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Abstract
Background.  Gliomas exhibit widespread bilateral functional connectivity (FC) alterations that may be associated 
with tumor grade. Limited studies have examined the connection-level mechanisms responsible for these effects. 
Given the typically strong FC observed between mirroring/homotopic brain regions in healthy subjects, we hy-
pothesized that homotopic connectivity (HC) is altered in low-grade and high-grade glioma patients and the extent 
of disruption is associated with tumor grade and predictive of overall survival (OS) in a cohort of de novo high-
grade glioma (World Health Organization [WHO] grade 4) patients.
Methods. We used a mirrored FC-derived cortical parcellation to extract blood-oxygen-level-dependent (BOLD) 
signals and to quantify FC differences between homotopic pairs in normal-appearing brain in a retrospective co-
hort of glioma patients and healthy controls.
Results.  Fifty-nine glioma patients (WHO grade 2, n = 9; grade 4 = 50; mean age, 57.5 years) and 30 healthy subjects 
(mean age, 65.9 years) were analyzed. High-grade glioma patients showed lower HC compared with low-grade 
glioma patients and healthy controls across several cortical locations and resting-state networks. Connectivity dis-
ruptions were also strongly correlated with hemodynamic lags between homotopic regions. Finally, in high-grade 
glioma patients with known survival times (n = 42), HC in somatomotor and dorsal attention networks were signif-
icantly correlated with OS.
Conclusions. These findings demonstrate an association between tumor grade and HC alterations that may un-
derlie global FC changes and provide prognostic information.

Key Points

•	 Resting-state fMRI can identify functional connectivity differences between homologous 
brain regions in glioma patients.

•	 Homotopic connectivity is altered in glioma patients, dependent on tumor 
aggressiveness, and is associated with overall survival.

Homotopic functional connectivity disruptions in 
glioma patients are associated with tumor malignancy 
and overall survival
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The tumor burden on glioma patients extends beyond the 
proximal effects caused by the macroscopic lesion as tumor 
cells may be found throughout the cortex.1,2 In addition to 
distally seeded cells, given the highly connected nature of 
the brain, changes in the tumor microenvironment may 
elicit subsequent functional changes in seemingly healthy 
regions.3,4 These effects have been observed using resting-
state functional MRI (rs-fMRI), which utilizes the fluctuations 
in blood-oxygen-level-dependent (BOLD) signals to identify 
brain regions that are temporally correlated.3,4 This process, 
termed functional connectivity (FC), can reveal the net-
work similarity of spatially noncontiguous areas, enabling 
their study in healthy and diseased brains.5–9 Few studies 
have focused on the global cortical impact of glioma using 
FC.3,4,10,11 However, recent studies have demonstrated bi-
lateral FC disruptions in glioma patients. One study dem-
onstrated whole-brain FC alterations related to underlying 
tumor biology and cognitive impairments, with higher 
grade glioma resulting in greater deficits.3 Another study 
suggested that FC changes in resting-state networks are due 
to localized within-network damage, but this remains poorly 
understood.4

Defining alterations in interhemispheric connectivity 
may provide critical insights into the underlying mechan-
isms governing FC disruptions in glioma patients. For ex-
ample, postmortem tract-tracing and diffusion-weighted 
MRI studies have shown a large proportion of callosal 
fibers interconnecting homotopic cortical regions.12,13 
Furthermore, EEG and rs-fMRI studies have revealed bi-
lateral functional relationships with high temporal syn-
chrony between homotopic areas.5,14,15 Although such 
activity varied in strength by cortical area (e.g., primary 
vs association areas), homotopic connectivity (HC) is 
remarkably consistent across healthy subjects and is 
altered with the surgical disconnection of the corpus cal-
losum and cortical lesions.16–18 However, few studies have 
investigated the impact of gliomas on homotopic con-
nections.19 Glioma-induced homotopic disruption is sup-
ported by bilateral FC changes seen in unilateral glioma.3 
Specifically, because increasing tumor grade has been 
associated with greater whole-brain FC disruptions, im-
paired HC in glioma patients is also likely to be dependent 
on tumor biology.3

Here, we investigated the relationship between glioma 
grade and HC. We hypothesized that glioma patients have 
reduced HC compared with healthy controls and that 
high-grade gliomas would be more impacted than low-
grade gliomas. As other studies have shown that brain le-
sions may induce hemodynamic lags that disrupt FC,8,20,21 
we decided to investigate whether homotopic lags would 
impact HC. Additionally, as high HC is a common feature 
of normal brain function, we hypothesized that its im-
pairment is associated with overall survival (OS).16,22,23 
Taken together, this work highlights the relevance of HC 
in understanding the global nature of brain dysfunction in 
glioma patients.

Materials and Methods

Subjects

Patients were retrospectively recruited from the neuro-
surgery brain tumor service, initially as part of a National 
Institutes of Health (NIH)-funded tumor database grant 
(NIH 5R01NS066905). All aspects of the study were ap-
proved by the Washington University in St. Louis (WUSTL) 
Institutional Review Board and the clinical data were retro-
spectively reviewed. Fifty patients with unilateral primary 
high-grade glioblastoma multiforme (GBM) and nine pa-
tients with low-grade glioma (LGG) underwent evaluation 
prior to surgical resection. The following inclusion criteria 
were used: diagnosis of primary brain tumor; age more 
than 18 years; and clinical need for a magnetic resonance 
imaging (MRI) scan, including rs-fMRI as determined by 
the treating neurosurgeon. Exclusion criteria included 
prior surgical resection for brain tumor, large tumor mass 
effect about the midline, prior radiation or chemotherapy, 
inability to have an MRI scan, and patients referred from an 
outside institution without rs-fMRI.

For control analyses, cognitively normal adult data 
(n  =  30 subjects) were obtained from ongoing studies 
at the Alzheimer’s Disease Research Center (ADRC) of 
Washington University in St. Louis.24 These participants 
had a global Clinical Dementia Rating of 0 within 1 year of 
MRI.25,26

Importance of the Study

It has been shown that tumor heterogeneity and 
grade modify the extent of functional connec-
tivity disturbances across the brain. High func-
tional connectivity between homologous brain 
regions, or homotopic connectivity (HC) is a 
common feature of normal brain functioning. 
In glioma patients, the pathways facilitating 
these connections may be disturbed. Further, 
the degree of this disruption may depend on 
tumor aggressiveness. Thus, taken together, 
the variability of HC may have prognostic 

implications. Using resting-state fMRI, we as-
sessed HC differences in low- and high-grade 
glioma patients and found associations be-
tween tumor severity and altered connections. 
Furthermore, HC was positively correlated with 
overall survival, with higher connectivity in the 
somatomotor network demonstrating a statis-
tically significant difference in median survival. 
Therefore, HC may provide insight into glioma 
effects on global brain function.
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Image Acquisition and Preprocessing

All imaging data were acquired using a Siemens 3T 
Trio or Skyra MRI scanner. Structural imaging included 
T1-weighted (T1w) magnetization prepared rapid acqui-
sition gradient echo (MPRAGE), T2-weighted (T2w) fast 
spin echo, fluid attenuated inversion recovery (FLAIR) im-
aging, and postcontrast T1w fast spin echo in three pro-
jections. The rs-fMRI was acquired using an echo planar 
imaging sequence (voxel size  =  3  mm cubic; echo time 
(TE)  =  27 milliseconds; repetition time (TR)  =  2.2–2.9  s; 
field of view = 256 mm; flip angle = 90°) for a total of 320 
frames. For the healthy control subjects, the rs-fMRI scans 
were collected using a gradient-echo echo planar imaging 
sequence (voxel size = 3 mm cubic; TE = 27 milliseconds; 
TR  =  2.2  s; field of view  =  256  mm; flip angle 90°). Two 
rs-fMRI runs were acquired per subject with 164 frames 
per run (6 min). Preprocessing techniques have been previ-
ously described9,27 (see Supplementary material).

Tumor Segmentation

Gliomas were segmented semi-automatically from mul-
timodal image acquisitions (T1w, postcontrast T1w, T2w, 
and FLAIR) using the software application ITK-SNAP28. 
For patients with nonenhancing tumors, the tumor was 
defined using the T2w/FLAIR hyperintense volume, while 
for enhancing tumors, the tumor volume was defined as 
the T1w contrast-enhancing and T2w/FLAIR hyperintense 
regions. Segmented tumor voxels were excluded from 
homotopic parcels when calculating HC except where spe-
cifically noted.

Homotopic Connectivity in 
Normal-Appearing Brain

To perform group-level HC analyses across the cortex, the 
left hemisphere of the 200-parcel Schaefer atlas was arbi-
trarily selected with each parcel assigned to one of seven 
resting-state networks.29 The parcels were axially reflected 
to produce mirroring parcels in the right hemisphere re-
sulting in 100 homotopic pairs for comparison. This is sim-
ilar to the voxel-mirrored and parcel approaches used by 
prior studies.16,17,22 The voxelwise timeseries within each 
parcel were averaged to create parcel-specific timeseries. 
Using Pearson correlation, the parcel-specific timeseries 
were correlated to their homologous parcel in the oppo-
site hemisphere and Fisher z-transformed. Lesioned voxels 
were not included in HC calculations and parcels retaining 
less than 20 unaffected voxels were removed. This was mo-
tivated to preserve information of parcels with mixed con-
tent similar to previous reports.30,31 To compare to healthy 
subjects, each control was replicated (1–2 times) and ran-
domly assigned to a glioma patient and treated identi-
cally, i.e., voxels corresponding to tumor-affected areas 
in glioma patients were also removed in the controls for 
timeseries calculations.31 HC differences between controls 
and glioma patients were assessed by averaging the con-
nectivity strength of all the retained pairs or subdividing 
the parcels into cortical locations32 or resting-state net-
works and averaging the parcels within each subcategory.

Homotopic Connectivity Between Tumor and 
Contralesional Hemisphere

To assess homotopic connectivity between tumor-
disrupted areas and mirrored parcels, or tumor connec-
tivity (TC), parcels with at least 20 lesioned voxels were 
separately analyzed by correlating the averaged lesioned 
voxel timeseries for each parcel with the corresponding 
homotopic parcel and was Fisher z-transformed. TC was 
then averaged for each parcel affected.

Hemodynamic Lag Analysis

Homotopic lag was measured as previously described21 
for each brain voxel by cross-correlating its BOLD 
timeseries to the homotopic voxel timeseries in the op-
posite hemisphere and identifying the time shift at which 
the cross-correlation between the voxel pair was maximal 
over the range ±5TR. Parabolic interpolation was per-
formed to improve the estimation of the timepoint.33 To 

Table 1.  Characteristics of Glioma and Control Subjects

Patient and control characteristics

Controls All patients

Age, mean± SD 
(range)

65.9 ± 10.8 (53–89) 57.5 ± 14.5 (21–83)

Sex, n   

  Female 14 19

  Male 16 40

Tumor volume (cm3) — 70.9 ± 53.4

Tumor histology, n   

  Astrocytoma — 5

  Oligodendroglioma — 4

  Glioblastoma — 50

WHO grade, n   

  2 — 9

  4 — 50

IDH mutation status, n   

  Wildtype — 50

  Mutated — 9

MGMT status, n   

  Methylated — 17

  Nonmethylated — 29

  Missing — 13

Extent of resection   

  Gross total — 23

  Subtotal — 20

  Biopsy — 7

  Laser — 9

OSa, mo, range — 17.1 ± 11.6 
(1.6–59.2)

aOS was known for only HGG patients (n = 42).
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assess lags between homotopic parcels, the absolute lag 
of all voxels within each parcel was calculated and aver-
aged together.

Statistical Analysis

Statistical tests were performed in MATLAB, GraphPad 
Prism, and R. Two-sample (unpaired) t-tests were used to 
compare HC between subject groups where applicable. 
Simple linear regressions were implemented to eval-
uate associations between tumor severity and HC or he-
modynamic lag. For HC and OS associations, the Dubey 
and Armitage-Parmer procedure for multiple compari-
sons correction was implemented.34 The log-rank test 
was used to compare Kaplan–Meier survival curves. Cox 
regressions were employed to compare the effects of 
covariates on survival. A P-value of .05 denoted statistical 
significance.

Data and Materials Availability

Tumor data will be available upon request to E.C.L.

Results

Subject Characteristics

Fifty-nine glioma patients (mean age; 57.5  ±14.5, 19 fe-
males) and 30 healthy controls (mean age; 65.9  ±10.8, 
14 females) were retrospectively reviewed and in-
cluded in this study (Table 1). Of the 59 patients, 9 were 
histologically diagnosed as low-grade (WHO grade 
2)  glioma and 50 were diagnosed as high-grade (WHO 
grade 4) glioma. Low-grade glioma (LGG) patients were 
diagnosed as oligodendrogliomas (n = 4) or astrocytoma 
(n = 5). All high-grade glioma (HGG) patients were diag-
nosed as glioblastoma multiforme (GBM). All LGG 
patients were IDH-1 mutated (n  =  9) while all HGG pa-
tients were IDH wildtype (n = 50). Of the patients whose 
O6-methylguanine DNA-methyltransferase (MGMT) pro-
moter methylation status was recorded, 17 out of 46 
(37%) showed MGMT methylation. Figure 1A shows le-
sion distribution heatmaps to illustrate the tumor hetero-
geneity of LGGs and HGGs in the present patient sample. 
LGGs were more represented in the left hemisphere (7/9, 
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Figure 1.  Assessing HC in low- and high-grade glioma patients. (A) Heatmaps showing LGG (top) and HGG (bottom) density in the 59-patient 
sample. (B) Homotopic pairs used for connectivity analyses. (C) Colormaps depicting FC of the 100 homotopic pairs in healthy (top), LGG (middle) 
and HGG (bottom) subjects. Warmer colors indicate stronger HC while cooler colors indicate weaker HC. (D) Global HC for each subject group 
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78.8%). For HGGs, there was a slight preference for tu-
mors in the left hemisphere (30/50 patients, 60%). For pa-
tients with reported OS (all HGG, n = 42), mean OS was 
approximately 17.1 ±11.6 months. A template parcellation 
was used to extract HC between homotopic pairs for each 
patient (Figure 1C).

HC Is Robustly Related to Glioma Severity

Visually, HC in normal-appearing brain appeared to be 
generally strong in controls, weaker in LGG patients, and 
even lower in HGG patients (Figure 1D). Quantitatively, this 
was demonstrated as HC in HGG patients, was significantly 
lower than both LGG (two-sample t-test, t = 3.49, P = .0021, 
Bonferroni corrected) and healthy controls (two-sample 
t-test, t = 10.67, P < .0001, Bonferroni corrected; Figure 1D). 
Although the mean of HC in LGG (mean = .79) was lower 
than that of controls (mean = .88), there was no significant 
difference between them (2-sample t-test, t = 2.2, P = .089, 
Bonferroni corrected).

The association between HC and tumor malignancy 
(Figure 1D) may be driven by parcels belonging to certain 
cortical locations or resting-state networks. Therefore, to 
investigate this possibility, we aggregated parcels by both 
cortical lobe (Figure 2A, B) and RSNs (Figure 2C, D). When 

grouped by cortical locations, the linear trend persisted for 
all regions with HGG patients consistently demonstrating 
lower HC on average compared to LGG patients and con-
trols (Figure 2B). This effect was statistically significant for 
all cortical areas. The most variance was explained for the 
parietal lobes (R2 = 0.53, P < .00001) and the least explained 
variance was found for the temporal lobes (R2 = 0.30, P < 
.000001). When grouped by RSNs, a similar robust effect 
was observed in all networks except LIM (R2  =  0.0088, 
P = .31) (Figure 2D). For RSNs, the most variance was ex-
plained for the ventral attention network (VAN) areas 
(R2 = 0.52, P < .00001).

To further investigate the association between HC and 
glioma severity, we evaluated the potential effects of tumor 
size and TC. Figure 3A compares the effect of tumor size on 
HC in both LGG and HGG patients. In both cases, there was 
no significant correlation between tumor volume and HC 
although HC was weaker in larger tumors for HGG patients 
(LGG: R = 0.084, P = .82; HGG: R = −0.23, P = .11). In a subse-
quent analysis, we assessed the relationship between HC 
and TC. Interestingly, TC was only associated with HC for 
HGG patients (R2  = 0.18, P  =  .0025), but not for LGG pa-
tients (R2 = 0.025, P = .68). We also evaluated TC and HC for 
LGG and HGG patients normalized to lesion-matched con-
trols (Supplementary Figure 1). HGG showed significantly 
lower HC and TC than LGG (two-sample t-test; LGG TC vs. 
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 6 Daniel et al. Homotopic functional connectivity disruptions

HGG TC; t = 2.82, P = .0067, LGG HC vs. HGG HC; t = 3.23, 
P = .0021).

Hemodynamic Lag Is Associated with HC in 
Glioma Patients

The brain-wide relationship between HC and tumor se-
verity suggests that a systemic driver may be involved. 
Therefore, lag analysis was performed to examine the 
potential impact of aberrant hemodynamics (Figure 
4A). Figure 4A illustrates the contralesional lag maps 
of two LGG patients and two HGG patients. Regions 
of hemodynamic lagging and leading relative to the 
ipsilesional hemisphere can be observed. To quantify 
the global relationship between tumor grade and lag, 
we averaged the mean absolute lag of every parcel. 
Regression analysis found a strong association be-
tween hemodynamic lags and tumor grade with greater 
lags observed in HGG patients (R2  =  0.13, P < .0001; 
Figure 3B). HC was then correlated with lag across 
subject groups. No correlation was observed between 
HC and lags in controls (R = −0.012, P = .93). However, 
HC and lag showed a strong association in both LGG 
and HGG patients although this was only statistically 

significant for HGG patients (LGG: R2  =  0.31, P  =  .12; 
HGG: R2 = 0.22, P = .0006).

Strength of HC Relates to Survival

Since tumor grade is strongly associated with patient out-
comes and strong HC is a feature of normal brain func-
tion, we investigated whether HC could predict overall OS 
in our cohort of HGG patients (n = 42) at the time of their 
initial diagnosis. HC across all networks (mean RSN) was 
positively associated with OS, but this was not statistically 
significant (R2 = 0.092, P-adjusted =  .071; Figure 4A). The 
contribution of HC in each RSN to OS was separately evalu-
ated. SMN (R2 = 0.17, P-adjusted = .04) and DAN (R2 = 0.14, 
P-adjusted = .027) were significantly correlated with OS.

To further evaluate the relevance of SMN and DAN HC 
to OS, the patients were median split into low and high FC 
groups for each network, and survival was compared using 
Kaplan–Meier survival analysis (Figure 4B). This revealed 
a significant difference in survival for SMN (log-rank test, 
χ 2 = 4.7, P = .031) but not for DAN (log-rank test, χ 2 = 2.2, 
P = .13). Patients with low SMN HC had a median survival 
of 11.6  months compared with 17.1  months in the high 
SMN group. Univariate cox regression showed that SMN 
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HC was a significant predictor of OS (Supplementary Table 
1). After accounting for the potential influences of age and 
tumor size, SMN HC still maintained this effect (HR: 0.50, 
95% CI: 0.25–0.97, P  =  .04). In a subset of HGG patients 
(n = 30) where MGMT methylation status was known and 
the extent of resection was limited to gross- and sub-total 
resections, the addition of these covariates on the multi-
variate model were investigated (Supplementary Table 2). 
In this model, only tumor volume (HR: 1.02, 95% CI: 1.01–
1.04, P = .0007) and MGMT status (HR: 0.35, 95% CI: 0.13–
0.97, P = .044) were statistically significant.

Discussion

Whole-brain connectivity disruptions in glioma patients 
have been previously reported and demonstrate a remark-
able association with tumor aggressiveness and cognitive 
impairments.3 Despite the potential clinical implications of 
these findings, the underlying functional connections re-
sponsible for these phenomena are not well understood. 
Therefore, we used the well-characterized concept of HC 
to investigate tumor-induced interhemispheric dysfunction 
in a sample of LGG and HGG patients.16,22,35 Several asso-
ciations between HC and tumor severity were observed 
(Figure 1C, D, Figure 2). TC was only significantly asso-
ciated with HC in HGG patients (Figure 3). Additionally, 
hemodynamic lags between homotopic areas were as-
sociated with tumor grade (Figure 4). Importantly, HC 

disruptions in HGG patients were also significantly associ-
ated with OS (Figure 5).

The highly symmetric nature of interhemispheric an-
atomical connections in the brain facilitates strong and 
stable functional connectivity between homologous 
areas.12,23,36 As a result, the growth of unilateral tumor le-
sions can lead to distorted connections that impact HC.19,37 
The extent of disruption, however, is dependent upon sev-
eral factors. Our findings suggest that tumor grade po-
tentially plays an important role in the distortion of HC in 
glioma patients. It is not surprising that connectivity be-
tween tumor-altered cortical regions and their contralateral 
homologues would be severely weakened (Supplementary 
Figure 1). Gliomas can displace brain anatomy, including 
the astrocytic endfeet responsible for maintaining 
neurovascular coupling; an essential phenomenon for 
observing functional connectivity by fluctuating BOLD sig-
nals.1,38,39 Additionally, hypoxia in the microenvironment or 
glioma-secreted factors can induce neuronal cell death.1,40 
However, it is intriguing that LGGs disrupt HC in these re-
gions less than HGGs. Previous work has shown that func-
tional areas can be found within tumor boundaries9,41 with 
greater frequency in LGGs compared to HGGs.42 Therefore, 
it is plausible that preserved function could result in less 
disrupted HC. The associative relationship between TC and 
HC seen only for HGGs also suggests a greater functional 
tumor burden. More invasive HGGs may disrupt local func-
tional connections and seed glioma cells beyond the tumor 
mass more readily. Subsequently, these distal HGG cells 
may reduce global HC. This would support the findings 
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responding axial slices. The time-shift scale ranges from −4 repetition time (TR) to +4 TR. (B) Mean absolute homotopic lag across the cortex is 
significantly associated with clinical severity (P < .0001). (C) HC is not correlated to homotopic lag in controls (P = .93). (D) HC is correlated with 
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of lower HC in HGGs across distinct locations and RSNs 
(Figure 2) as well as the greater amount of brain-wide func-
tional alterations found in previous studies.3,4

Finding robust HC disruptions in glioma patients prompted 
us to consider altered neurovascular mechanisms given the 
hemodynamic nature of BOLD signals. Studies by Agarwal 
and colleagues previously identified decreased BOLD signal 
amplitudes in ipsilesional cortex despite no demonstrable 
deficits in patients across tumor grades.43,44 This finding 
suggests that normal neurovascular coupling should not 
be assumed in the vicinity of brain tumors and its impair-
ment may contribute to our HC findings. However, we fo-
cused on extra-tumoral HC to minimize this contribution, 
proposing a more brain-wide phenomenon than previously 
reported. Hemodynamic delays due to cerebral lesions have 
been investigated primarily in stroke patients with limited 
glioma studies.20,21,45,46 As tumors grow, they disrupt bilat-
eral neurovascular coupling and decrease synchronization of 
neural activity.21,46 This can explain homotopic lags reported 
in both animal and human studies.21 Thus, our finding of 
greater homotopic lags in more aggressive tumors provides 

complementary insights to previously reported results, 
suggesting that tumor grade may account for some differ-
ences. In LGGs and HGGs, lags explained 31% and 22% of 
the variances respectively, leaving open the possibility of un-
examined neuronal contributions as shown in the work by 
Montgomery and colleagues.46

Strong synchronous activity between homologous re-
gions is a mainstay of healthy brain functioning.12,16,22,23 
Therefore, the degree of its impairment may act as a sur-
rogate for global brain health. In fact, global HC was cor-
related with OS in HGG patients although this was not 
statistically significant. However, when restricting HC to 
specific brain networks, both SMN and DAN were signif-
icantly correlated with OS (Figure 5). To our knowledge, 
no one has previously reported a link between HC and 
OS in glioma patients. Although SMN HC produced sta-
tistically significant survival differences in univariate 
analyses, this was not observed in the multivariate anal-
ysis using age, tumor volume, MGMT status, and ex-
tent of resection as covariates (Supplementary Table 2). 
This suggests that SMN HC may not provide prognostic 
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information beyond routinely collected clinical and ge-
netic data. However, given the low patient sample used 
for this analysis (n = 30), the possibility of being statis-
tically underpowered cannot be excluded. The consist-
ency of these findings needs to be assessed in a larger 
prospective cohort of patients.

Further limitations may impact the results of this study. The 
lack of neurocognitive and behavioral data precluded further 
insight into the functional role of HC disruptions. Additionally, 
tumor location heterogeneity across glioma subtypes may 
have contributed to their HC differences. Predominantly 
frontal or insular tumors (LGG sample, Figure 1A) may elicit 
less HC disruptions in comparison to predominantly temporal 
lobe tumors (HGG sample, Figure 1A). Our study cohort was 
imbalanced with 9 LGG patients and 50 HGG patients. Future 
studies incorporating more LGG patients would help specify 
the influence of tumor location on global HC. Additionally, as all 
LGG patients were IDH-mutant and all HGG patients were IDH-
wildtype, we were unable to test whether IDH-status conferred 
differences in HC beyond WHO grade status. HC, as an indirect 
measurement of brain activity, attempts to characterize tumor-
associated effects beyond glioma-infiltrated cortex observable 
by structural MRI. HC is likely an indirect measurement of the 
state of the tumor microenvironment and glioma-neuronal 
interactions. Bidirectional interactions between neurons and 
gliomas involving neuronal hyperexcitability, direct neuron-
glioma synapses, gap-junction interconnections, gliomas 
co-opting tumor-associated microglia and macrophages, and 
immunomodulatory mechanisms likely influence HC disrup-
tions we observed.47–49 Hence, future studies combining global 
functional connectivity and tumor microenvironment as-
sessments may advance mechanistic understanding of com-
plex neuron-glioma interactions that could influence clinical 
decision-making.

In this study, we show that HC is altered in glioma 
patients and that this disruption may depend on 
tumor grade. Furthermore, the strength of HC in the 
somatomotor network is associated with OS. Thus, ad-
ditional investigation of HC is needed in larger cohorts 
of low- and high-grade glioma patients to determine its 
clinical utility.

Supplementary material

Supplementary data are available at 
Neuro-Oncology online.
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