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Introduction

According to statistics from the GLOBOCAN project of 
the International Agency for Research on Cancer (IARC), in 
2020, colorectal cancer (CRC) was the third most common 

cancer worldwide and the second leading cause of cancer-
related death (1). There are significant regional differences 
in the burden of CRC, with the highest incidence and 
mortality typically observed in countries with a high human 
development index (HDI), such as Europe, Oceania, and 
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North America (2). In recent years, with the development of 
social economy, the “westernization” of lifestyle and dietary 
habits, the incidence and mortality of CRC have increased 
significantly in China (3). Most patients are diagnosed at 
an advanced stage. Cancer screening could help reduce the 
incidence and mortality of CRC.

The progression of CRC is a complex and dynamic 
process, characterized by typical features of malignant 
cells, including unlimited replicative potential, resistance 
to apoptotic signals, tissue invasion, and metastasis. To 
acquire and sustain the energy and materials required for 
these characteristics, malignant cells must reprogram their 
own metabolic pathways. The metabolic process of cancer 
cells differs from that of normal tissue cells, with glycolysis 
and glucose metabolism being the most significantly altered 
metabolic pathways. The Warburg effect suggests that 
tumor cells prefer highly active glycolysis to meet their 
survival needs (4). The reprogramming of these pathways 
involves intricate mechanisms and the coordination of 
various signaling molecules. Understanding the mechanisms 
of glycolysis in the progression of CRC provides a new 
perspective for the discovery of screening targets and 
treatment approaches.

Epigenetics, especially histone modifications, is an 
important factor in altering gene expression in CRC cells (5). 
In mammals, the SET1/MLL complex (COMPASS family) 
is one of the major H3K4 methyltransferases (KMTs). The 
SET1/MLL complex is a potential drug target in epigenetic 
therapy because of their extensive association with various 

cancers (6,7). SET1/MLL complexes are comprised of one 
of the six different catalytic subunits (SETD1A, SETD1B, 
MLL1, MLL2, MLL3, and MLL4) and conserved core 
subunits. WDR5, RBBP5, ASH2L, and DPY30 (together 
as WRAD) are called core subunits (8-10). The catalytic 
subunits have intrinsic methyltransferase activity, which 
is weak in the absence of core subunits. Core subunits, 
including DPY30, lack or have very weak intrinsic catalytic 
activity, but they are essential for biologically significant 
H3K4 methylation levels in cells (11-13).

DPY30 was first identified as a dose compensation-
related gene in C. elegans (14), and it was important for 
the behavior of the worm. Previous studies on DPY30 
had focused on the stem cell function, cell senescence, 
adhesion, migration, and invasion (15-17). Gradually, its 
role in the development of tumors has been explored. 
Reports demonstrated that DPY30 was related to the 
proliferation, migration, and invasion of gastric cancer, 
cholangiocarcinoma, and hepatocellular carcinoma cells 
(18-20). In this study, we investigated the role of DPY30 
in the development and progression of CRC, especially on 
cellular glycolysis. We present this article in accordance 
with the ARRIVE and MDAR reporting checklists (available 
at https://tcr.amegroups.com/article/view/10.21037/tcr-24-
366/rc).

Methods

Cell culture

The CRC cells KM12C and HT29 were obtained from 
Procell (Wuhan, China), cultured in Dulbecco’s modified 
Eagle medium (DMEM) complete medium, which 
contained 10% fetal bovine serum, 100 U/mL penicillin, 
and 100 μg/mL streptomycin. The cells were cultured in an 
environment at 37 ℃ with 5% CO2 and adequate humidity. 
The lentiviral knockdown of DPY30 in KM12C and HT29 
cells was established in our previous study using short 
hairpin RNA (shRNA) (21). The established cells were also 
cultured using the aforementioned standard methods.

Animals

Male nude mice (BALB/c, 6 weeks old, 18–20 g) were 
obtained from the Xiamen University Laboratory Animal 
Center. HT29 cells were used to build the model according 
to our previous study (21). Mice were housed in a suitable 
environment free of specific pathogens, and randomly 
divided into two groups—shCtrl and shDPY30 (n=6 in 
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each group, 12/12 cycle of light, 25–27 ℃). Changes in 
tumor weight and protein levels were measured. Animal 
experiments were performed according to ethical guidelines 
of animal experiment and reviewed and approved by the 
Institutional Animal Care and Use Ethics Committee 
of Xiamen University (No. XMULAC20180077), in 
compliance with national guidelines for the care and use of 
animals. A protocol was prepared before the study without 
registration.

Antibodies

Anti-DPY30 (cat. #ab126352), anti-HK1 (cat. #ab154839), 
and anti-GSK3 beta (cat. #ab93926) antibodies were 
purchased from Abcam (Cambridge, UK). Anti-Akt (pan) 
(cat. #2920), anti-phospho-Akt (Thr308) (cat. #13038), 
and anti-phospho-Akt (Ser473) (cat. #4060) antibodies 
were from Cell Signaling Technology (CST; Danvers, MA, 
USA). Anti-Beta Tubulin antibody was from Proteintech 
(Wuhan, China).

Quantitative real-time polymerase chain reaction (qPCR)

The extraction and reverse transcription of cellular RNA 
were performed using a total RNA extraction kit (cat. 
#DP419) and a reverse transcription kit (cat. #KR116; 
TIANGEN, Beijing, China), following the instructions. 
The complementary DNA (cDNA) obtained by reverse 
transcription was diluted tenfold with DNase/RNase-
free deionized water as a template. The primers were 
diluted to a 100 μM stock solution with deionized water 
and further diluted tenfold before use. Next, a reaction 
mixture was prepared using the TIANGEN’s SuperReal 
PreMix Plus (SYBR Green) (cat. #FP205) reagent kit. The 
reaction system was composed of 5 μL enzyme mixture, 
0.3 μL each of 10 μM forward and reverse primers, 1 μL 
of the diluted cDNA template, 0.2 μL ROX instrument 
calibration solution, and 3.2 μL RNase-free ddH2O. The 
fluorescence quantitative PCR instrument (ABI 7500) 
used for this procedure required ROX calibration. Based 
on the characteristics of enzymes in the kit, the qPCR 
reaction procedure was set up, and reaction conditions were 
optimized according to different primers.

Western blot (WB)

First, the total cellular protein was extracted. The 
adherent cells were gently rinsed three times with pre-

cooled phosphate-buffered saline (PBS). On the final 
rinse, radioimmunoprecipitation assay (RIPA) lysis buffer 
containing protease/phosphatase inhibitors was added to 
the culture dish. After being lysed on ice, the cells were 
scraped into a centrifuge tube. Then cells in the tube were 
vortexed and centrifuged. The proteins obtained from 
the lysed cells were frozen in the refrigerator at −80 ℃ or 
measured immediately. Standard curves were prepared and 
samples were measured by Pierce Bicinchoninic Acid (BCA) 
Protein Assay Kit (cat. #23225; ThermoFisher Scientific, 
Wilmington, DE, USA).

WB samples were prepared according to the measured 
protein concentrations. Protein bands were separated by 
electrophoresis and then transferred to the polyvinylidene 
fluoride (PVDF) membrane. The membrane was blocked 
using skim milk or bovine serum albumin (BSA) at room 
temperature for 1 h and incubated with the primary 
antibody and the secondary antibody. Protein bands were 
visualized using the electrochemiluminescence (ECL) 
reagent (cat. #32106; ThermoFisher Scientific). The WB 
experiment was repeated at least three times. Among them, 
the representative WB graph is selected to be displayed in 
figures.

Tandem mass tag (TMT) labeling quantitative proteomics 
analysis of cellular total proteins

Control cells and cells with DPY30 knockdown were 
seeded into 9 cm dishes and grown to approximately 80% 
confluence. Next, the cells were washed with pre-cooled 
PBS, and collected into the centrifuge tube with cell scraper. 
The supernatant was removed by the centrifuge. Then the 
tubes were sent on dry ice to Xiamen Lifeint Technology 
Co., Ltd. (Xiamen, China) to complete the following steps: 
quality control of protein extraction, enzymatic digestion, 
TMT labeling, liquid chromatography-mass spectrometry 
analysis, and data analysis.

Oxygen consumption rate (OCR) and extracellular 
acidification rate (ECAR)

The Seahorse XF extracellular flux analyzer (Agilent, Santa 
Clara, CA, USA) was used to assess the OCR and ECAR 
of cells according to instructions. Briefly, cells were seeded 
in microplates overnight to make them adhere to the wall. 
Next day, cells were washed and growth medium was 
replaced with assay medium. Then, stock compounds of 
each assay were prepared and injected into corresponding 
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ports. The Seahorse XF Report Generator was used to 
analyze the data.

Chromatin immunoprecipitation (ChIP) assay

SimpleChIP® Plus Sonication ChIP Kit (cat. #56383) from 
CST (using a 10 cm culture dish as an example) was used in 
this experiment. Primers and oligos used for qPCR, shRNA 
and ChIP assays are attached in Table 1.

Cell preparation
Cells were seeded and treated, and the final volume of the 
culture medium was 10 mL.

Sample cross-linking
Two hundred and seventy μL of 37% formaldehyde was 
added to each dish and cross-linked for 15 minutes after 

mixing. Add 1 mL of 10× glycine to each dish and incubate 
for 5 minutes to terminate the cross-linking. Place the 
dishes on ice. Remove the culture medium, rinse the cells 
twice with pre-cooled PBS, and gently scrape the cells into 
1 mL of PBS. Centrifuge at 4 ℃ for 5 minutes at 1,000 g to 
remove the supernatant.

Chromatin fragmentation (performed on ice)
Up to 2×107 cells were re-suspended and lysed in 1 mL lysis 
buffer (containing protease inhibitors). Next, centrifuge at 
5,000 g for 5 minutes, remove the supernatant, and replace 
the lysis buffer with ChIP sonication nuclear lysis buffer. 
Lyse the cells for 10 minutes and then sonicate to break the 
chromatin. The sonication parameters needed optimization 
for different cell types. After centrifuging at 21,000 g for  
10 minutes, collect the supernatant, and store the fragmented 
chromatin at −80 ℃.

Table 1 Primers and oligos

Gene Application Species Forward primer (5'-3') Backward primer (5'-3')

DPY30 Expression Human AACGCAGGTTGCAGAAAATCCT TCTGATCCAGGTAGGCACGAG

GSK3B Expression Human GGCAGCATGAAAGTTAGCAGA GGCGACCAGTTCTCCTGAATC

HK1 Expression Human GCTCTCCGATGAAACTCTCATAG GGACCTTACGAATGTTGGCAA

HK2 Expression Human GAGCCACCACTCACCCTACT CCAGGCATTCGGCAATGTG

PFKL Expression Human GCTGGGCGGCACTATCATT TCAGGTGCGAGTAGGTCCG

ALDOA Expression Human ATGCCCTACCAATATCCAGCA GCTCCCAGTGGACTCATCTG

PC Expression Human ACAGAGGTGAGATTGCCATCC CACTGCATCTACGTTGTTCTCC

Glut1 Expression Human GGCCAAGAGTGTGCTAAAGAA ACAGCGTTGATGCCAGACAG

G6PD Expression Human CGAGGCCGTCACCAAGAAC GTAGTGGTCGATGCGGTAGA

α-tublin Expression Human CCAAGCTGGAGTTCTCTA CAATCAGAGTGCTCCAGG

β-actin Expression Human CATGTACGTTGCTATCCAGGC CTCCTTAATGTCACGCACGAT

Scramble shCtrl Human CCGGGGCTACGTCCAGGAGCGCACCCTCGA
GGGTGCGCTCCTGGACGTAGCCTTTTTG

AATTCAAAAAGGCTACGTCCAGGAGCGCACC
CTCGAGGGTGCGCTCCTGGACGTAGCC

DPY30 shDPY30-1 Human CCGGGACCACCAAATCCCATTGAATCTCGAG
ATTCAATGGGATTTGGTGGTCTTTTTG

AATTCAAAAAGACCACCAAATCCCATTGAATC
TCGAGATTCAATGGGATTTGGTGGTC

DPY30 shDPY30-2 Human CCGGCACAGTTTGAAGATCGAAACCTCGAGG
TTTCGATCTTCAAACTGTGTTTTTG

AATTCAAAAACACAGTTTGAAGATCGAAACCT
CGAGGTTTCGATCTTCAAACTGTG

GSK3B ChIP Human AGCGCTTTATAGACGCCCTC CCAGAGACGCTGGTGAAACT

HK1 ChIP Human GTCATCCCTCCCTCTGATTTG CCTCAGTCTTGCTGGACTTTAT

PFKL ChIP Human CTCAAATCCTAGCGATCAGC AAAGCAGCCAGCACTCCTCC

ALDOA ChIP Human CTGTGGAAATGTGAGACCCTAC CCTCCCAAAGTGCTAGGATTAC

sh, short hairpin; ChIP, chromatin immunoprecipitation.
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Analysis the efficiency of chromatin fragmentation
Take a 50 μL of the supernatant for analysis. Perform 
agarose gel electrophoresis to assess the size and 
concentration of the fragmented chromatin.

ChIP
Approximately 4×106 cells were required for each 
precipitation reaction. Before adding antibodies, the 
chromatin was diluted with the buffer. Before adding 
antibodies, dilute the chromatin with the buffer at a 1:4 
ratio. A 10 μL diluted chromatin sample was taken as a 
2% input control and stored at −20 ℃. Next, samples were 
incubated with antibodies or normal rabbit immunoglobulin 
G (IgG) (negative control) at 4 ℃ with rotation overnight. 
A 30 µL of protein G magnetic beads was added for each 
immunoprecipitation reaction and incubated at 4 ℃ with 
rotation for 2 h. Magnetic beads were washed three times 
with the low salt solution and one time with the high salt 
solution using a magnetic rack.

Chromatin elution
Add a 150 μL of elution buffer to each ChIP sample. Elute 
at 65 ℃ for 30 minutes. Gently shake the samples every 
5 minutes. Centrifuge the samples at 10,000 g for 10 s to 
concentrate them at the bottom of the centrifuge tube. 
Carefully aspirate the supernatant using a magnetic rack. 
All samples (including 2% input) were added with 6 µL 5 M 
NaCl and 2 µL protease K, and incubated at 65 ℃ for 2 h or 
overnight. The resulting sample could be stored for up to  
4 days at −20 ℃ or immediately purified for the next step.

Analysis and calculation
Measure the concentration of DNA and perform qPCR 
analysis. Calculate the enrichment efficiency of ChIP-
qPCR: % input = 2% × 2[cycle threshold (CT) input − CT sample].

Statistical analysis

Data processing and analysis were performed using 
GraphPad Prism 8, EXCEL, and IBM SPSS Statistics 22. 
All data were collected with three or more replicates, and 
statistics were presented as mean ± standard error of mean 
(SEM). The independent samples t-test (for normally 
distributed data) or the Mann-Whitney U test (for non-
normally distributed data) was employed to compare any 
two groups. P<0.05 was marked as *; P<0.01 was marked as 
**; and P<0.001 was marked as ***.

Results

DPY30 was associated with proteins related to glucose 
metabolism

Our previous research found that DPY30 was overexpressed 
in CRC tissues. DPY30 promoted the transcription of 
PCNA, Ki67, and cyclin A2 by mediating H3K4me3, thereby 
promoting the proliferation and cell cycle progression of 
CRC cells. This suggested that DPY30 served as a potential 
therapeutic molecular target for CRC (21). In this study, 
previously established cell models were used. First, the 
knockdown efficiency of DPY30 in cells was tested. At 
both the protein and messenger RNA (mRNA) levels, the 
shDPY30-2 segment showed better effectiveness in DPY30 
knockdown, especially in HT29 cells (Figure 1A,1B).  
In the following studies, only cell lines constructed 
with the shDPY30-2 knockdown segment were used, 
abbreviated as shDPY30. Then, HT29 control cells and 
DPY30 knockdown cells were collected for TMT labeling 
quantitative proteomics analysis of cellular total proteins 
(n=3). After the threshold was defined, the down-knocked 
cells were compared with the control cells (shDPY30/
shCtrl), and it was found that the expression of 256 proteins 
was up-regulated and that of 198 proteins was down-
regulated. The differentially expressed genes of the control 
group and the shDPY30 group were further analyzed 
using a volcano plot (Figure 1C). The results showed 
that the expression of HK1, a protein related to cellular 
glucose metabolism, was significantly down-regulated 
after DPY30 knockdown, while the expression of GSK3B 
was significantly increased. Based on the differential gene 
expression, Kyoto Encyclopedia of Genes and Genomes 
(KEGG) pathway analysis, as shown in Figure 1D, indicated 
significant changes in several signaling pathways, with the 
PI3K-AKT signaling pathway being the most prominent. 
These results suggested that DPY30 played a role in the 
glucose metabolism of CRC cells.

DPY30 regulated genes related to glucose metabolism and 
the PI3K-AKT signaling pathway

To further assess the accuracy of the differential expression 
profile, representative genes were selected and confirmed 
by qPCR (Figure 2A). In addition to GSK3B and HK1, 
other genes associated with glucose metabolism were 
also examined. Consistent with the results of proteomic 
analysis, the expression of GSK3B was upregulated, while 
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that of HK1 was downregulated. In addition, the expression 
of PFKL and ALDOA decreased in both cells. WB results 
showed that after DPY30 knockdown, the protein levels of 
HK1 also decreased, but the expression of GSK-3β increased 
only in the HT29 cell model. AKT is a serine/threonine-
specific protein kinase that plays a crucial role in various 
cellular processes, such as glucose metabolism, apoptosis, 
cell proliferation, transcription, and cell migration. As shown 
in Figure 2B, p-AKT (Thr308) was found to decrease with 

a reduction in DPY30 expression. The expression of pan-
AKT and p-AKT (Ser473) did not show significant changes. 
These findings confirmed the role of DPY30 in glucose 
metabolism and the PI3K-AKT signaling pathway.

DPY30 knockdown attenuated aerobic glycolysis

Aerobic glycolysis of tumor cells is one of the important 
characteristics of the tumor. Whether DPY30 influences the 

Figure 1 TMT labeling quantitative proteomics analysis of cellular total proteins (shDPY30 vs. shCtrl). (A,B) The knockdown efficiency of 
DPY30 in cells was tested using qPCR and WB. (C) The differentially expressed genes of the control group and the shDPY30 group were 
further analyzed using a volcano plot. (D) KEGG pathway analysis based on the differential gene expression. Data were expressed as mean 
± SEM. n=3. **, P<0.01. mRNA, messenger RNA; sh, short hairpin; FC, fold change; TMT, tandem mass tag; qPCR, quantitative real-time 
polymerase chain reaction; WB, western blot; KEGG, Kyoto Encyclopedia of Genes and Genomes; SEM, standard error of mean.
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glycolysis metabolic process of CRC cells is unknown. To 
address this issue, glycolytic flux was studied by detecting the 
ECAR using the Seahorse XFe96. As shown in Figure 3A,3B,  
the analysis data revealed that the knockdown of DPY30 
reduced the overall glycolytic flux in HT29 and KM12C 
cells. Glycolysis, glycolytic capacity, and glycolytic 
reserve were remarkably decreased in DPY30 knockdown 
cells. Furthermore, oxidative phosphorylation was then 
investigated. Our data indicated that the levels of OCR were 
increased by the knockdown of DPY30 (Figure 3C,3D).  
Spare respiratory capacity was significantly increased 
in both cells. To sum up, the data indicated that the 
aerobic glycolysis of CRC cells was impaired by DPY30 
knockdown.

DPY30 knockdown suppressed the establishment of 
H3K4me3 to target genes

DPY30 is a member of the mammalian SET1/MLL 
histone methyltransferase complex. Previous reports have 
demonstrated the role of DPY30 in regulating all three 
levels of H3K4 methylation, especially H3K4me3 (15). 
H3K4me3 localized at the promoter regions of actively 
transcribed genes (22). Obvious reductions in global 
H3K4me3 upon the knockdown of DPY30 were found.

In view of the vital role of DPY30 on the H3K4me3 
level, ChIP assays were performed. The qPCR data revealed 
that DPY30 knockdown repressed the establishment of 
H3K4me3 on promoters of HK1, PFKL, and ALDOA 

Figure 2 DPY30 regulated genes related to glucose metabolism and the PI3K-AKT signaling pathway. (A) Representative genes were 
selected and confirmed by qPCR in KM12C and HT29 cells. (B) Representative proteins were selected and confirmed by WB in KM12C 
and HT29 cells. Data were expressed as mean ± SEM. n=3. *, P<0.05; **, P<0.01. mRNA, messenger RNA; sh, short hairpin; NS, no 
significant difference; qPCR, quantitative real-time polymerase chain reaction; WB, western blot; SEM, standard error of mean.
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Figure 3 DPY30 knockdown suppressed glycolysis. (A,B) Left, glycolysis flux was examined by measuring the ECAR. Right, the values were 
calculated by the Seahorse XFe96 software. (C,D) Left, key parameters of mitochondrial function by directly measuring the OCR of cells. 
Right, the values were calculated by the Seahorse XFe96 software. Data were expressed as mean ± SEM. n=3. *, P<0.05; **, P<0.01. ECAR, 
extracellular acidification rate; norm., normal; 2-DG, 2-deoxy-d-glucose; sh, short hairpin; NS, no significant difference; OCR, oxygen 
consumption rate; FCCP, carbonyl cyanide 4-(trifluoromethoxy) phenylhydrazone; ROT, rotenone; AA, antimycin A; ATP, adenosine 
5'-triphosphate; SEM, standard error of mean.
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(Figure 4A). That was to say, H3K4me3 was bound to 
the promoters of all of these genes, and its binding was 
significantly decreased after DPY30 knockdown. These 
results exhibited that DPY30 knockdown inhibited these 
genes’ expression via suppressing the establishment of 
activated epigenetic modification H3K4me3. However, 
following the knockdown of DPY30, there was no significant 
change in the binding of the GSK3B promoter. The 
knockdown of DPY30 exhibited an appreciably inhibitory 
effect on HT29 xenograft tumor growth (Figure 4B),  
with a significant decrease of tumor weight (Figure 4C).  
In animal models with DPY30 deficiency, HK1 protein 
expression levels were also reduced (Figure 4D). The 
schematic diagram of this study is shown in Figure 5, 
illustrating that DPY30 promoted the glycolysis of CRC 
cells through two channels: influencing signaling pathways 
and gene transcription, thereby promoting the progression 
of CRC.

Discussion

There is an accumulation of evidence suggesting that many 
oncogenes and tumor suppressors influence metabolic mode 
of tumors (23). This study revealed that DPY30 knockdown 
suppressed aerobic glycolysis of CRC cells via changing the 
expression of HK1, PFKL, and ALDOA. Those genes are 
all vital regulators in the process of metabolism (24-26).  
The previous research has indicated that DPY30 could 
regulate the expression of MYC through H3K4me3. First, 
DPY30 directly promotes the expression of the MYC gene. 
Second, DPY30 regulates chromatin accessibility and 
facilitates effective binding of the MYC to many genomic 
targets (27,28). In addition to mediating gene transcription 
through H3K4me3, DPY30 also regulates various biological 
activities of CRC cells through signaling pathways. Our 
results suggested that, following DPY30 knockdown, there 
was no significant change in the binding of the GSK3B 
promoter to H3K4me3. However, a decrease in the activity 
of the AKT signaling pathway was detected. The regulation 
of GSK-3β by the AKT signaling pathway could also be 
considered in this context.

To date, hundreds of CRC cell  l ines have been 
established. KM12C and HT29 cell lines are both 
established from primary human colon adenocarcinoma. 
HT29 was initiated from a moderately well-differentiated 
adenocarcinoma of the colon from a 44-year-old, white, 
female in 1964 (29,30). The colon carcinoma is classified 
as tumor-node-metastasis (TNM) stage I. The original 

KM12 tumor is classified as a poorly differentiated 
adenocarcinoma, Dukes’ stage B2 (31). As the previous 
report noted, single cell suspensions obtained from a 
surgical specimen of primary CRC were directly adapted 
to growth in culture and designated as line KM12C (32). 
Because the two cell lines originate from tumors of different 
grades and stages, they show slightly different results in 
the experiment. HT29 cells were mainly selected for ChIP 
assays and the construction of animal model in this study.

Glycolysis is a cascade process catalyzed by a series of 
enzymes, the first key enzyme of which is hexokinases 
(HKs). HK catalyzes intracellular glucose phosphorylation 
to produce glucose 6-phosphate (G-6-P) and consumes one 
molecule of adenosine 5’-triphosphate (ATP). In humans, 
four main isoforms of HK have been identified, encoded by 
the genes HK1, HK2, HK3, and HK4 (33). HK1 is widely 
expressed in almost all mammalian tissues, while HK2 
is typically expressed in insulin-sensitive tissues such as 
adipose tissue, skeletal muscle, and the heart. HK3 is often 
expressed at low levels, while HK4 is limited to the pancreas 
and liver. Recent research has revealed that HK2 is highly 
expressed in some cancer cells and is associated with poor 
overall survival rates in cancer patients. HK1 has also been 
found to participate in the process of some tumors (34-39).  
For example, the proto-oncogene c-Src enhances the 
affinity of HK1 to glucose by phosphorylation of HK1, 
thus promoting the glycolysis of breast cancer cells and 
accelerating the proliferation and metastasis of breast cancer 
cells (40). In tumors with KRAS4A mutation, KRAS4A 
can bind to HK1 on the mitochondrial outer membrane 
and change the enzyme kinetic characteristics of HK1, so 
that HK1 is no longer inhibited by G-6-P feedback, and 
ultimately improve the utilization of glucose by the tumor 
and accelerate the tumor process (41).

GSK3 consists of two isoforms, GSK-3α and GSK-3β,  
which are highly homologous. Aberrant activity of 
the latter has been confirmed to be involved in the 
occurrence and progression of various diseases. However, 
strategies targeting GSK-3β for cancer therapy are highly 
controversial (42). Supporters have commonly observed 
overexpression and activation of GSK-3β in clinical tumor 
samples, and both chemical inhibitors of GSK-3β and 
RNA interference-mediated expression silencing have 
led to significant tumor growth inhibition (43). However, 
there are other views that the use of inhibition of GSK-3β  
as a tumor therapy should be carefully considered. The 
reason is that β-catenin acts as a classical phosphorylated 
substrate of GSK-3β, making GSK-3β function as a “tumor 
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Figure 4 DPY30 knockdown suppressed the establishment of H3K4me3 to target genes. (A) The qPCR assays were performed to evaluate 
the ChIP analysis of IgG and H3K4me3 interaction status with candidate DPY30 target genes after knockdown assay. H3K4me3 bindings 
were monitored at the promoters of GSK3B, HK1, PFKL, and ALDOA. IgG antibody was included as a negative control. H3K4me3 was 
normalized to total H3. Values were presented as percentage of input. (B) Images of xenograft tumor in nude mice (n=6). (C) Weight of 
xenograft tumor in nude mice. (D) The expression levels of HK1 in xenograft tumor were detected by WB. Data were expressed as mean ± 
SEM. n=3. *, P<0.05; **, P<0.01; ***, P<0.001. IgG, immunoglobulin G; sh, short hairpin; NS, no significant difference; qPCR, quantitative 
real-time polymerase chain reaction; ChIP, chromatin immunoprecipitation; WB, western blot; SEM, standard error of mean.
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Figure 5 The schematic diagram of this study was created using the elements in the pathway builder. DPY30 promoted the glycolysis of 
CRC cells through two channels: influencing signaling pathways and gene transcription, thereby promoting the progression of CRC. TSS, 
transcription start site; CRC, colorectal cancer.

suppressor” in the Wnt signaling pathway. On the one 
hand, cytoplasmic GSK-3β acts as a switch molecule in the 
β-catenin degradation complex, leading to its destabilization 
through phosphorylation of β-catenin and ubiquitin ligase 
β-TrCP-mediated ubiquitin-proteasome pathway (44). On 
the other hand, GSK-3β is distributed in the nucleus (45). 
However, unlike the intracellular mechanism, β-catenin 
activity is inhibited by a non-phosphorylated pathway. 
Therefore, the inactivation of GSK-3β activates the Wnt 
signaling pathway inside and outside the nucleus, thus 
promoting the progression of tumors (46). Conversely, 
upregulation of GSK-3β activity can inhibit Wnt signaling 
and thus reduce the tumor occurrence. Based on this theory, 
certain compounds have been shown to exert anti-tumor 
effects by activating GSK-3β and promoting β-catenin 
degradation (47).

The metabolic regulation of Akt on glucose glycolytic 
flux may involve multiple mechanisms (48-50). First, Akt 
can promote glucose uptake by increasing the expression 
of Glut1, 2, 4, and by regulating the translocation of 
Gluts to the cell membrane. Second, increased oxidative 
phosphorylation and glycolysis may kinetically favor the 
increase of glycolytic flux. Third, highly activated Akt 

can activate downstream mTORC1, thereby promoting 
the accumulation of HIF-1a in normoxic conditions (not 
degraded by VHL), leading to an increase in the enrichment 
of Glut1, mitochondrial HK, and lactate dehydrogenase 
(LDH). The increase in glucose transport and uptake, 
coupled with increased oxidative phosphorylation, results 
in an increase in the supply and utilization of G-6-P in 
glycolysis and the pentose phosphate pathway (PPP). Akt 
inhibits glycogen synthesis and accumulation by inactivating 
GSK-3β phosphorylation.

Conclusions

This research explored the effects of DPY30 on glycolysis-
related genes and proteins from the perspectives of 
epigenetic changes and signaling pathways, elucidating the 
role of DPY30 in the glucose metabolism of CRC cells.
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