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Abstract

Generation of induced pluripotent stem cells (iPSCs) opens a new avenue in regenerative medicine. One of the major
hurdles for therapeutic applications is to improve the efficiency of generating iPSCs and also to avoid the tumorigenicity,
which requires searching for new reprogramming recipes. We present a systems biology approach to efficiently evaluate a
large number of possible recipes and find those that are most effective at generating iPSCs. We not only recovered several
experimentally confirmed recipes but we also suggested new ones that may improve reprogramming efficiency and quality.
In addition, our approach allows one to estimate the cell-state landscape, monitor the progress of reprogramming, identify
important regulatory transition states, and ultimately understand the mechanisms of iPSC generation.
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Introduction

Recent studies have shown that cellular reprogramming can be

achieved by manipulating a small number of genes [1,2]. This

includes the generation of induced pluripotent stem cells (iPSCs)

from somatic cells [3–6] and the conversion of one differentiated

cell type directly to another (transdifferentiation) [7–10]. These

findings hold enormous promise for disease modeling and

regenerative medicine. However, the reprogramming efficiency

is often low and the mechanistic process of reprogramming

remains largely unknown. In addition, recent studies have shown

that iPSCs generated by the present recipes are different from

embryonic stem cells (ESCs) on such as exonic mutation [11], copy

number variation [12], chromosome aberration [13], epigenetic

[14] and immunogenicity [15] deviation from ESCs. Resolving

these problems is essential to realize the full potential of

therapeutics based on cellular reprogramming.

One of the possible reasons for the above problems of the

current iPSCs is that reprogramming recipes utilize suboptimal

combinations of reprogramming factors. Most studies to date first

identify a pool of candidate reprogramming factors (around 20)

that are differentially expressed in two cell types [3,4,8–10]. If

overexpression of all these factors can convert one cell type to

another, sequential removal or adding of these factors one at a

time is then conducted to find whether a factor is crucial for

reprogramming, through which a minimal set of reprogramming

factors is found. Such a procedure requires a significant amount of

effort and the greedy search for combinations of the preselected

factors does not necessarily find the optimal reprogramming

recipe.

Efficiently finding optimal reprogramming recipe requires a

systematic search for any perturbation (not necessarily limited to a

preselected set of factors) to the cell that can achieve the most

effective reprogramming. Achieving this goal requires de novo

prediction of phenotypes, i.e. predicting the consequences

(reprogramming) of perturbations. Recent studies showed that

gene expression can be predicted based on TF binding

information [16–18] and prediction of phenotypes based on the

topology of genetic networks is feasible [19–27]. These studies

illustrated the great potential of systems biology approach in

understanding fundamental principles of biology and developing

therapeutic treatments. However, none of these existing methods

was designed for or applied to searching for optimal reprogram-

ming recipe. Therefore, new systems biology methods are still

needed for such purpose.

Having a mechanistic picture of cellular reprogramming

requires a comprehensive understanding of the biological system

of interest. There are numerous theoretical studies on cell fate

decision based on differential equations, but they often focus on

simplified circuits that do not embody the molecular details

required to understand the mechanisms of how cellular repro-

gramming is achieved [28,29]. Epigenetic landscape [30] has been

used to explain cell differentiation during development and cell

fate reprogramming [31–33]. The landscape concept has been

widely appreciated in protein folding/binding [34,35] and more

recently in genetic network analysis [36–41]. Particularly, recent

studies have provided quantitative models for theoretical under-

standing of development from a landscape viewpoint [40,41].

However, the current methods of calculating network landscapes

are time consuming and thus limited to small networks (often ,20

genes) [38], which cannot illustrate the mechanistic procedure of

iPS reprogramming or transdifferentiation.

In this study, we present a new approach to systematically

search for optimal reprogramming recipes and to provide

mechanistic insights in reprogramming human cells from the

perspective of the cell-state potential landscape, as encouraged by

PLoS Computational Biology | www.ploscompbiol.org 1 December 2011 | Volume 7 | Issue 12 | e1002300



our previous work on the model organism budding yeast [42,43].

Based on a network curated from literature that includes the major

regulatory interactions known in human embryonic stem cells

(hESCs), we developed a method to make de novo predictions of

gene expression changes upon perturbations such as overexpres-

sion or knockdown of genes. Our predictions correlated well with

knockdown experiments in hESCs. In addition, our model allows

efficient calculation of the probability of any cell state for a large

network. These features made it possible to systematically search

for optimal reprogramming recipes and to establish the cell-state

landscape. Without knowledge of any successful reprogramming

recipes, the recipes we identified included several experimentally

confirmed ones that were only recently published [44]. Our study

fills the gap between theoretical and experimental studies on

iPSCs, and illustrates a framework to facilitate experimental design

and mechanistic interpretation of the experimental observations.

Results

Genetic network regulating hESC
We first collected evidence from literature and manually

constructed a genetic network involved in regulating pluripotency

and hESC differentiation (Figure 1A, Table S1 and S2 in Text S1).

We did not employ any data mining or bioinformatics methods in

constructing the network to avoid false regulatory interactions. We

started with a set of marker genes of pluripotency and differentiation

lineages (Table S3 in Text S1) and extensively searched the

literature for regulatory paths between any pair of genes. This

constructed network is composed of direct regulatory interactions

between 52 nodes, including the three key regulators of ESC (Oct4,

NANOG and Sox2), six protein complexes (Oct4-Sox2, Oct4-

Foxd3, LEF1-bCat, Mad-Max, Myc-Max, Myc-Sp1) as well as

marker genes for the differentiation lineages (Table S3 in Text S1).

Considering the difference between human and mouse ESCs, we

focused on regulatory interactions that have direct evidence in the

hESC. The completeness and correctness of this network were

partially confirmed by its capability to correctly predict the gene

expression changes upon Oct4 knockdown (see below).

Estimating the network landscape
As shown in previous studies, estimating the landscape of a

network requires calculating the probability of each cell state. To

accomplish this task, we considered each protein in the network as

either active or inactive, i.e. each node is a binary variable. We

then used a dynamic Bayesian network (DBN) [45] to model the

feedback loops in the network. The probability of each node

represents how likely the protein is active.

DBN simulates the evolving stochastic characteristics of the

network via temporal organization of a 2-time slice Bayesian

network (2TBN). In order to transform the cyclic hESC network to

a DBN, we need to break all cyclic regulations and unroll the

network into a series of acyclic graphs (2TBN), in which interface

proteins either emit or receive feedbacks in the original network.

We employed a searching procedure to identify interface proteins

such that the unrolled 2TBN not only reduced the computational

complexity but also preserved biological meaningful links (see

Methods and Text S1 for details) (Figure 1B). As the DBN evolved

to its steady state, information was updated and propagated

through these interface proteins from the current time slice to the

next using the interface algorithm [45].

To parameterize the DBN of the genetic network, ideally one

should learn the parameters from a large set of temporal functional

data that reflects the regulations between proteins in the network.

Due to the lack of such data in hESCs, we designed a knowledge-

based model that converted functional links in the curated genetic

network to mathematically meaningful parameter constraints (see

Text S2 for details) [46,47]. Next, we exploited the Monte Carlo

Markov Chain (MCMC) method to sample DBN parameter

values based on these constraints. Each set of parameter samples

formed an instance of the DBN model. All the model instances

were averaged to conduct DBN inference, which allowed

calculation of the joint probability of all the proteins in the

network given specific evidence. Compared with the previous

approaches of calculating network landscapes using either Boolean

network or differential equations, our model is much more

efficient. Compared with the conventional DBN model, our

method avoids determination of the large number of parameters

by reverse-engineering. Our study showed that this model was

sufficient for reprogramming recipe discovery (see below).

To compute the network landscape, we need to consider all

possible extracellular conditions. Because the exact transduction of

extracellular signals to TFs is largely unknown in hESCs, we chose

an alternative approach by manipulating the expression levels of

the three key hESC regulators, which are Oct4, Sox2 and

NANOG. This mimics the effects of extracellular conditions for

maintaining pluripotency or inducing differentiation. We calcu-

lated the joint probabilities of all the nodes in the network when

setting Oct4/Sox2/NANOG to various activity levels and then

summed these probabilities to estimate the network landscape (see

Text S2). The obtained landscape (Figure 1C) represents the

steady state probability of the system. The landscape of the system

at a certain time during differentiation can be obtained by

specifying the activity of the three key hESC regulators.

We found two states with significantly higher probabilities than

the rest of the states and they respectively correspond to the hESC

and differentiated states (Figure 1C), as defined by the activity of

the 22 marker proteins (Table S3 in Text S1). When all the 11 ES

markers are active (1) and when all the 11 differentiation markers

are inactive (0), the network represents a hESC state; the

differentiated state is defined as the opposite activity composition

of these 22 markers. These two states are separated by barrier

states with smaller probabilities. These barriers prevent transfor-

mation between cell types by noise. This result is similar to the

epigenetic landscape proposed to describe the differentiation

process of ESCs [30–33]. To our knowledge, this is the first

landscape generated for a genetic network of a reasonably large

size (52 nodes) that can reflect the molecular details of regulation

on self-renewal and differentiation of hESC.

Author Summary

Converting somatic cells back to the stem cell state (called
induced pluripotent stem cells or iPSCs) exemplifies the
recent advancement of cellular reprogramming that holds
great promise for developing regenerative medicine.
Generation of iPSCs is often achieved by overexpressing
three to four genes in somatic cells that are critical for
regulating pluripotency. Developing optimal reprogram-
ming recipe is a non-trivial task that requires significant
effort. We present here a computational method that can
facilitate discovery of effective recipes to generate iPSCs
with high efficiency and better quality. In addition, our
approach provides a new way to estimate the landscape in
the cell-state space and monitor the trajectory of cellular
reprogramming from a differentiated cell to an iPS cell.
This work provides not only practical recipes for iPSC
generation but also theoretical understanding of the
reprogramming process.

Systematic Search for Recipes to Generate iPSC
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Predicting phenotypes (gene expression) change upon
perturbations

In order to search for reprogramming recipes, we first need to

show that our model could predict the consequences of cellular

perturbations. Knockdown of master regulators Oct4 or NANOG

was recently performed in hESCs and gene expression changes

were measured by either microarray (Won et al., submitted and

[48]) or PCR [49]. These datasets were used to test our model. In

the framework of the DBN, we modeled the knockdown of a gene

by clamping its activity value to a specific level and then

conducting inference. After the DBN converged, the ratio between

the probability of each node in the perturbed and the undisturbed

hESC state was calculated. This ratio was compared with the

experimental gene expression change. The undisturbed hESC

state in this study was hypothesized to be the joint probability of all

nodes when the hESC master regulators Oct4, NANOG and Sox2

were all clamped to an active state (see Methods and Text S2).

When we pooled six OCT4 and NANOG knockdown experi-

ments together in hESC, the DBN predicted values correlated well

with the experimental measurements (Pearson correlation coeffi-

cient = 0.6731 and p-value = 1.34*10230) (Figure 2). This correlation

varied per individual experiment and fell in a range between 0.55

and 0.92 (Figure 2 and S1 in Text S1). For example, a comparison

between predicted and experimental gene expression changes after

day 3, 5 and 7 of OCT4 knockdown yielded Pearson correlation

coefficients of 0.83, 0.92 and 0.74, respectively. Note that our

predictions were made solely based on the genetic network topology,

without any other functional data. The accuracy of de novo phenotypic

predictions based on cellular perturbations demonstrated that our

DBN model can reliably search for iPS reprogramming recipes.

Reprogramming recipes and mechanisms
We used two types of criteria to judge the success of a predicted

recipe: (1) Gene expression similarity to the ESC and (2)

Figure 1. Epigenetic landscape. (A). Genetic network regulating self-renewal and differentiation of hESC. Active and repressive
regulations are represented by arrow and bar links, respectively. Node size is proportional to a node’s total degree (sum of incoming- and outgoing-
degrees). The hESC and differentiation markers are colored in pink and green, respectively. The genes positively regulated by hESC markers are
colored in orange. (B). 2-time slice Bayesian Networks (2TBN) model of genetic network in hESC. The 2TBN consists of 2 slices of Bayesian
networks and each slice contains a complete set of 52 nodes in the original network. All the loops are deconvolved into inter-slice edges (in red),
which represent the regulations between the regulators in the first time slice (interface proteins, colored in yellow) and the regulated genes in the
second time second time slice. The outgoing interface consists of NANOG, SP1, Oct4-Sox2, CDX2, PIAS1, GATA6, FOXA2, and FOXA1. The purple and
black edges represent intra-time slice down regulating and up regulating effects, respectively. (C). Illustration of the cell-state potential
landscape. The color represents the potential of the cell state. The higher the potential, as represented on the z-axis, indicates a smaller probability
of that particular cell state. X and Y coordinates specify unique cell states.
doi:10.1371/journal.pcbi.1002300.g001

Systematic Search for Recipes to Generate iPSC
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Reprogramming efficiency. The predicted state of reprogrammed

cells should achieve an expression signature similar to hESCs (see

Text S1 and S2). This similarity was measured by the root mean

square deviation (RMSD) and the Pearson and Spearman rank

correlation coefficients between the reprogrammed and the hESC

expression levels (joint probabilities). The reprogramming efficien-

cy was defined as the percentage of cells predicted to be in

differentiated states (11 hESC markers off and 11 differentiation

markers on) that could be reprogrammed to any attractor

representing the ES state (11 hESC markers on and 11

differentiation markers off). To simulate the heterogeneity of the

differentiated cell states, we started from 100,000 randomly

initialized states of the 30 non-markers in the network, then

appropriately clamped the proteins involved in the specific

reprogramming recipe, and finally evolved all proteins’ states

until convergence by following their maximum a posterior (MAP)

pathways in DBN evolution (see Text S2).

We calculated the expression similarity and reprogramming

efficiency for all 163,185 possible combinations of overexpressing

4 out of the 46 individual genes in the network. We found that

most of the overexpression combinations did not achieve

reprogramming as indicated by a reprogramming efficiency of

zero. Indeed, only 962 recipes had an efficiency greater than 0. We

found that efficiency was not necessarily correlated with expression

similarity (Figure S2 in Text S1). The expression similarity

measurement reflected how similar the final state was to the hESC

state by comparing expression levels between all the 52 nodes.

Reprogramming efficiency only checked 22 nodes in the network

(11 hESC markers and 11 differentiation markers). A high

reprogramming efficiency did not thusly guarantee a final cell

state that was similar to a hESC state. Therefore, an optimal

recipe should have both high efficiency and high expression

similarity to the hESC state (low RMSD and high Pearson and

Spearman correlation coefficients).

Among the 962 recipes with an efficiency larger than 0, we

found three experimentally validated recipes using OCT4 (O),

SOX2 (S), KLF4 (K), c-MYC (M) or PRDM14 (P) Encouraged by

this observation, we further confirmed the success of the 3-factor

(OSK) and 5-factor (OSKMP) experimental recipes (Table 1). The

predicted reprogramming efficiencies were consistent with the

Figure 2. Pearson correlation coefficient (r) and p-value (p) between predicted and experimental gene expression changes (in
log2). (A) A scatter plot of predicted and experimental gene expression changes of all OCT4(Won et al., submitted and [54]) and NANOG knockdown
[55] experiments; (B), (C) and (D) Scatter plots of day 3, 5 and 7 after knocking down OCT4 using an episomal vector(Won et al., submitted).
doi:10.1371/journal.pcbi.1002300.g002

Systematic Search for Recipes to Generate iPSC
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experimental observations: OSKMP is more efficient than

OSKM, OSKP is more efficient than OSK [44]. When either

OCT4 or SOX2 was removed from a recipe, the reprogramming

efficiency became zero, which was also observed in the

experiments that leaving out either OCT4 or SOX2 could not

generate iPSC [44]. In addition, both reprogramming efficiency

and gene expression similarity measurements clearly distinguished

those successful recipes from the experimentally unsuccessful ones

(Table 1). It is worth noting that our predicted recipes solely relied

on the network topology and did not use any information from

Chia et al. [44] and our method [46,47,50] was developed before

the publication of [44].

The consistency between our predictions and the experimental

observations is encouraging. Our observation of many possible

successful reprogramming recipes is consistent with the epigenetic

landscape concept [30–33], which also shows that a large number

of transition routes exist between two cell types. To confidently

select for new reprogramming recipes, we first ranked the 962 4-

factor recipes with efficiency.0 plus the experimental 3-factor

(OSK) and 5-factor (OSKMP) recipes using each of the four

criteria (reprogramming efficiency, RMSD, Pearson and Spear-

man). An average rank score was then computed to rank these

recipes. Next, based on the individual distributions of RMSD,

Pearson and Spearman of these recipes (Figure S3(a)–(c) in Text

S1), we set a cutoff of 3-standard deviations for each criterion. 113

4-factor recipes (including OSKP) plus the 3-factor (OSK) recipe

passed the cutoff (Dataset S1). Based on the averaged rank score,

the top 10 recipes under each composition of master regulators are

listed in Table 2.

All candidate reprogramming recipes (Dataset S1 and Table 2)

contained at least two of the three master regulator genes (OCT4,

SOX2, NANOG). In fact, all recipes without at least two master

regulators had a reprogramming efficiency of zero. OCT4 was

indispensible in generating iPSCs while SOX2 and NANOG were

mutually replaceable (Figure 3). KLF4 and PRDM14 could

substantially increase reprogramming efficiency. In addition,

KLF4, c-MYC or PRDM14 could be substituted by other factors

such as ZIC3, PBX1 or LMCD1. Although the mechanisms of

how these additional factors function in iPSC generation are

unclear, we speculate that their importance is due to either their

positive feedbacks to the three master regulators such as PBX1 and

ZIC3’s activation on NANOG, or repression of the differentiation

genes such as LMCD1’s repression of GATA6, which is a

repressor of NANOG (Figure 1). Other than the OSN, we found

KLF4, PBX1, ZIC3 and PRDM14 occurred more than 20 times

in the 113 recipes (Figure 3). All 16 combinations of these 4 genes

with OSN were included in the candidate list (Dataset S1 and

Table 3).

We examined whether the knockdown of individual genes

would further enhance efficiency of overexpression-only repro-

gramming recipes. We took the five experimentally confirmed

overexpression recipes as the templates and added an additional

single gene knockdown. Among the 230( = 5646) recipes, only the

knockdown of GATA6 could significantly increase reprogramming

efficiency for every experimental recipe without deteriorating the

gene expression similarity (Table 4). This may be due to GATA6’s

repression of NANOG, which when attenuated would improve

NANOG expression in a reprogramming recipe. The knockdown

of GATA2 also increased the reprogramming recipe efficiency but

it did not always increase the expression similarity (Dataset S2).

Over 60% of single gene knockdowns including differentiation

markers such as SOX17, GATA3, T, CDX2, hCGa, hCGb, AFP,

and FOXA2 had negligible effect on reprogramming efficiency of

the original recipes (see Figure S4 in Text S1). Surprisingly,

knockdown of GATA4, which is a differentiation marker,

prevented reprogramming, which might be due to its downreg-

ulation of GATA6. On the other hand, knockdown of non-marker

genes including PRDM14 and LMCD1 also deteriorated iPSC

generation. Our analyses illustrated the importance of choosing

the right combination of perturbations and the usefulness of our

computational modeling to quickly screen a large number of

recipes.

To better understand the mechanisms of iPSC generation, we

monitored how reprogramming proceeded. We first calculated the

potential of each cell state and found the most probable route

(MAP path) starting from a differentiated state to its converged

final state (see Methods and Text S2). The reprogramming

progresses of the experimentally confirmed recipes are shown in

Figure 4A as an illustration. Consistent with the landscape

concept, there were many reprogramming paths and all of them

went through two barriers, one surrounding the differentiation

attractors and another near to the hESC attractors. Different paths

Table 1. Experimentally validated reprogramming recipes.

Reprogramming Recipes Experimental iPSC generation [44]

Predicted iPSC
Reprogramming
Efficiencya Expression similarity to the ESC stateb

RMSD Pearson (r) Spearman (r)

OCT4_SOX2_MYC_PRDM14 Yes 0.357106 0.089769 0.955399 0.966317

OCT4_SOX2_KLF4_PRDM14 Yes (7 folds of OSK efficiency) [44] 0.356406 0.053386 0.988467 0.989982

OCT4_SOX2_KLF4_MYC_PRDM14 Yes (3.5 fold of OSKM efficiency) [44] 0.339366 0.086431 0.958194 0.967652

OCT4_SOX2_KLF4_MYC Yes 0.231418 0.086810 0.959018 0.967399

OCT4_SOX2_KLF4 Yes 0.210998 0.055700 0.989700 0.988800

OCT4_MYC_KLF4 No 0 0.147900 0.888600 0.917300

SOX2_MYC_KLF4 No 0 0.162500 0.871400 0.909100

OCT4_MYC_PRDM14 No 0 0.374400 20.006200 20.103700

SOX2_MYC_PRDM14 No 0 0.427400 20.338900 20.386800

aReprogramming efficiency reflects whether the recipe can convert a differentiated cell to an iPSC.
bExpression similarity to the hESC state reflects how similar the reprogrammed state is to the hESC state measured by root-mean-square-deviation (RMSD) and Pearson

and Spearman correlation coefficients between gene expression of the reprogrammed state. The hESC state is simulated by clamping OCT4, Sox2 and NANOG to 1.
doi:10.1371/journal.pcbi.1002300.t001

Systematic Search for Recipes to Generate iPSC
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had a variable number of steps between the two barriers that

defined three modes of reprogramming. Interestingly, if GATA6

was knocked down, all the reprogramming paths had a decreased

duration between the two barriers and quickly found the

converged state (Figure 4B and C). We also monitored the gene

expression changes of the 22 marker genes during reprogramming.

Compared with the successful iPSC paths, those converged to non-

ES states showed relatively higher expression of GATA6 and

GATA2 (Figure 4D and E).

Despite the difference of evolving steps, the three modes of

reprogramming showed similar temporal gene expression patterns

(Figure 4E, Table 5 and 6), which suggested there might be

common transition states during reprogramming. We counted the

number of initial states that passed a specific state during their

evolution and this number was defined as the dynamical flux of the

cell state. Using an arbitrary cutoff of 1000 for the flux, we found

several states as highly probable transition states during repro-

gramming. Figure 5 shows the transition states for the 5

experimental recipes with and without GATA6 knockdown. A

prominent pattern emerged from these states was that GATA6

was partially repressed by overexpressed OCT4 and this

repression activated NANOG. NANOG’s activation then led the

consequent activation of pluripotent genes and repression of

differentiation genes. Knockdown of GATA6 would enhance this

regulation to facilitate reprogramming.

Discussion

In this study, we curated a genetic network composed of direct

regulatory interactions that regulate self-renewal and differentia-

tion of hESC. We developed a machine learning method to make

de novo predictions of gene expression changes upon perturbations

to the network. Our predictions were validated by a strong

correlation between predicted and experimental values in OCT4

Table 2. Top 10 candidate reprogramming recipes in each composition of master regulators.

OCT4_SOX2 OCT4_NANOG OCT4_SOX2_NANOG

OCT4_SOX2_LMCD1_PRDM14 OCT4_NANOG_GDF3_ZFP42 OCT4_SOX2_NANOG_KLF4

OCT4_SOX2_PBX1_ZIC3 OCT4_NANOG_PBX1_ZFP42 OCT4_SOX2_NANOG_PBX1

OCT4_SOX2_PBX1_PRDM14 OCT4_NANOG_FOXO1A_PBX1 OCT4_SOX2_NANOG_GDF3

OCT4_SOX2_KLF4_PBX1 OCT4_NANOG_FOXO1A_GDF3 OCT4_SOX2_NANOG_TDGF1

OCT4_SOX2_FOXO1A_PBX1 OCT4_NANOG_GDF3_PBX1 OCT4_SOX2_NANOG_ZFP42

OCT4_SOX2_GDF3_PBX1 OCT4_NANOG_FOXO1A_TDGF1 OCT4_SOX2_NANOG_FOXO1A

OCT4_SOX2_PBX1_TDGF1 OCT4_NANOG_FOXO1A_ZFP42 OCT4_SOX2_NANOG_ZNF206

OCT4_SOX2_PBX1_ZFP42 OCT4_NANOG_KLF4_ZFP42 OCT4_SOX2_NANOG_PRDM14

OCT4_SOX2_LMCD1_PBX1 OCT4_NANOG_PRDM14_ZFP42 OCT4_SOX2_NANOG_ZIC3

OCT4_SOX2_PBX1_ZNF206 OCT4_NANOG_FOXO1A_KLF4 OCT4_SOX2_NANOG_FOXD3

doi:10.1371/journal.pcbi.1002300.t002

Figure 3. Occurrence of proteins in the 113 4-factor candidate reprogramming recipes.
doi:10.1371/journal.pcbi.1002300.g003
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and NANOG knockdown experiments. We conducted a system-

atic search for new recipes that could achieve reprogramming. In

addition to recovering several experimentally confirmed recipes,

our study provided a wealth of new recipes that serve as a guide for

improving experimental iPSC generation. Our theoretical analyses

suggested knocking down additional genes, such as GATA6,

would further enhance experimentally known reprogramming

recipes. Since our framework is general, it is also applicable to

other cellular reprogramming such as transdifferentiation.

We defined two criteria to assess whether a recipe could achieve

reprogramming: reprogramming efficiency and gene expression

similarity to hESCs. We noticed that the calculated reprogram-

ming efficiencies were much higher than the experimentally

observed ones of around 0.01% to 0.1%. There are several

possible reasons. In our modeling, overexpression or knockdown

of genes is 100% efficient but in reality the efficiency of such

perturbations is imperfect. In addition, our modeling only

considers whether the recipe can induce pluripotency. It did not

consider the proliferation efficiency of the reprogrammed cell.

Therefore, the calculated values should be taken as an upper

bound of the reprogramming efficiency. When calculating gene

expression similarity to hESCs, we used the gene expression profile

of the state with active OCT4, SOX2 and NANOG genes to

represent the normal hESC. Once the upstream signaling

pathways of these master regulators are defined, a better modeling

strategy would incorporate environmental signals into the network

and let extracellular signals control the activities of the master

pluripotency regulators.

Although the present results successfully recovered experimen-

tally validated recipes and suggested new ones, many aspects of

our approach can be improved. With the advancement of

technologies to manipulate hESCs, new regulatory interactions

will be quickly discovered, which will expand the genetic network

used in this study. This is expected to improve the accuracy of

gene expression prediction and recipe identification. With the

availability of additional data such as temporal gene expression of

self renewal or induced differentiation, our DBN model can be

further trained by incorporating such data to improve/expand

the network to better consider proliferation efficiency (for

reprogramming efficiency) and the resemblance (for reprogram-

ming quality) of the reprogrammed cells to the natural targeted

cells [43].

In summary, this study and our previous work on yeast [43]

suggest a new systematic strategy to find recipes for a desired

reprogramming task. Namely, a genetic network regulating the

original and target cell types is constructed from existing

knowledge or learned by incorporating experimental data. A

mathematical model such as DBN or probabilistic Boolean

network can be used to conduct inference on gene expression or

other phenotypes based on the network, which allows exhaustive

or comprehensive search of perturbations (recipes) that can

convert the phenotype representing the original cell type to that

representing the target cell type. This work is a proof-of-concept

study that forms the foundation of applying such strategy to find

effective recipes to achieve any cellular reprogramming with

satisfactory efficiency and quality.

Table 3. Representative candidate reprogramming recipes.

OCT4_SOX2 OCT4_NANOG OCT4_SOX2_NANOG

OCT4_SOX2_PBX1_PRDM14 OCT4_NANOG_PRDM14_ZIC3 OCT4_SOX2_NANOG_PRDM14

OCT4_SOX2_PBX1_ZIC3 OCT4_NANOG_KLF4_ZIC3 OCT4_SOX2_NANOG_ZIC3

OCT4_SOX2_KLF4_PBX1 OCT4_NANOG_PBX1_ZIC3 OCT4_SOX2_NANOG_KLF4

OCT4_SOX2_KLF4_PRDM14 OCT4_NANOG_KLF4_PRDM14 OCT4_SOX2_NANOG_PBX1

OCT4_SOX2_PRDM14_ZIC3 OCT4_NANOG_KLF4_PBX1

OCT4_SOX2_KLF4_ZIC3 OCT4_NANOG_PBX1_PRDM14

The experimentally confirmed recipe (OSKP) is highlighted in bold.
doi:10.1371/journal.pcbi.1002300.t003

Table 4. Effect of GATA6 knockdown on reprogramming.

Experimental Reprogramming Recipes
(Over- expression & GATA6 Knockdown)

Predicted iPSC
ReprogrammingEfficiency Expression similarity to the ESC state

RMSD Pearson (r) Spearman (r)

OCT4_SOX2_MYC_PRDM14&GATA6 0.613516 0.081913 0.961799 0.965876

OCT4_SOX2_KLF4_PRDM14&GATA6 0.616624 0.044800 0.989263 0.987023

OCT4_SOX2_KLF4_MYC_PRDM14&GATA6 0.586480 0.079915 0.964070 0.968269

OCT4_SOX2_KLF4_MYC&GATA6 0.627800 0.079739 0.964028 0.966130

OCT4_SOX2_KLF4&GATA6 0.570686 0.044417 0.990064 0.987042

OCT4_MYC_KLF4&GATA6 0 0.113600 0.895640 0.923445

SOX2_MYC_KLF4&GATA6 0 0.122500 0.881400 0.933425

OCT4_MYC_PRDM14&GATA6 0 0.314400 20.003200 20.100370

SOX2_MYC_PRDM14&GATA6 0 0.387400 20.328900 20.342112

doi:10.1371/journal.pcbi.1002300.t004
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Methods

To search for reprogramming recipes, we need to make de novo

predictions of the phenotypic consequences of perturbations to a

genetic network. We use expression levels of all the genes in the

network to represent phenotypes, i.e. ES or differentiation state.

We chose dynamic Bayesian network (DBN) to model the curated

hESC network (Figure 1) that contain many feedback loops.

Prediction of consequences of a perturbation is an inference

problem in DBN. Genomic data, either perturbation (gene

knockdown or overexpression) or temporal gene expression data,

that are conventionally used to train the parameters or learn the

structure of the DBN, are very limited in hESC. Therefore, we

chose a method based on the constraint imposed by the network

structure on the parameter space to conduct inference. We showed

that this method achieved a satisfactory performance on predicting

gene expression changes upon perturbation in the hESC (Figure 2

and S1 in Text S1). Our model also allows efficient calculation of

the potential landscape in the cell state space and monitoring the

reprogramming progress in this landscape. We outline our

approach below and the details of the model can be found in

the Text S2.

Figure 4. Reprogramming procedure. (A). State transitions during iPSC generation by the five experimentally confirmed recipes
(overexpression of OCT4, SOX2, KLF4, PRDM14, or MYC). Each recipe was sampled 100,000times. For illustrative purposes, each cell state was
only defined by the 22 marker genes. The node size is proportional to the dynamical flux, which is defined as the number of paths going through the
node. The color of nodes indicates the dynamical path of which experimentally validated recipes going through this node. Note that different
reprogramming paths consist of a variable number of states, i.e. different paths pass through a variable number of nodes. (B). Potential changes
along the reprogramming paths by the five experimental recipes (left) and experimental recipes plus knockdown of GATA6 (right).
Upper (blue lines) and lower (red lines) panels respectively show the paths that converged to the hESC and non-hESC attractors. The numbers
indicate the percentages of initial states converged to the hESC attractors at the corresponding steps. X-axis values specify simulation step numbers.
(C). Schematic illustration of the three modes of reprogramming by the 5 experimental recipes (Table 1) on the potential landscape
(upside down of Figure 1). The z-axis specifies the potential energy of a cell state and each cell state is specified by x- and y-coordinates. Mode 1
represents the most efficient (shortest) reprogramming paths spent least steps, mode 2 represents (moderate length) reprogramming pathways
spent one extra steps in the valley, and mode 3 represents the least efficient (longest) reprogramming pathway with two extra steps in the valley. (D).
Gene expression changes of marker genes during reprogramming. As the simulation progresses, the hESC marker genes are down
regulated while the differentiation marker genes are up regulated. The gene expression colors represent averaged values at each step. This analysis
was based on experimentally validated reprogramming recipes. (E). Expression of marker genes in the three modes of experimentally
validated reprogramming recipes. Each column represents a unique state. The width of each simulation step (from initialization at step 0 to the
converged joint probability at step 9) during reprogramming is proportional to the number of distinct cell states at that step: the larger the width, the
more distinct cell states.
doi:10.1371/journal.pcbi.1002300.g004
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Constraint-based Qualitative Knowledge-DBN (QK-DBN)
model

We constructed DBN model, referred as QK-DBN, by utilizing

only qualitative knowledge (QK) to make quantitative probabilistic

inference. In the full Bayesian approach, we consider the model’s

uncertainty in probabilistic inference and perform probabilistic

inference by model averaging: given evidence E, qualitative

knowledge V and quantitative observation D, the (averaged)

conditional distribution of the remaining variable X is calculated

by integrating over the models:

P(X jE,D,V)~

ð
P(X jE,m)P(mjD,V)dm

~

ð
P(X jE,m)P(Djm)P(mjV)dm

ð1Þ

where P(D|m) is the likelihood of the model and P(m|V) represents

the model’s prior probability given the qualitative knowledge. In the

extreme case, there is no available quantitative data, i.e. D = null. It

is still possible to make Bayesian probabilistic inference of Eq. 1

based on the knowledge V alone and the evidence E.

P(X jE,V)~

ð
P(X jE,m)P(mjV)dm ð2Þ

Each DBN model m is determined by its structure and parameter

vector. The Bayesian model space (all possible DBN models) is thus

defined by: 1) a set of model structures S = {sk, k = 1,…,K}; 2) for

each structure sk, a continuous ensemble of conditional probability

table (CPT) configurations ~hhk. The BN/DBN model space can be

written as M = {(sk, ~hhk),k = 1,…,K}. For every structure sk, each

possible parameterization in the CPT configuration ensemble h[~hhk

defines a member BN/DBN i.e. m = {(sk,h)|k = 1,…,K} and the

distribution of a single BN/DBN model is normalized against all

models as

P(mjV)~P(sk,hjV)~
P(hjsk,V)P(skjV)PK

k
0
~1

P(s
k
0 jV)

ð
h

P(hjs
k
0 ,V)dh

ð3Þ

where a~
PK

k
0
~1

P(s
k
0 jV)

Ð
h

P(hjs
k
0 ,V)dh is the normalization scalar.

P(X jE,V)~
XK

k~1

ð
h

P(X jE,sk,h)
P(hjsk,V)P(skjV)

a
dh ð4Þ

We assume that the qualitative knowledge V regarding the network

structure is consistent and certain, i.e. expert is fully certain about

the dependence and direction of the influential relationships

between two variables. Then the probability distribution of the

model structure P(sk|V) is a Dirac delta function peaked at a

specified structure sk, P(skjV)~d(s{sk). Given the k-th model

structure, the qualitative constraints define a set of possible

parameter configurations ~hhk (see Text S2). Thusly, the conditional

Table 5. Transition states (expression levels) during reprogramming using the five experimental recipes.

Gene DifferentiationAttractor DifferentiationBarrier
Valley at
step(2,3,4)

hES Barrier
Climb at 3,4,5

hES Valley at
step 4,5,6,7,8

hES Attractor at step
4,5,6,7,8

OCT4 0 1 1 1 1 1

SOX2 0 1 1 1 1 1

NANOG 0 0 0 1 1 1

Oct4-Sox2 0 0 1 1 1 1

KLF4 0 0.5 1 1 1 1

FOXD3 0 0 0.6161 0.5172 1 1

ZIC3 0 0 0.5094 0.4721 1 1

ZFP42 0 0 0.5248 0.4893 1 1

GDF3 0 0 0 0 1 1

TDGF1 0 0 1 1 1 1

PBX1 0 0 0 0 1 1

GATA2 1 1 0.4883 0.4893 0.2075 0

GATA3 1 1 1 1 0 0

hCGb 1 1 0 0 0 0

hCGa 1 1 0.4415 0.368 0.3774 0

CDX2 1 1 1 1 0 0

GATA4 1 1 0.6475 0.5043 0 0

GATA6 1 1 0.3577 0 0 0

FOXA2 1 1 0.5927 0.6352 0.3774 0

AFP 1 1 0.5779 0.441 0.4528 0

SOX17 1 1 0.4119 0.3509 0.3774 0

T 1 1 0.4313 0.4506 0 0

doi:10.1371/journal.pcbi.1002300.t005
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probability of each parameter vector h given the k-th structure and

qualitative constraints p(hjsk,V) is equal to the probability of this

vector belonging to the set of possible parameter configurations ~hhk

defined by the constraints in V, i.e. p(hjsk,V)~
1, if h[~hhk

0, if h=[~hhk

�
.

Therefore, the normalization factor a in Eq. 3 and 4 is equal to

the size of the constrained parameter space j~hhkj.

a~
XK

k
0
~1

d(s{sk)

ð
h

P(hjs
k
0 ,V)dh~

ð
h

P(h[~hhkjsk,V)dh~j~hhkj ð5Þ

Combining Eq. 1 to 5, we get:

P(mjV)~P(sk,hjV)~
P(h[~hhkjsk,V)d(s{sk)

j~hhkj
~

1=j~hhkj, if s~sk&h[~hhk

0, if s=sk&h=[~hhk

(
ð6Þ

P(X jE,V)~
XK

k~1

d(s{sk)

ð
h

1

j~hhkj
P(X jE,sk,h)P(h[~hhkjsk,V)dh

~

ð
h

1

j~hhkj
P(X jE,sk,h)P(h[~hhkjsk,V)dh

~
1

L

XL

l~1

P(X jE,sk,hl),hl*P(h[~hhkjsk,V)

ð7Þ

Integration during Bayesian inference (in Eq. 4) can become

intractable by analytical methods. In this case, we employ Markov

chain Monte Carlo (MCMC) to compute the empirical value of

the inference in Eq. 7. To efficiently generate samples satisfying

the constraints, we exploited a rejection sampling method. The

idea is to generate more samples from the current ‘‘unexplored’’

region so that the entire parameter space can be explored evenly.

First, we generated samples from the proposed distribution and

then rejected the samples inconsistent with constraints. The second

step was to enhance sampling in the under-sampled space (see

Text S2 for details).

Inference in QK-DBN
We built a DBN by unrolling the cyclic hES network (Figure 1B).

Since outgoing interfaces separate the current network from the

past, only the potential function over the outgoing interface is

required when forwarding the network belief at the current step to

the next step. Computationally, we need to store this vector of

information. The size of this vector is mn where n is the number of

the variables in the outgoing interface and m is the number of the

discrete values a variable can take (m = 2 in this study). To reduce

computational cost and memory load, we should keep n as small as

possible. We have developed a scheme to identify an optimal set of

interface nodes. We firstly employed depth-first search [51] to

identify all the nodes involved in the non-repeating loops in the

curated genetic network as candidates for the interface nodes

(Table S1 in Text S2), which are presumably important for the

network’s stochastic dynamics. The candidate interface nodes

involved in all the non-repeating loops are listed in Table S2 and

Table 6. Transition states (expression levels) during reprogramming using the five experimental recipes plus GATA6 knockdown.

Gene
Differentiation
Attractor

Differentiation
Barrier

Valley at
step 2

hES Barrier
at step 3

hES Valley at
step 4,5,6 hES Attractor at 7

OCT4 0 1 1 1 1 1

SOX2 0 1 1 1 1 1

NANOG 0 0 0 1 1 1

Oct4-Sox2 0 0 1 1 1 1

KLF4 0 0.5 1 1 1 1

FOXD3 0 0 0.547 0.51 1 1

ZIC3 0 0 0.5022 0.4843 1 1

ZFP42 0 0 0.5098 0.4943 1 1

GDF3 0 0 0 0 1 1

TDGF1 0 0 1 1 1 1

PBX1 0 0 0 0 1 1

GATA2 1 1 0.5186 0.4915 0.16 0

GATA3 1 1 1 1 0 0

hCGb 1 1 0 0 0 0

hCGa 1 1 0.5153 0.4843 0.4 0

CDX2 1 1 1 1 0 0

GATA4 1 1 0.546 0.4858 0 0

GATA6 1 0 0 0 0 0

FOXA2 1 1 0.5033 0.7137 0.4 0

AFP 1 1 0.5405 0.3604 0.6 0

SOX17 1 1 0.4978 0.463 0.32 0

T 1 1 0.5142 0.4843 0 0

doi:10.1371/journal.pcbi.1002300.t006
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Figure S3 in Text S2. Next, to reduce inference complexity, we

minimized the interface set. In particular, we ranked all candidates

by a heuristic score = B/(12A). If this candidate is a must-cut node

(loops must be cut at this node in order to keep the unrolled graph

acyclic, such as auto-regulation node), A = 1, then its score

becomes positive infinity (maximum). Otherwise A = 0 and

score = B. B is the number of total loops of which this node is a

member. If a node is not in a loop, then B = 0 and score = 0. The

values of A and B associated with each interface candidate are

listed in Table S2 in Text S2. We iteratively picked nodes with the

biggest score value from the list and cut all outgoing edges which

are part of any loop from this node. We repeated this step until all

loops were broken. All selected nodes compose the outgoing

interface and these nodes are {NANOG, SP1, Oct4-Sox2, CDX2,

PIAS1, GATA6, FOXA2, FOXA1} (yellow-colored nodes in

Figure 1B).

Once these interface nodes were identified, we used the

interface algorithm [52] to convert the DBN into junction tree

and performed the message-passing algorithm [53] in the junction

tree to infer both the joint probability over all variables and the

marginal probability of each variable. After message-passing

converged and the junction tree became a consistent tree [53],

we calculated the joint probability over all variables �XX in the

junction tree as P( �XX)~
Pi wUi

Pj wSi

, where wUi
and wSi

represent the

cluster and sepset potentials respectively. The marginal probability

of a variable X was calculated by P(X)~
P

�VV \X wU ( �VV )~P
V 0\X wS(V 0), i.e. we could pick any cluster U or sepset S that

contains the variable X and integrate out its potential function

against other variables in this cluster or sepset.

Predicting gene expression changes in human ES cells
Let G = {g1, g2,…,gN}, represent the gene expression levels of

the genes in the network. We assumed the nodes in the DBN

model are binary variables which take value of 0 or 1. Value ‘‘0’’

means that this gene is minimally expressed and ‘‘1’’ means is

maximally expressed. The probability of a gene being max-/min-

expressed (under condition E) is a continuous value in the range of

[0,1]. When a gene is max-expressed, the probability of its node

being ‘‘1’’ is 1, i.e. P(gi = 1|E) = 1. When a gene is min-expressed,

the probability of its node being ‘‘1’’ is 0, i.e. P(gi = 1) = 0.

Therefore, we consider this probability positively proportional to

the expression level. The higher the probability of gi = 1 is, the

higher the gene’s expression level is.

Let gi,max and gi,min represent the maximum and minimum

expression level of the i-th gene gi, respectively. gi|E is the

expression level of gi under condition E and Di is gi expression

range. The (marginal) probability/belief of gi being max-/min-

expressed is a random value in [0,1] which is linearly proportional

to the expression level (intensity) of this node:

P(gi~1jE)%(KijE)|
½gijE{gi,minjE�
½gi,maxjE{gi,minjE�

~(KijE)|
½gijE{gi,minjE�

DijE
ð8Þ

where Ki is a constant. We can further simplify the above equation

by rescaling the minimum expression level of gi to 0 and the

expression range to [0, gi,max|E]. In this case, the probabilities can

be simplified as:

P(gi~1jE)%(KijE)|
gijE

gi,maxjE
ð9Þ

The gene expression ratios between two conditions can be directly

evaluated as:

ratioi,probability~
P(gi~1jE1)

P(gi~1jE2)
%

(KijE1)

(KijE2)
|

gi,maxjE2

gi,maxjE1

|
gijE1

gijE2

~
ai,1

ai,2

|ratioi,actualð10Þ

where ai,1~
KijE1

gi,maxjE1
and ai,2~

KijE2

gi,maxjE2
are unknown scalars.

The ratio between the probabilities is linearly proportional to the

Figure 5. Transition states in the reprogramming. The cell states with larger than 1000 dynamical flux at each simulation step of
reprogramming are shown for the 5 experimental recipes and the experimental recipes plus GATA6 knockdown.
doi:10.1371/journal.pcbi.1002300.g005
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ratio between the gene expression levels. E1 and E2 are two

experimental conditions, such as a control and a knockdown

experiment, which are modeled as evidence in DBN. Therefore,

we can predict the ratios of the gene expressions between

knockdown and control experiments by calculating the ratios

between the marginal probabilities of this gene under these

conditions.

Energy landscape in the cell state space
In this study, we assumed that cell states can be uniquely

defined by the expression levels of all genes in the genetic network.

We can calculate the potential energy of each state as

Ui~{ ln (P(Si)), where P(Si) is the probability of i-th state of

the network and Ui is the potential energy of this state. A collection

of the potential energy values of all states in this network can be

represented as �UU~fU1,U2,:::UMg, where M = 2N and N is the

number of genes in the constructed network. We can calculate all

potential energy values in �UU from the converged junction tree (see

above). To compute the landscape of the genetic network, we need

to consider the potentials under all possible (at least most

representative) conditions. For our purpose of studying iPSC

generation and the differentiation of the hESC, we chose to mimic

the most representative scenarios during iPSC generation by

varying the expression levels of the three master regulators OCT4,

SOX2 and NANOG in hESCs from 0 to 1 with a small interval of

0.2. In DBN inference, for each combination of the levels of these

regulators, we clamped their probabilities accordingly and

simulated �UU jEj (Energy under j-th condition). Lastly, we

calculated and normalized �UU jEj for all possible j, and then sum

them to get the full landscape.

Searching for recipes to generate iPSC
Let E1 denote the hESC state. Since the three master hESC

regulators OCT4, SOX2 and NANOG are max-expressed in

hESC, without losing generality, we clamped their marginal

probability to 1 in our simulation. Then, by QK-DBN inference,

we calculated the marginal probabilities of all the genes in the

network in the hESC and these probabilities formed a vector of

probabilities �PPES~fP(g1~1jE1),P(g2~1jE1),:::,P(gN~1jE1)g.
Similarly, let E2 represent the perturbation conditions specified

by an iPS recipe. To search for iPS recipes in our simulation,

starting from the differentiation states (OCT4, SOX2 and

NANOG initialized to 0), we evolved the DBN given a specific

reprogramming perturbation. Consequently, by QK-DBN, for

each reprogramming recipe E2, we calculated the marginal

probabilities for all the genes in the network given this perturbation.

These marginal probabilities under E2 also form a vector
�PPrecipe~fP(g1~1jE2),P(g2~1jE2),:::,P(gN~1jE2)g. Since these

marginal probabilities are proportional to their gene expression

levels, we could directly evaluate a recipe by comparing vectors �PPES

and �PPrecipe. We employed root-mean-square distance (RMSD),

Pearson correlation, and Spearman correlation to evaluate the

distance from �PPrecipe to �PPES.

Depicting pathways of iPSC generation
We explored the cell state transition pathways during repro-

gramming. As mentioned above, the cell state is defined by the

expression levels of all the genes in the network. In DBN, P( �XXt)~

PN
i~1 P X i

t jPa(X i
t )

� �
P X i

t{1

� �� �
~
P
�XX t{1

P �XX tj �XX t{1ð ÞP �XX t{1ð Þ, where

�XXt and �XXt{1 denote the expression levels of all genes at time t and

t21 respectively. We formulated the probability propagation in

DBN for cell states as P(St)~
P
St{1

P StjSt{1ð ÞP St{1ð Þ, where

St~ �XXt and St{1~ �XXt{1 denote the cell state at time t and time

(t21). The probability of the current cell state is equal to the

integration of the product of state transition probability P StjSt{1ð Þ
and the cell state probability at the last time step P St{1ð Þ. To

simplify the computation, we applied maximum-a-posterior (MAP)

estimation to predict the state-transition pathway. Namely, at each

time step t, we picked the state which maximizes the cell state

posterior at the current time step as the current cell state,

ŜSt~arg maxVS[St
P(St)ð Þ. Note that the estimated pathway by

MAP is not necessarily global maximum.
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