions with 10,000 burn-in period 
(Gilbert et al., 2012; Janes et al., 2017). MCMC convergence, where 
α values reached equilibrium, was examined using the Data plot op-
tion in STRUCTURE (Porras-Hurtado et al., 2013). Variation of K val-
ues was then summarized and plotted in CLUMPAK (Kopelman et al., 
2015). The optimal K was determined by examining the Ln Pr(X|K) 
and ΔK plots (Evanno et al., 2005; Janes et al., 2017; Pritchard & 
Wen, 2003). Principal component analysis (PCA) was performed 
in the R package SNPRelate v. 1.18 and adegenet v.2.1.3 (Jombart, 
2008) to identify clusters without relying on population genetic 
models (Jombart et al., 2010).

We estimated contemporary gene flow in BayesAss v.3.0.4 
(Wilson & Rannala, 2003) using 10,000,000 MCMC repetitions, a 
burn-in of 1,000,000 and a sampling interval of 1,000 iterations. 
Parameters for allele frequencies (ΔA) and inbreeding coefficients 
(ΔF) were adapted to 0.30 to improve mixing of the chains (Winter 
et al., 2018). Convergence was checked in Tracer v.1.7.0 (Rambaut 
et al., 2018) and by result consistency over 10 runs with random ini-
tial seeds. As estimates of gene flow may be biased when analysing 

individuals with different ancestries in the same data set (Pante et al., 
2015), we ran a separate BayesAss analysis on each genetic lineage 
identified by both STRUCTURE analysis and PCA. Results were visu-
alized for each lineage using Circos plots using the package circlize v. 
0.4.12 and tidyverse v.1.3.0 in R (Gu et al., 2014; Holland et al., 2017).

An individual-based analysis that relies on detecting deviations 
from the isolation-by-distance (IBD) models (Keis et al., 2013; Tang 
et al., 2018) was used to characterize barriers of and corridors for 
dispersal of each species using R package ResDisMapper (Tang et al., 
2019). First, distributions of genetic distance (Nei's standard genetic 
distance) and geographic distance (both measured in GenAlEx v 6.5) 
were checked using two modelling methods—linear and nonlinear—
before a best-fit method based on R2 value was chosen for IBD 
residual calculation for each pair of individuals. Resistance values, 
together with their corresponding statistical significance over the 
landscape, were then calculated using default settings.

3  |  RESULTS

Sequencing of the nextRAD libraries resulted in an average of 
~1.7  million reads per sample that mapped to the references 
(n = 258). Genotype calling initially yielded 36,836 biallelic single nu-
cleotide polymorphisms (SNPs) for Porites sp. (n = 160) and 28,188 
biallelic SNPs for Pocillopora acuta (n = 98). After quality control to 
remove loci that were linked, deviate from the Hardy–Weinberg 
equilibrium or had more than 1% missing data per loci, removing 
colonies with more than 15% missing data per sample, and following 
minimal representation filtering, we retained 3649 biallelic SNPs for 
Porites sp. (n = 149) and 5846 biallelic SNPs for Poc. acuta (n = 88). 
clonecorrect (Kamvar et al., 2014) under default parameters did not 
identify any clones in either species. BayeScan identified 33 and 26 
outlier SNPs for Porites sp. and Poc. Acuta, respectively. STRUCTURE 
analysis with or without SNPs identified as putatively under selec-
tion did not alter assignments of individuals to clusters (Figures 2 
and 3), and because of this, we opted to use the larger dataset for 
subsequent analyses.

Evanno's method showed that the most likely ‘K’ is two for Porites 
sp. (Figure S8 in File S1). However, K = 3 is also plausible given the 
ancestry assignments in the STRUCTURE plots (Figure 2A; Figure 
S6 in File S1). At K  =  2, STRUCTURE plots exhibited population 
structuring between the Blue (Dark Blue and Light Blue) and Orange 
clusters (Figure 2A). These cluster assignments can be attributed 
to the inshore sites with colonies primarily from the Blue cluster 
(Tanah Merah and Sultan Shoal), and the central-offshore sites with 
colonies primarily from the Orange cluster (Semakau and Jong). 
The peripheral-offshore sites (Kusu, Satumu, Sisters and Hantu) is 
mainly constituted of genetic assignments from both Orange and 
Blue clusters (Figure 2A). The same pattern can be seen in our PCA 
plot (Figure 2B). At K  =  3, the Blue cluster further separated into 
two subclusters (Figure 2A)—Dark Blue and Light Blue—albeit with 
lower distinctiveness (5.9% on PC2; Figure 2B) compared with the 
separation between the Orange and Blue clusters (25.7% on PC1; 

http://reefgenomics.org
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Figure 2B). Independent analysis of each cluster suggested panmixia 
within clusters (Figure S10 in File S1).

BayesAss analyses showed that self-recruitment was high at all 
sites for all three clusters (~60%–80% of nonmigrants) (Figure 4; 
Table S6A–C in File S1). Strong evidence of migrant exchange (10%–
12% migrant movement) was detected from Kusu to Sisters and 
Semakau to Jong for the Orange cluster (Figure 4A,B;Table S6A 

in File S1). For both Dark Blue and Light Blue clusters, strong evi-
dence of migrant exchange (10%–12% migrant movement) was also 
recorded among the inshore sites (Tanah Merah and Sultan Shoal), 
while moderate migrant movement (5%–9% of migrants movement) 
was detected from Kusu to at least three other sites (Figure 4B; 
Table S6B,C in File S1). The relatively high level of inshore migrant 
exchange was supported by results from ResDisMapper, where a 

F I G U R E  2  Genetic structure of 
Porites sp. based on (a) STRUCTURE 
and (b) principal component analysis. 
(c) Resistance map produced by 
ResDisMapper. Areas with resistance 
values that are higher/lower than 
those from a null distribution with 
high probability, and lie within the red/
green contours represent a significant 
barrier/corridor. Areas within the blue 
contours have resistance values with high 
probability of being positive or negative 
(high ‘certainty’). Yellow circles indicate 
sampling points
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dispersal corridor was identified along the southern coast of main-
land Singapore (Figure 2C).

Evanno's method and STRUCTURE showed no separation into 
distinct clusters for Poc. acuta (Figure 3A), while PCA supported 
differentiation between Satumu and the other islands (Figure 3B). 
BayesAss analysis performed on all sites except Satumu showed 
a high prevalence of self-recruitment at all sites (60%–80%) and 
yielded strong evidence of migrant exchange (10%–12% migrant 
movement) from Kusu to Sisters (Figure 4D; Table S7 in File S1). 

Similarly, ResDisMapper indicated corridors to dispersal among all 
nearshore sites, that is all sites apart from Satumu, which faced bar-
riers to dispersal to and from all other sites (Figure 3C).

4  |  DISCUSSION

The ability of a reef to recover following disturbance relies upon 
supply of migrants from surrounding areas (Berumen et al., 2012). 

F I G U R E  3  Genetic structure of 
Pocillopora acuta based on (a) STRUCTURE 
and (b) principal component analysis. 
(c) Resistance map produced by 
ResDisMapper. Areas with resistance 
values that are higher/lower than 
those from a null distribution with 
high probability, and lie within the red/
green contours represent a significant 
barrier/corridor. Areas within the blue 
contours have resistance values with high 
probability of being positive or negative 
(high ‘certainty’). Yellow circles indicate 
sampling points
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F I G U R E  4  Circos plots of contemporary gene flow estimation with BayesAss v.3.0.4 for (a) Orange cluster of Porites sp., (b) Light Blue 
cluster of Porites sp., (c) Dark Blue cluster of Porites sp. and (d) Pocillopora acuta. Arrows represent directionality of migrant movement (refer 
to Tables S6–S7 in File S1 for actual values)
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However, the extent of reef connectivity particularly in a highly 
disturbed reef system has not previously been examined using 
genome-wide markers. Here, we highlight the presence of cryptic 
lineages, subtle fine-scale population differentiation and predomi-
nance of self-recruitment on the highly sedimented equatorial reef 
system of Singapore. In particular, we found that Porites sp. corals 
at inshore sites (Tanah Merah and Sultan Shoal) were distinct from 
central-offshore sites (Semakau and Jong). This pattern was sup-
ported by relatively strong migrant exchange and dispersal corridors 
among inshore sites and separately among central-offshore sites. 
Pocillopora acuta maintained a panmictic population across all sites 
except for Satumu, the farthest reef from mainland Singapore.

Cryptic diversity is prevalent in the marine environment 
(Appeltans et al., 2012), especially in locations with novel sub-
strates, which may reduce gene flow or influence recruitment of 
different genotypes (Chang et al., 2018; Simon et al., 2020). This 
issue is important to address as failure to recognize boundaries of 
evolutionarily relevant units may lead to biased estimates of con-
nectivity (Pante et al., 2015). For corals, extensive taxonomic and 
phylogenetic studies are ongoing (Kitahara et al., 2016). There is ev-
idence suggesting that cryptic species occur in particular coral taxa 
(Schmidt-Roach et al., 2014; Torda et al., 2013), including the genus 
Porites (Forsman et al., 2015). Yet, there are also studies based on in-
tegrative morpho-molecular analyses showing that some seemingly 
distinct morphospecies actually belong to a single species (Pinzón 
et al., 2013; Stefani et al., 2011; Terraneo et al., 2019). While Poc. 
acuta in Singapore has been investigated thoroughly and deemed to 
be a single species (2019), there have been at least two co-occurring 
massive Porites morphotypes recorded here (Chow et al., 2019; 
Huang et al., 2009; Wong et al., 2018).

Our morphometric analyses showed while both types of ventral 
triplet formation—fused and free for Por. lutea and the closely re-
lated Por. lobata, respectively—were found in our samples, they did 
not form distinct clusters (Figures S3–S5 in File S1). To investigate 
this further, we performed separate STRUCTURE analyses for colo-
nies with fused and free triplet formations using parameters outlined 
above. These additional results showed that (1) genetic differentia-
tion among samples was not caused by possible species separation 
associated with the differing triplet forms (Figure S9A in File S1), 
and (2) the underlying population dynamics observed for Porites sp. 
were consistent with separate analyses for fused and free morpho-
types (Figures S9B,C in File S1). STRUCTURE analysis for all Porites 
sp. colonies also revealed the presence of cryptic genetic lineages 
(Figure 2A), which were not discernible by morphology. Therefore, 
we further analysed the three putative lineages separately to esti-
mate contemporary migrant movement using BayesAss (Figure 4), 
yielding results that were consistent with the combined analysis and 
with estimates for the fused and free morphotypes.

The differentiation pattern of Porites sp. observed here differs 
from previous results obtained using microsatellite loci for another 
broadcast-spawning coral, Platygyra sinensis, within Singapore 
waters (Tay et al., 2015). The latter was shown to be a highly con-
nected, panmictic population. This variation could be due to either 

the limited resolution of the microsatellite markers used for Pla. 
sinensis or the fact that Porites sp. is a gonochore while Pla. sinensis 
is hermaphroditic (Durante & Baums, 2017). A SNP-based study of 
broadcast-spawning hermaphrodites would clarify this pattern, but 
it is already clear that small differences in reproductive traits can 
have dramatic impacts on population connectivity (Holland et al., 
2017), whereby broadcasting gonochores tend to have limited con-
nectivity compared with the hermaphrodites (Eckert et al., 2019; 
Rippe et al., 2017; Shinzato et al., 2015; Thomas et al., 2020).

The distribution of cryptic lineages between the inshore—
predominantly the Blue cluster—and central-offshore sites—
predominantly the Orange cluster—in Porites sp. can be explained 
by contemporary surface current regimes. During the spawning and 
postspawning months of April to June, residual surface currents 
along the Singapore Strait oscillate between west to east and east 
to west (Sin et al., 2016; Video S2). This pattern persists throughout 
the South-west Monsoon (June to September), resulting in relatively 
lower current velocities around the Southern Islands complex where 
the reefs are situated (Figure 1), with the main flow occurring along 
the deeper waters of the Singapore Strait (Video S3). Lower current 
velocities close to the centre of the reef complex may generate a 
weak dispersal barrier and promote the retention of propagules 
within the central-offshore sites.

Inshore–offshore differentiation over short distances has also 
been shown in other reef systems. For example, Tisthammer et al. 
(2019) highlighted genetic differentiation in Porites lobata between 
nearshore and offshore sites that were only less than 2 km apart due 
to distinct water quality and sedimentation load. Such environmen-
tal divergence was not as apparent in the present study since the 
waters along the southern coast of Singapore are homogeneous and 
well mixed (Sin et al., 2016; Wainwright et al., 2019), underscoring 
the importance of understanding surface current regimes and the 
complexity in interpreting connectivity patterns in general.

For Poc. acuta, the PCA plot and characterization of barriers 
and corridors to dispersal showed differentiation between Satumu 
and the remaining sites despite STRUCTURE showing no distinct 
clusters. These results suggest panmixia among sites other than 
Satumu, the farthest site from mainland Singapore. Pocillopora 
acuta releases planula larvae every month (Poquita-Du et al., 2017) 
and has a relatively long pelagic larval duration (twice as long when 
compared to Porites sp.) (Polato et al., 2010; Richmond, 1987). 
Consequently, the close proximity of reefs to one another and net 
east-to-west water movement (Sin et al., 2016; Tay et al., 2012; 
2015) can disperse the monthly supply of planulae throughout the 
reef system and drive the high genetic connectivity of Poc. acuta 
in Singapore waters. This result is unexpected given that brood-
ers are usually considered to have limited dispersal range (Serrano 
et al., 2016). However, brooding species have shown variable pat-
terns of genetic differentiation in other areas. For instance, work 
on Poc. verrucosa highlighted panmixia across different environ-
mental conditions in the Red Sea based on microsatellite markers 
(Robitzch et al., 2015), while similar analyses on Poc. damicornis 
revealed strong genetic differentiation among sites in Madagascar 
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(Gélin et al., 2018). A recent genomic analysis on the brooding coral 
Isopora brueggemanni in Western Australia also found strong ge-
nomic differentiation (Thomas et al., 2020). Aside from geographic 
patterns, genomic differentiation was shown to occur across a 
depth gradient for Agaricia fragilis in Bermuda (Bongaerts et al., 
2017). These variable patterns emphasize the complexity associ-
ated with inferring population structure and demonstrate the need 
for studying multiple species to fully understand genetic connec-
tivity in the marine environment (Palumbi, 1994).

Our analyses suggest that self-recruitment is a key demographic 
process in Singapore's coral reef system. This finding is unsurprising 
despite contrary early ideas (Lequeux et al., 2018; Wood et al., 2014) 
given that population replenishment of some highly dispersive taxa 
have been shown to be dominated by self-recruitment (Berumen 
et al., 2012; Wainwright, Afiq-Rosli, et al., 2019; Wainwright et al., 
2018, 2019; Wainwright, Zahn, et al., 2019). For many coral spe-
cies, routine dispersal is estimated to be around 20–30 km, but it 
can be as limited as a few hundred metres (see Underwood et al., 
2018). Constrained dispersal potentially leads to either local adap-
tation when reef environments differ, or reduction in genetic diver-
sity when gene flow is curtailed (Underwood et al., 2018). As we 
found no difference in genetic structure when putatively adaptive 
loci were used (Figure S5 in File S1), and because the marine envi-
ronment of Singapore's Southern Islands is homogeneous (Sin et al., 
2016; Wainwright, Afiq-Rosli, et al., 2019), the latter case appears 
more likely. However, we suggest that there is sufficient contem-
porary gene flow across sites to prevent the reduction in genetic 
diversity. This inference would be in concordance with the one mi-
grant per generation (OMPG) rule, which states that just one mi-
grant per generation is adequate to prevent loss of genetic diversity 
(Greenbaum et al., 2014; Wang, 2004). Further, despite the predom-
inance of self-recruitment, panmictic populations are still possible 
over multiple generations if there is occasional long-distance disper-
sal. Indeed here, we show that at least 40% of individuals at most 
sites were composed of migrants, contributing to the underlying 
genetic structuring of both Porites sp. and Poc. acuta.

The ability to recover after a disturbance depends on the avail-
ability of larvae and successful recruitment. Unfortunately, coral spat 
settlement in Singapore is depressed (Bauman et al., 2015). Thus, it is 
essential to identify source populations within Singapore's reef and 
protect them accordingly to maximize larval supply. Our BayesAss 
analyses suggest that Kusu is a source site for the peripheral-
offshore and all the nearshore sites for Porites sp. and Poc. acuta, 
respectively. Kusu's eastward location also increases its chances 
of receiving larval flow from healthy reefs outside Singapore wa-
ters. Therefore, Kusu is the best candidate among all study sites 
for a marine protected area and will complement the established 
Sisters’ Islands Marine Park as a major source of biodiversity for 
Singapore's reef system (Jaafar et al., 2018). Indeed, a previous study 
on Platygyra sinensis based on microsatellites also suggested Kusu 
as a potential target for conservation due to its high genetic diver-
sity of corals (Tay et al., 2015). In general, BayesAss results should 
be interpreted with caution due to issues such as nonconvergence 

(Meirmans, 2014) and loss of statistical power when certain assump-
tions such as linkage equilibrium are violated (Faubet & Gaggiotti, 
2008). However, since we used unlinked loci and have ensured con-
vergence in our BayesAss runs, these factors are unlikely to affect 
our general conclusions.

Given the highly degraded marine environment of Singapore and 
ongoing coastal development (Chou, 2006; Chou et al., 2019), ge-
netic connectivity and diversity throughout its coral reefs are critical 
measures to consider during interventions. Reef restoration via coral 
gardening is used in Singapore to restore degraded and damaged 
reefs (Afiq-Rosli et al., 2017), and it has been shown that genetic 
diversity of these coral transplants is an important determinant of 
success (Afiq-Rosli et al., 2019; see also Shearer et al., 2009). Based 
on our results and the suggestion that it is important to transplant 
genotypes to their optimal environments (Drury et al., 2017), we 
suggest that transplantation of Porites sp. from the inshore sites to 
the central-offshore sites and vice versa should not be done until 
genotypic and phenotypic (e.g. growth and survival) comparisons 
are performed. Porites sp. from both the inshore sites and central-
offshore sites can, however, be reared or transplanted in any of the 
peripheral-offshore sites as both cryptic lineages are present there. 
For Poc. acuta, such restrictions might not be necessary since our 
results suggested panmixia with subtle genomic differentiation be-
tween Satumu and all other sites. Nonetheless, caution should be 
taken if Poc. acuta were to be reared or transplanted from or to 
Satumu to avoid maladaptation (Wainwright, Afiq-Rosli, et al., 2019).

In the event of high coral mortality at neighbouring reefs (e.g. 
due to thermal stress and associated bleaching), high migrant move-
ment from Singapore to these reefs would enhance their natural re-
covery potential. Likewise, high migrant movement from other reefs 
to Singapore would greatly enhance the latter's resilience against 
global and local disturbances, especially those related to coastal de-
velopment. In any case, identifying reefs with high connectivity to 
Singapore's reef system is essential for its long-term resilience. Tay 
et al. (2012) had suggested that reefs at the northern coast of Bintan 
Island, Indonesia, may be a potential larval source. However, it was 
later discovered that there are subtle genetic differentiation be-
tween the reefs of Bintan and Singapore, with the Singapore Strait 
acting as a mild gene flow barrier (Tay et al., 2015). The present study 
corroborates this inference as the Singapore Strait is subjected to 
strong current flow away from the Southern Islands complex (Videos 
S2 and S3). Further investigation is warranted to identify other po-
tential larval sources for Singapore's reef system. A likely candidate 
is the group of islands off the east coast of Malay Peninsula as these 
reefs appear connected by currents that abut Singapore's southern 
coasts, favouring larval transport from these islands without having 
to cross the Singapore Strait.

Overall, this study has highlighted the presence of subtle fine-
scale genetic structure in the highly sedimented equatorial reefs of 
Singapore. In particular, inshore and central-offshore populations of 
Porites sp. have low levels of connectivity between them and com-
prise distinct lineages, while Pocillopora acuta populations are highly 
connected with differentiation of the southernmost population. 
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These patterns are a likely consequence of contemporary surface 
current regimes, with a general east-to-west flow, which disperses 
monthly Poc. acuta planulae throughout the reef system and lower 
current velocities close to the central-offshore sites during spawn-
ing period that help retain Porites sp. propagules. Most critically, we 
show that self-recruitment is an important demographic process for 
corals here and identify areas that may be larval sources and sites 
with high levels of self-recruitment for enhanced management to 
protect the resilience of Singapore's reef system.
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