Dstract

CDKN2C-Null Leiomyosarcoma: A Novel, Genomically Distinct Class of *TP53/ RB1*–Wild-Type Tumor With Frequent *CIC* Genomic Alterations and 1p/19q-Codeletion

Erik A. Williams, MD¹; Radwa Sharaf, PhD¹; Brennan Decker, MD, PhD²; Adrienne J. Werth, MD³; Helen Toma, MD³; Meagan Montesion, PhD¹; Ethan S. Sokol, PhD¹; Dean C. Pavlick, BS¹; Nikunj Shah, BS¹; Kevin Jon Williams, MD⁴; Jeffrey M. Venstrom, MD¹; Brian M. Alexander, MD, MPH¹; Jeffrey S. Ross, MD^{1,5}; Lee A. Albacker, PhD¹; Douglas I. Lin, MD, PhD¹;

Jeffrey M. Venstrom, MD⁺; Brian M. Alexander, MD, MPH⁺; Jeffrey S. Ross, MD^{+,3}; Lee A. Albacker, PhD⁺; Douglas I. Lin, MD, PhD⁺; Shakti H. Ramkissoon, MD, PhD^{1,6}; and Julia A. Elvin, MD, PhD¹

PURPOSE Leiomyosarcoma (LMS) harbors frequent mutations in *TP53* and *RB1* but few actionable genomic alterations. Here, we searched for recurrent actionable genomic alterations in LMS that occur in the absence of common untreatable oncogenic drivers.

METHODS Tissues from 276,645 unique advanced cancers, including 2,570 uterine and soft tissue LMS, were sequenced by hybrid-capture–based next-generation DNA and RNA sequencing/comprehensive genomic profiling of up to 406 genes. We characterized clinicopathologic features of relevant patient cases.

RESULTS Overall, 77 LMS exhibited homozygous copy loss of *CDKN2C* at chromosome 1p32.3 (3.0% of LMS). Genomic alterations (GAs) in *TP53, RB1*, and *ATRX* were rare compared with the remainder of the LMS cohort (11.7% v 73.4%, 0% v 54.5%, 2.6% v 24.5%, respectively; all P < .0001). *CDKN2C*-null LMS patient cases were significantly enriched for GAs in *CIC* (40.3% v 1.4%) at 19q13.2, *CDKN2A* (46.8% v 7.0%), and *RAD51B* (16.9% v 1.7%; all P < .0001). Chromosome arm-level aneuploidy analysis of available LMS patient cases (n = 1,284) found that 81% (58 of 72) of *CDKN2C*-null LMS exhibited 1p/19q-codeletion, a significant enrichment compared with 5.1% in the remainder of the LMS cohort (P < .0001). In total, 99% of *CDKN2C*-null LMS were in women; the median age was 61 years at surgery (range, 36-81 years). Fifty-five patient cases were uterine primary, four were nonuterine, and the remaining 18 were of uncertain primary site. Sixty percent of cases showed at least focal epithelioid variant histology. Most patients had advanced-stage disease, with 62% of confirmed uterine primary LMS at International Federation of Gynecology and Obstetrics stage IVB. We further validated our findings in two publicly available datasets: The Cancer Genome Atlas and the Project GENIE initiative.

CONCLUSION *CDKN2C*-null LMS defines a genomically distinct tumor that may have prognostic and/or therapeutic clinical implications, including possible use of specific cyclin-dependent kinase inhibitors.

JCO Precis Oncol 4:955-971. © 2020 by American Society of Clinical Oncology Creative Commons Attribution Non-Commercial No Derivatives 4.0 License @ () () ()

ASSOCIATED CONTENT Appendix

Author affiliations and support information (if applicable) appear at the end of this article.

Accepted on April 24, 2020 and published at ascopubs.org/journal/ po on September 1, 2020: DOI https://doi. org/10.1200/P0.20. 00040

INTRODUCTION

Leiomyosarcoma (LMS), a neoplasm defined by smooth muscle differentiation, is the most common form of uterine sarcoma.¹ LMS is aggressive and resists standard therapy, with high rates of recurrence and progression. Multiple studies have shown an overall 5-year survival of 25%-76%, with survival for patients with metastatic disease at presentation approaching 10%-15%.² Stage of disease, as defined by the International Federation of Gynecology and Obstetrics (FIGO)³ or the American Joint Committee on Cancer (AJCC),⁴ at the time of diagnosis, is the most important prognostic factor for uterine LMS.¹ Surgery is the standard of care for localized tumors, with hormonal and cytotoxic chemotherapy reserved for advanced stages.⁵

Genomic studies of LMS have demonstrated notable mutational heterogeneity, frequent inactivation of *TP53* and *RB1* through varied mechanisms, and widespread copy number alterations.⁶ LMS is often associated with complex karyotypes with numerous chromosomal gains and losses.⁷ LMS has demonstrated occasional potentially targetable genomic alterations (GAs), but novel targeted therapeutic agents have not been widely used.⁸⁻¹⁰ Herein, we describe a novel recurrent genomic signature of cyclin-dependent kinase inhibitor-2C gene (*CDKN2C*) homozygous loss in LMS primarily

CONTEXT

Key Objective

Leiomyosarcoma (LMS), an aggressive tumor with limited curative options, shows frequent mutations in *TP53* and *RB1* but few actionable genomic alterations. Here, we searched for recurrent actionable genetic alterations in LMS.

Knowledge Generated

A novel, genomically distinct class of LMS (3.0%; 77 of 2,570 cases) harbor homozygous loss of *CDKN2C*, which encodes the cyclin-dependent kinase inhibitor-2C. *CDKN2C*-null LMS lack typical *TP53* and *RB1* mutations; show concurrent homozygous deletion of *CIC*, *CDKN2A*, and *RAD51B*; and show frequent 1p/19q-codeletion.

Relevance

The finding of recurrent *CDKN2C*-null LMS provides insight into tumor biology and raises the possibility for use of specific cyclin-dependent kinase inhibitors in this aggressive disease.

from the uterus, with significantly low frequency of *TP53* and *RB1* GAs.

METHODS

Cohort and Genomic Analyses

Comprehensive genomic profiling was performed in a Clinical Laboratory Improvement Amendments-certified, College of American Pathologists-accredited laboratory (Foundation Medicine, Cambridge, MA). Approval for this study, including a waiver of informed consent and a HIPAA waiver of authorization, was obtained from the Western Institutional Review Board (Protocol No. 20152817). The pathologic diagnosis of each patient case was confirmed on routine hematoxylin and eosin (H&E)-stained slides. Sections were macrodissected to achieve > 20% estimated percent tumor nuclei in each case, for which the percent tumor nuclei equals 100 times the number of tumor cells divided by total number of nucleated cells. In brief, \geq 60 ng of DNA was extracted from 40-µm sections of tumor samples in formalin-fixed, paraffin-embedded tissue blocks. The samples were assayed by adaptor ligation hybrid capture, performed for all coding exons of 236 (v1), 315 (v2), or 405 (v3) cancer-related genes plus select introns from 19 (v1), 28 (v2), or 31 (v3) genes frequently rearranged in cancer (Appendix Table A1).^{11,12} For samples with available RNA, targeted RNA sequencing was performed for rearrangement analysis in 265 genes.¹² Sequencing of captured libraries was performed using the Illumina HiSeq 4000 System (Illumina, San Diego, CA) to a mean exon coverage depth of targeted regions of >500x, and sequences were analyzed for GAs, including short variant alterations (base substitutions, insertions, and deletions), copy number alterations (focal amplifications and homozygous deletions), and select gene fusions or rearrangements.^{11,13,14} To maximize mutation detection accuracy (sensitivity and specificity) in impure clinical specimens, the test was previously optimized and validated to detect base substitutions at a \geq 5% mutant allele frequency, indels with $a \ge 10\%$ mutant allele frequency with \ge

99% accuracy, and fusions occurring within baited introns/ exons with > 99% sensitivity.¹¹ Germline and somatic status of pathogenic alterations was not delineated. Tumor mutational burden (TMB; mutations/Mb) was determined on 0.8-1.1 Mb of sequenced DNA.¹⁴ Microsatellite instability was determined on up to 114 loci.¹⁵

Copy number analysis. Copy number analysis to detect gene-level amplifications at > 6-8 copies depending on tumor ploidy and homozygous deletions was performed as previously described.¹¹ In brief, the aligned DNA sequences of each tumor specimen were normalized against a process-matched normal, producing log-ratio and minor allele frequency data. Next, whole-genome segmentation was performed using a circular binary segmentation algorithm on the log-ratio data. A Gibbs sampler fitted copy number model and a grid-based model were fitted to the segmented log-ratio and minor allele frequency data, producing genome-wide copy number estimates. Finally, the degrees-of-fit of candidate models returned by Gibbs sampling and grid sampling were compared, and the optimal model was selected by an automated heuristic.

Signal-to-noise ratios for each genomic segment were used to determine gain or loss per chromosome arm on the basis of tumor purity and ploidy; the sum of segment sizes determined the fraction of each arm gained or lost. Chromosomes were assessed for arm-level aneuploidy, defined as positive if > 50% of the arm was altered. This threshold was previously validated on 109 IDH1/2-mutant glioma samples with 1p/19q-codeletion fluorescence in situ hybridization (FISH) results available. Patient cases were blinded to FISH results, and 1p/19q-codeletion status was determined via arm-level aneuploidy analysis. Concordance was 95%, sensitivity was 91%, and positive predictive value was 100%. A query for chromosome 1p and 19q arm-level aneuploidy was performed on LMS patient cases with available aneuploidy data (n = 1,284), with positive patient cases defined as 1p/19q-codeleted.

Clinicopathologic analysis of LMS cohort harboring homozygous CDKN2C deletion. The cohort of CDKN2C-null LMS comprised 77 cases, each from a different patient, that were submitted to Foundation Medicine for comprehensive genomic profiling during routine clinical care. Human investigations were performed after approval by a local human investigations committee and in accordance with an assurance filed with and approved by the Department of Health and Human Services, when appropriate. Clinicopathologic data, including patient age, sex, tumor site, and FIGO stage or AJCC (8th edition) stage, were extracted from the accompanying pathology report.^{4,16} Primary site data were not available for a subset of patient cases ("indeterminant primary"). The histopathology was assessed on routine H&Estained slides of tissue sections submitted for genomic profiling by two board-certified pathologists (E.A.W., D.I.L.).

Quantitative data were analyzed using the Fisher exact test because of the categoric quality of the data and the size of the cohort. For the age and TMB comparisons between two groups, the nonparametric Mann-Whitney U test was used. A two-tailed P value of < .05 was considered statistically significant; the Bonferroni correction was applied for multiple simultaneous comparisons.

Review of publicly available datasets. The Cancer Genome Atlas (TCGA) Network's sarcoma genomic dataset¹⁷ and the American Association for Cancer Research (AACR) Project GENIE Consortium dataset (v7.0-public)¹⁸ were interrogated for LMS with homozygous loss of *CDKN2C*. Histopathology of TCGA patient cases was reviewed by two board-certified pathologists (E.A.W., D.I.L.).

RESULTS

A Novel Class of *CDKN2C*-Null LMS: Clinicopathologic Features

From an internal series of 276,645 unique advanced cancers, including 2,570 LMS, of which 939 were of confirmed uterine origin, we identified 77 LMS with homozygous copy loss of CDKN2C at chromosome 1p32.3 (3.0% of all LMS [77 of 2,570], 5.9% of uterine LMS [55 of 939]). Clinical characteristics of the 77 patients with this novel class of CDKN2C-null LMS are summarized in Table 1. These patients were significantly older than the remainder of the LMS cohort (median age, 61 v 57 years; P = .0009, Mann-Whitney U test). Patients were enriched for female sex compared with the remainder of the LMS cohort (99% [76 of 77] v79% [1,968 of 2,493]; P < .0001, Fisher's exact test). Six female patients had a prior history of leiomyomatosis (n = 2) or uterine smooth muscle tumor of uncertain malignant potential (STUMP; n = 4). The majority of CDKN2C-null LMS patients showed clinically advanced/ metastatic disease, with 62% of confirmed uterine primary occurrences documented at FIGO stage IV (n = 34 of 55) and 86% of indeterminant or soft tissue primary cases documented at AJCC stage IV (n = 19/22), as summarized

 TABLE 1. Clinical Characteristics of Patients With CDKN2C-Null

 Leiomyosarcoma

Characteristic	No. (%)
No. of patients	77
Median (range) age at diagnosis, years	61 (36-81)
Sex	
Female	76 (99)
Male	1 (1)
Primary site	
Uterine	55 (71)
Soft tissue	4 (5)
Indeterminant	18 (23)
FIGO staging (uterine primary)	
IB	6 (11)
IIA	2 (4)
IIB	4 (7)
IIIA	2 (4)
IIIB	1 (2)
IIIC	4 (7)
IVB	34 (62)
Unknown	3 (6)
AJCC staging (soft tissue or indeterminant primary)	
IA	1 (5)
IV	19 (86)
Linknown	2 (9)

Abbreviations: AJCC, American Joint Committee on Cancer; FIGO, International Federation of Gynecology and Obstetrics.

in Table 1. Locations of the sequenced tumor specimens are summarized in Appendix Table A2.

Comprehensive Genomic Profiling of CDKN2C-Null LMS

The distribution of GAs in the 77 *CDKN2C*-null LMS is displayed in Figure 1. *TP53*, *RB1*, and *ATRX* GAs were rare in comparison with the remainder of the LMS cohort (Table 2; Appendix Table A3). *CDKN2C*-null LMS comprised 14% (68 of 486) of *TP53/RB1*–wild-type LMS. The most frequent GAs were identified in *CIC* at 19q13.2, *CDKN2A*, and *RAD51B* (Table 2), and unsupervised analysis showed significant enrichment of these alterations in the *CDKN2C*-null cohort (Appendix Fig A1). Eighty-five percent (60 of 71) of patient cases evaluated for *FAF1* showed homozygous deletion of *FAF1* at 1p32.3, a gene adjacent to *CDKN2C* (9.7 kb apart). No *CDKN2C*-null LMS in our cohort had inactivating GAs in *FUBP1* or pathogenic alterations in *IDH1/2* or *TERTp*.

The median TMB was 2.4 mutations/Mb (range, < 0.8-9.6; Q1-Q3, 1.6-3.2), similar to the remainder of the LMS cohort (median, 2.4 mutations/Mb; range, < 0.8-203; Q1-Q3, 1.6-4.0) but slightly lower overall (P=.0425, Mann-Whitney

FIG 1. Mutational landscape of *CDKN2C*-null leiomyosarcoma. Summary tile plot of pathogenic variants identified in 77 cases of *CDKN2C*-null leiomyosarcoma. Each column represents data for a single patient. Age, sex, tumor ploidy, and 1p/19q-codeletion status are also provided for each case. The histogram on top shows tumor mutational burden (TMB; mutations/megabase).

U test). No microsatellite-unstable patient cases were present in the *CDKN2C*-null cohort.

Within the cohort of *CDKN2C*-null LMS, comparison of patients < 61 years of age with patients \geq 61 years revealed significant differences in frequency of *CIC* alterations (54% [20 of 37] v 28% [11 of 40]; *P* = .022) and *RAD51B* alterations (5% [2 of 37] v 28% [11 of 40]; *P* = .0136). No other significant differences based on age were identified. Comparison of patient cases on the basis of clinical stage,

history of lower grade smooth muscle neoplasm, or primary site did not reveal any significant differences in GAs.

Three patients had two separate tissue specimens analyzed (Appendix Table A4). For all three patients, each initial sequencing result, including *CDKN2C* loss, was identified in the subsequent paired-specimen result. One patient had sequencing of both the primary uterine LMS and a subsequent lung metastasis. The lung mass showed additional homozygous loss of *CIC*.

Variable	CDKN2C-Null LMS	Remaining LMS Cohort	Р
Female sex, % (n/total N)	99 (76/77)	79 (1,968/2,493)	< .0001
Median (range) age, years	61 (36-81)	57 (< 1 to > 89)	.0009
TMB (Q1-Q3), mut/Mb, % (n/total N)	2.4 (1.6-3.2)	2.4 (1.6-4.0)	.0425
MSI high, % (n/total N)	0 (0/63)	0.2 (5/2,093)	1.0000
Genomic alteration, % (n/total N)			
1p/19q-codeletion	85 (33/39)	5 (62/1,212)	< .0001
CIC	40 (31/77)	1 (35/2,473)	< .0001
CDKN2A	47 (36/77)	7 (175/2,493)	< .0001
RAD51B	17 (13/77)	2 (43/2,473)	< .0001
TP53	12 (9/77)	73 (1,830/2,493)	< .0001
RB1	0 (0/77)	55 (1,359/2,493)	< .0001
ATRX	3 (2/77)	25 (606/2,473)	< .0001
PTEN	9 (7/77)	16 (399/2,493)	.113
ALK fusion	3 (2/77)	2 (41/2,493)	.371
BRAF fusion	3 (2/77)	0.2 (4/2,493)	.0123
FGFR1 fusion	1 (1/77)	0.1 (2/2,493)	.0873
NTRK1 fusion	1 (1/77)	0.1 (3/2,493)	.115

 TABLE 2.
 Comparative Demographics and Percent Frequency of Genomic Alterations Stratified by CDKN2C Status

NOTE. For percent values, number of positive cases over the total number of evaluated cases is included in parentheses. The Bonferroni correction for 16 simultaneous comparisons was applied; significant P values (< .003) are in bold.

Abbreviations: LMS, leiomyosarcoma; MSI, microsatellite instability; TMB, tumor mutational burden.

A guery and review for chromosome 1p and 19g arm-level aneuploidy in available LMS patient cases (n = 1,284)revealed that 99% (71 of 72) of CDKN2C-null LMS patient cases had whole-arm aneuploidy of the short arm of chromosome 1, and 81% (58 of 72) had aneuploidy of the long arm of chromosome 19 and 1p/19q-codeletion. Significant enrichment for 1p/19q-codeletion was identified in comparison with the remainder of the evaluated LMS cohort (81% [58 of 72] v 5% [62 of 1,212]; P < .0001). Copy number plots of two exemplary cases of CDKN2C-null LMS exhibiting 1p/19q-codeletion are shown in Figures 2A and 2B. Additional recurrent chromosomal arm-level changes were identified in the 72 patient cases available, including most frequently aneuploidy of chromosomes 6p (n = 35), 9p (n = 19), 10q (n = 28), 11p (n = 39), 13q(n = 46), 14g (n = 46), and 16g (n = 52).

A review of 1p/19q-codeletion status in available LMS patient cases without homozygous deletion of *CDKN2C* (n = 1,212) revealed 62 1p/19q-codeleted LMS (5%; Fig 2C). These 62 *CDKN2C*-retained LMS showed GAs in *TP53* (52%; n = 33), *RB1* (45%; n = 28), *ATRX* (16%; n = 10), and *PTEN* (13%; n = 8). GAs were also identified in *CDKN2A* (23%; n = 14) and *ALK* (10%; n = 6; all activating rearrangement events). A minority showed GAs in *RAD51B* (8%; n = 5), *CIC* (7%; n = 4; all homozygous loss), and *FAF1* (5%; n = 3). Three of the four patient cases with homozygous deletion of *CIC* also showed homozygous deletion of both *RAD51B* and *FAF1*. All four occurred in uterine LMS (one of which with a history of STUMP).

All non-LMS sarcoma patient cases in the Foundation Medicine dataset (n = 12,097) were evaluated for CDKN2C status. Twenty-two of 1,297 gastrointestinal stromal tumors (GISTs) were CDKN2C-null (1.7% of GISTs). Twenty-one had a KIT mutation, and the single remaining GIST had a PDGFRA mutation. None of the 14 CDKN2C-null GIST cases with 1p/19q data had 1p/19q codeletion. Nineteen additional sarcoma occurrences with homozygous deletion of CDKN2C were identified (0.18% of non-LMS non-GIST sarcomas). These included diverse sarcoma diagnoses, including six high-grade sarcomas not otherwise specified, two osteosarcomas, two malignant peripheral nerve sheath tumors, and two inflammatory myofibroblastic tumors. Genomics were also varied, with alterations identified in *CDKN2A* (68%; n = 13), *TP53* (42%; n = 8), *NF1* (26%; n = 5), NF2 (26%; n = 5), and ALK (16%; n = 3; all activating rearrangement events). No GAs in CIC or RAD51B were identified. Eleven of the 19 patient cases had 1p/19gcodeletion data available; two (18%) of the 11 had 1p/19gcodeletion. Both were ALK rearrangement-positive tumors in women (ages, 63 and 72 years).

We also searched our entire LMS cohort (N = 2,570) for cases with pathogenic alterations in *CDKN2C* other than homozygous deletion. Only one case was identified, in a 52-year-old woman with an estrogen receptor–positive, progesterone receptor–positive (per report, by immunohistochemistry) uterine LMS with a truncating mutation in *CDKN2C* (p.R68*). Concurrent homozygous deletions of *CIC*

FIG 2. Copy number (CN) plots of three leiomyosarcomas (LMS) with known *CDKN2C* status and 1p/19q-codeletion (blue arrows). The *y*-axes display logratio measurements of coverage from each case as compared with a normal reference sample, with assessed CNs denoted by dashed horizontal lines. Each dot represents a genomic region evaluated by the assay (cyan, single-nucleotide polymorphism; blue, exon), which are organized by genomic position. Red lines designate average log-ratio in a segment, and green lines represent model prediction. (A) *CDKN2C*-null LMS with a truncating variant in *CIC* (p.Q907*) and homozygous deletion of *CDKN2A* at chromosome 9p21.3 (red arrow). (B) *CDKN2C*-null LMS with homozygous deletion of *CIC* at chromosome 19q13.2 (red arrow) and *RAD51B* at chromosome 14q24.1 (red arrow). (C) *CDKN2C*-retained LMS with deep deletion of *RB1* at chromosome 13q14.2 (red arrow) and a CN plot of high complexity.

and *RAD51B* were identified; 1p/19q status was not available.

Histopathology

Histopathologic evaluation was performed on all available high-resolution digital pathology H&E slides of our cohort of *CDKN2C*-null LMS (n = 70). Histology was heterogeneous, as shown in Figure 3. Twenty-seven cases (39%) were epithelioid LMS. Twenty-three cases (33%) were spindle cell LMS. Nineteen cases (27%) showed mixed histology, including 11 mixed spindle and epithelioid LMS; four mixed spindle and myxoid LMS; two mixed epithelioid and myxoid LMS; and two mixed spindle, epithelioid, and myxoid LMS. A single case showed small round cell morphology.

Per immunohistochemistry reports, *CDKN2C*-null LMS showed diffuse positivity for estrogen receptor (29 of 29 LMS) and

FIG 3. Histopathology of *CDKN2C*-null leiomyosarcoma ranged from (A, B) epithelioid to (C) spindled (hematoxylin & eosin [H&E] stains, 200×). (D) Occasional cases showed focal myxoid histology (H&E stain, 200×).

progesterone receptor (24 of 26; remaining two with focal positivity). *CDKN2C*-null LMS were also positive for desmin (30 of 33; remaining three with focal positivity), smooth muscle actin (25 of 25), muscle-specific actin (11 of 11), and caldesmon (6 of 6). HMB-45 was focally positive in two of nine cases, and CD10 was positive in one of 14 cases. Tumors were reportedly negative for S100 (n = 15), various keratin markers (n = 19), CD34 (n = 11), and CD117 (n = 11).

Publicly Available Datasets

The frequency of *CDKN2C*-null cases in LMS in our dataset prompted us to interrogate the sarcoma genomic dataset of TCGA Network¹⁷ and the AACR Project GENIE Consortium dataset (v7.0-public).¹⁸ A total of 12 *CDKN2C*-null LMS patient cases were identified (TCGA: n = 3 [4%] of 80; GENIE: n = 9 [2%] of 449; Table 3). The *CDKN2C*-null LMS patient cases were enriched for female sex (n = 12 of 12), uterine origin, and epithelioid histology. Patient cases showed frequent homozygous loss of *CIC* (n = 5 [42%] of 12), *CDKN2A* (n = 4 [33%] of 12), and *RAD51B* (n = 3 [25%] of 12), and all were wild type for *TP53*, *RB1*, and *ATRX* (n = 12 of 12).

DISCUSSION

In 2,570 patient cases of LMS, *CDKN2C*-null LMS (n = 77; 3.0%) comprised a genomically distinct molecular subgroup.

CDKN2C-null LMS typically lacked mutations in *TP53*, *RB1*, and *ATRX* but showed frequent 1p/19q-codeletion (81%), and nearly half (40.3%) showed homozygous deletion or inactivating truncations of *CIC*. Clinical features were significantly different from other LMS: patients were slightly but statistically significantly older, and the vast majority (76 of 77 patients) were women. Most were of uterine primary site of origin. A high percentage demonstrated epithelioid variant features on histology, and limited clinical data suggest a possible association with and progression from lower-grade uterine smooth tumors, such as leiomyomatosis and STUMP.

CDKN2C at 1p32.3 encodes the homologous p18INK4C cell cycle regulatory protein that blocks cell cycle progression by inhibiting the cyclin D–dependent kinases CDK4 and CDK6.¹⁹⁻²¹ Loss of *CDKN2C* results in loss of potent inhibition of CDK4/6 in the cyclin D-CDK4/6-INK4-Rb pathway. CDKN2C is also a key factor for ATM/ATR-mediated activation of the tumor suppressor p53, and *CDKN2C* loss has been shown to block p53 induction in response to DNA damage.^{22,23} *CDKN2C* loss has been documented in a subset of diverse tumor types, including multiple myeloma, pituitary adenoma, and thyroid carcinoma.²⁴⁻²⁶ *CDKN2C* loss has also been documented in a small percentage of oligodendroglioma.^{27,28} The adjacent *FAF1* gene at 1p32.3 encodes FAS-associated factor 1,

TABLE 3. CDKN2C-Null Leio	myosarcc	oma From	Two Independe	nt Cohorts			
Sample	Age	Sex	Uterine	Additional Genomic Alterations	Histology	Disease Status	Survival Status
TCGA-K1-A42X	62	Ŀ	Yes	Homozygous loss of <i>CIC</i> and <i>RAD51B</i> ; amplification of <i>CCND1</i> and <i>FGF19</i>	Epithelioid and spindled	Local recurrence at 67 months	Living at 123 months
TCGA-FX-A3RE	65	Ŀ	Yes	Homozygous loss of <i>CIC, CDKN2A</i> , and <i>RAD51B</i> ; amplification of <i>MET</i> , <i>BRAF</i> , <i>EZH2</i> , and <i>RHEB</i>	Epithelioid and spindled	Disease free at 21 months	Living at 21 months
TCGA-IW-A3M6	59	ш	Yes	Homozygous loss of <i>CDKN2A</i> and <i>KMT2C</i> ; amplification of <i>MDM4</i> , <i>NTRK1</i> , ALK, <i>IKBKE</i> , AKT3, <i>MCL1</i> , and <i>DDR2</i>	Epithelioid and spindled	Disease free at 22 months	Living at 22 months
GENIE-DFCI-024530	73	Ŀ	Yes	None	Epithelioid, per report	Not available	Not available
GENIE-DFCI-090524	6/	Ŀ	Unknown	Homozygous loss of <i>CIC</i> ; <i>ARIDIA</i> p.Q1095Ats*10; amplification of <i>ERBB2</i> and <i>PPM1D</i>	Not available	Not available	Not available
GENIE-DFCI-108895	99	ш	Yes	Homozygous loss of CDKN2A and CDKN1A	Not available	Not available	Not available
GENIE-DFCI-118367	72	Ŀ	Unknown	Homozygous loss of CHEK2	Not available	Not available	Not available
GENIE-DFCI-118421	54	Ŀ	Yes	Homozygous loss of <i>CIC, PTEN</i> , and <i>FAS</i> ; <i>RNF43</i> p.L17Afs*24	Epithelioid, per report	Not available	Not available
GENIE-MSK-P-0028037	36	Ŀ	Yes	Homozygous loss of <i>BBC3</i> on 19q13.32	Not available	Not available	Not available
GENIE-MSK-P-0030528	60	Ŀ	Yes	CIC-ERF fusion	Not available	Not available	Not available
GENIE-MSK-P-0034923	44	LL.	Yes	Homozygous loss of <i>CIC, ERF</i> , <i>ERCC2</i> , and <i>BBC3</i> at 19q13; homozygous loss of <i>R4D51B</i> and <i>PTEN: CIC</i> p.H505Pfs*9, <i>HOXB13</i> X201_splice	Not available	Not available	Not available
GENIE-VICC-439861	71	ш	Unknown	Homozygous loss of <i>CDKN24</i> ; amplification of <i>CCND1</i> and <i>FGF19</i> , <i>CHEK2</i> p.K287Rfs*17	Not available	Not available	Not available

NOTE. TCGA rows were identified from The Cancer Genome Atlas, ¹⁷ from a total of 80 leiomyosarcoma. GENIE rows were identified from project GENIE dataset, ¹⁸ from a total of 449 leiomyosarcoma with copy number alteration data.

1

which enhances FAS-mediated apoptosis, and its loss may contribute to tumor pathogenesis.²⁹

The *CIC* gene on chromosome 19q13.2 represses genes induced downstream to RTK pathway activation.³⁰ In the absence of RTK signaling, CIC blocks transcription of genes that have diverse effects on cellular proliferation, metabolism, and migration.³¹ Along with single copy loss of *CIC* on 19q, concurrent inactivating mutations in *CIC* are identified in a high percentage of oligodendrogliomas.³²

Whole-arm 1p/19q-codeletion, with concurrent mutation in IDH1 or IDH2, is entity-defining for oligodendrogliomas.³³⁻³⁵ Oligodendrogliomas are associated with relatively long overall survival, and treatment strategies are often stratified on the basis of 1p/19q status.³⁶⁻³⁸ The codeletion is a result of unbalanced translocation between two chromosomes, with subsequent loss of der(1;19)(p10;q10), likely because chromosomes 1 and 19 are near each other in the nonrandom organization of the nucleus.³⁹⁻⁴¹ A large percentage of oligodendrogliomas also show CIC and FUBP1 mutations.³¹ Our cohort of CDKN2C-null LMS shows notable similarities and differences to oligodendroglioma; 40% of our cohort showed an inactivating alteration in CIC, most commonly homozygous deletion. Although FUBP1 at 1p31.1 is somatically mutated in a subset of oligodendroglioma, no CDKN2C-null LMS patient cases in our cohort had inactivating GAs in *FUBP1* or pathogenic alterations in *IDH1/2* or TERTp. The recurrent chromosomal arm-level losses in our cohort may indicate that additional tumor suppressor genes are located on these arms. Rare sarcoma-like tumors originating from oligodendrogliomas have been reported, with documented IDH1 mutation and 1p/19q-codeletion, and have been termed "oligosarcoma."42-44 Rodriguez et al⁴³ identified 6 of 7 patient cases of oligosarcoma with at least focal smooth muscle actin positivity of the sarcomatous component by immunohistochemistry and one patient case with smooth muscle differentiation by electron microscopy. These results indicate a similarity in differentiation to our cohort of LMS.

Among all sarcomas with *CDKN2C* loss, 1p/19q-codeletion appears to be nearly exclusive to LMS. In our overall LMS cohort, however, occasional *CDKN2C*-retained LMS showed *TP53* and *RB1* alterations and were positive by the 1p/19qcodeletion detection algorithm. We speculate that, given the complexity of these genomically unstable occurrences, occasional *CDKN2C*-retained LMS satisfy these criteria (Fig 2C). As such, identification of homozygous deletion of *CDKN2C* may be the most specific distinguishing feature.

Cytogenetic findings in LMS and leiomyoma have been previously reported, although without characterization of *CDKN2C* status. A greater frequency of 1p loss has been

AFFILIATIONS ¹Foundation Medicine, Cambridge, MA documented in metastasized LMS.⁴⁵ From a cytogenetics study of 800 uterine leiomyomata, nine diploid occurrences with 1p loss were identified, with other associated alterations, particularly chromosome 19 and/or chromosome 22 loss.⁴⁶ Transcriptional profiling of two of the 1p-deleted leiomyomas in that study showed alignment with malignant LMS in a hierarchical clustering analysis.⁴⁶ In another study, 1p loss was identified in approximately one guarter of uterine cellular leiomyomata.⁴⁷ Three reports on a total of eight pulmonary-based "benign metastasizing leiomvoma" reported 19g and 22g terminal deletion in each case.48-50 Rare uterine leiomyomas with GAs in RAD51B have also been identified.⁵¹ The overlap in GAs between our cohort of CDKN2C-null LMS and a subset of leiomyoma of uncertain CDKN2C status in the literature suggests a possible connection between these entities.

Evaluations of GAs in epithelioid or myxoid uterine smooth muscle neoplasms are limited in the literature.⁵²⁻⁵⁶ Although a high percentage of *CDKN2C*-null LMS in our study demonstrated epithelioid features on histology, histology was also varied. Immunohistochemistry results extracted from pathology reports were typical for uterine LMS, with expression of characteristic smooth muscle markers.⁵⁷

Given the overall low response rate of LMS to standard therapies, the identification of this targetable alteration in *CDKN2C* may be useful for treatment decisions. CDK4/6 inhibitors have previously shown effectiveness in a LMS with a *CDKN2A* alteration.¹⁰ Nearly half of the *CDKN2C*-null LMS harbored loss of *CDKN2A*; CDK4/6 inhibitors may be effective in replacing the loss of inhibition of CDK4/6 that results from *CDKN2C* and *CDKN2A* loss in these patient cases that recur after standard chemotherapy regimens. A minor subset of *CDKN2C*-null and/or 1p/19q-codeleted LMS harbored activating fusions in *ALK*, *BRAF*, *FGFR1*, and *NTRK1*, for which targeted inhibitors may be of utility.⁹

Limitations of this study include its retrospective nature and the enrichment for aggressive tumors, mostly metastatic to distant sites. The latter may be due to collection bias from submission of specimens later in the disease course.

Additional studies will be needed to correlate the finding of *CDKN2C* loss in LMS with prognostic data and treatment outcomes. If clinically indicated, future studies are needed to evaluate other diagnostic modalities, such as *CDKN2C* testing through immunohistochemical surrogates^{58,59} or 1p/19q FISH testing. Future studies are also needed to identify the gene expression profile of this novel genomic subtype.⁶⁰ Comprehensive genomic profiling of LMS may provide insights into LMS biology and potentially inform therapeutic options, including specific cyclin-dependent kinase inhibitors.

²Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA

³Christiana Hospital, Department of Obstetrics and Gynecology, Newark, DE

⁴Department of Physiology, Department of Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, PA

⁵Department of Pathology, State University of New York Upstate Medical University, Syracuse, NY

⁶Wake Forest Comprehensive Cancer Center and Department of Pathology, Wake Forest School of Medicine, Winston-Salem, NC

CORRESPONDING AUTHOR

Erik A. Williams, MD, 150 Second St, Cambridge, MA 02141; Twitter: @ErikAWilliamsM1; e-mail: erwilliams@foundationmedicine.com.

EQUAL CONTRIBUTION

D.I.L., S.H.R., and J.A.E. contributed equally to this work.

AUTHOR CONTRIBUTIONS

Conception and design: Erik A. Williams Administrative support: Brian M. Alexander Financial support: Brian M. Alexander Collection and assembly of data: Erik A. Williams, Brennan Decker,

Meagan Montesion, Dean C. Pavlick, Nikunj Shah, Jeffrey S. Ross, Lee A. Albacker, Douglas I. Lin, Shakti H. Ramkissoon

Data analysis and interpretation: Erik A. Williams, Radwa Sharaf, Brennan Decker, Adrienne J. Werth, Helen Toma, Meagan Montesion, Ethan S. Sokol, Dean C. Pavlick, Kevin Jon Williams, Jeffrey M. Venstrom, Brian M. Alexander, Jeffrey S. Ross, Lee A. Albacker, Douglas I. Lin, Shakti H. Ramkissoon, Julia A. Elvin

Manuscript writing: All authors

Final approval of manuscript: All authors Accountable for all aspects of the work: All authors

AUTHORS' DISCLOSURES OF POTENTIAL CONFLICTS OF INTEREST

The following represents disclosure information provided by authors of this manuscript. All relationships are considered compensated unless otherwise noted. Relationships are self-held unless noted. I = Immediate Family Member, Inst = My Institution. Relationships may not relate to the subject matter of this manuscript. For more information about ASCO's conflict of interest policy, please refer to www.asco.org/rwc or ascopubs. org/po/authors/author-center.

Open Payments is a public database containing information reported by companies about payments made to US-licensed physicians (Open Payments).

Erik A. Williams

Employment: Foundation Medicine, Inc. Stock and Other Ownership Interests: F. Hoffmann-La Roche

Radwa Sharaf

Employment: Foundation Medicine Stock and Other Ownership Interests: Roche

Brennan Decker

Stock and Other Ownership Interests: Avidea Technologies Consulting or Advisory Role: Foundation Medicine, Avidea Technologies Meagan Montesion

Stock and Other Ownership Interests: Roche

Ethan S. Sokol Employment: Foundation Medicine Stock and Other Ownership Interests: Roche (Parent of FMI)

Dean C. Pavlick Stock and Other Ownership Interests: Roche

Nikunj Shah Employment: Foundation Medicine

Kevin Jon Williams

Stock and Other Ownership Interests: Hygieia, Gemphire Therapeutics Consulting or Advisory Role: Gemphire Therapeutics Research Funding: Novo Nordisk

Jeffrey M. Venstrom

Employment: Genentech, Foundation Medicine Leadership: Genentech Stock and Other Ownership Interests: Genentech Research Funding: Genentech, Roche, Foundation Medicine Travel, Accommodations, Expenses: Genentech

Brian M. Alexander

Employment: Foundation Medicine Leadership: Foundation Medicine Stock and Other Ownership Interests: Roche Research Funding: Eli Lilly (Inst), Puma (Inst), Celgene (Inst) (OPTIONAL) Open Payments Link: https://openpaymentsdata.cms.gov/ physician/854258/summary

Jeffrey S. Ross

Employment: Foundation Medicine Leadership: Foundation Medicine Stock and Other Ownership Interests: Foundation Medicine Consulting or Advisory Role: Celsius Therapeutics Research Funding: Foundation Medicine

Lee A. Albacker

Employment: Foundation Medicine Stock and Other Ownership Interests: Roche

Douglas I. Lin Employment: Foundation Medicine

Shakti H. Ramkissoon Employment: Foundation Medicine Stock and Other Ownership Interests: Foundation Medicine

Julia A. Elvin

Employment: Foundation Medicine

No other potential conflicts of interest were reported.

ACKNOWLEDGMENT

We thank the American Association for Cancer Research and appreciate its financial and material support in the development of the American Association for Cancer Research Project GENIE registry, and we thank members of the consortium for their commitment to data sharing.

REFERENCES

- 1. Roberts ME, Aynardi JT, Chu CS: Uterine leiomyosarcoma: A review of the literature and update on management options. Gynecol Oncol 151:562-572, 2018
- Seagle BLL, Sobecki-Rausch J, Strohl AE, et al: Prognosis and treatment of uterine leiomyosarcoma: A National Cancer Database study. Gynecol Oncol 145:61-70, 2017
- 3. Horn LC, Schmidt D, Fathke C, et al: New FIGO staging for uterine sarcomas [in German]. Pathologe 30:302-303, 2009
- 4. Amin MB: AJCC Cancer Staging System, Eighth Edition. New York, NY, American Joint Committee on Cancer, 2017.

- Wang Z, Shi N, Naing A, et al: Survival of patients with metastatic leiomyosarcoma: The MD Anderson Clinical Center for targeted therapy experience. Cancer Med 5:3437-3444, 2016
- 6. Chudasama P, Mughal SS, Sanders MA, et al: Integrative genomic and transcriptomic analysis of leiomyosarcoma. Nat Commun 9:144, 2018
- 7. Yang J, Du X, Chen K, et al: Genetic aberrations in soft tissue leiomyosarcoma. Cancer Lett 275:1-8, 2009
- 8. Moore KN, Gunderson C, Ramkissoon S, et al: Comprehensive genomic profiling of uterine leiomyosarcomas identifies opportunities for personalized therapies. Ann Oncol 27:vi309, 2016
- 9. Davis LE, Nusser KD, Przybyl J, et al: Discovery and characterization of recurrent, targetable ALK fusions in leiomyosarcoma. Mol Cancer Res 17:676-685, 2019
- 10. Elvin JA, Gay LM, Ort R, et al: Clinical benefit in response to palbociclib treatment in refractory uterine leiomyosarcomas with a common CDKN2A alteration. Oncologist 22:416-421, 2017
- 11. Frampton GM, Fichtenholtz A, Otto GA, et al: Development and validation of a clinical cancer genomic profiling test based on massively parallel DNA sequencing. Nat Biotechnol 31:1023-1031, 2013
- He J, Abdel-Wahab O, Nahas MK, et al: Integrated genomic DNA/RNA profiling of hematologic malignancies in the clinical setting. Blood 127:3004-3014, 2016
 Sun JX, He Y, Sanford E, et al: A computational approach to distinguish somatic vs. germline origin of genomic alterations from deep sequencing of cancer
- specimens without a matched normal. PLOS Comput Biol 14:e1005965, 2018
- 14. Chalmers ZR, Connelly CF, Fabrizio D, et al: Analysis of 100,000 human cancer genomes reveals the landscape of tumor mutational burden. Genome Med 9:34, 2017
- 15. Trabucco SE, Gowen K, Maund SL, et al: A novel next-generation sequencing approach to detecting microsatellite instability and pan-tumor characterization of 1000 microsatellite instability-high cases in 67,000 patient samples. J Mol Diagn 21:1053-1066, 2019
- 16. Prat J: FIGO staging for uterine sarcomas. Int J Gynecol Obstet 104:177-178, 2009
- 17. Abeshouse A, Adebamowo C, Adebamowo SN, et al: Comprehensive and integrated genomic characterization of adult soft tissue sarcomas. Cell 171:950-965.e28, 2017
- 18. Sweeney SM, Cerami E, Baras A, et al: AACR project GENIE: Powering precision medicine through an international consortium. Cancer Discov 7:818-831, 2017
- Guan KL, Jenkins CW, Li Y, et al: Growth suppression by p18, a p16INK4/MTS1- and p14INK4B/MTS2-related CDK6 inhibitor, correlates with wild-type pRb function. Genes Dev 8:2939-2952, 1994
- 20. Jeffrey PD, Tong L, Pavletich NP: Structural basis of inhibition of CDK-cyclin complexes by INK4 inhibitors. Genes Dev 14:3115-3125, 2000
- 21. Zhu S, Cao J, Sun H, et al: p18 inhibits reprogramming through inactivation of Cdk4/6. Sci Rep 6:31085, 2016
- 22. Park BJ, Kang JW, Lee SW, et al: The haploinsufficient tumor suppressor p18 upregulates p53 via interactions with ATM/ATR. Cell 120:209-221, 2005
- 23. Kim KJ, Park MC, Choi SJ, et al: Determination of three-dimensional structure and residues of the novel tumor suppressor AIMP3/p18 required for the interaction with ATM. J Biol Chem 283:14032-14040, 2008
- 24. Leone PE, Walker BA, Jenner MW, et al: Deletions of CDKN2C in multiple myeloma: Biological and clinical implications. Clin Cancer Res 14:6033-6041, 2008
- 25. Kirsch M, Mörz M, Pinzer T, et al: Frequent loss of the CDKN2C (p18INK4c) gene product in pituitary adenomas. Genes Chromosom Cancer 48:143-154, 2009
- 26. Grubbs EG, Williams MD, Scheet P, et al: Role of CDKN2C copy number in sporadic medullary thyroid carcinoma. Thyroid 26:1553-1562, 2016
- 27. Pohl U, Cairncross JG, Louis DN: Homozygous deletions of the CDKN2C/p18INK4C gene on the short arm of chromosome 1 in anaplastic oligodendrogliomas. Brain Pathol 9:639-643, 1999
- Husemann K, Wolter M, Büschges R, et al: Identification of two distinct deleted regions on the short arm of chromosome 1 and rare mutation of the CDKN2C gene from 1p32 in oligodendroglial tumors. J Neuropathol Exp Neurol 58:1041-1050, 1999
- 29. Menges CW, Altomare DA, Testa JR: FAS-associated factor 1 (FAF1): Diverse functions and implications for oncogenesis. Cell Cycle 8:2528-2534, 2009
- 30. Jiménez G, Shvartsman SY, Paroush Z: The Capicua repressor: A general sensor of RTK signaling in development and disease. J Cell Sci 125:1383-1391, 2012
- 31. Bettegowda C, Agrawal N, Jiao Y, et al: Mutations in CIC and FUBP1 contribute to human oligodendroglioma. Science 333:1453-1455, 2011
- 32. Brat DJ, Verhaak RGW, Aldape KD, et al: Comprehensive, integrative genomic analysis of diffuse lower-grade gliomas. N Engl J Med 372:2481-2498, 2015
- Louis DN, Perry A, Reifenberger G, et al: The 2016 World Health Organization Classification of Tumors of the Central Nervous System: A summary. Acta Neuropathol 131:803-820, 2016
- 34. Reifenberger J, Reifenberger G, Liu L, et al: Molecular genetic analysis of oligodendroglial tumors shows preferential allelic deletions on 19q and 1p. Am J Pathol 145:1175-1190, 1994
- Kraus JA, Koopmann J, Kaskel P, et al: Shared allelic losses on chromosomes 1p and 19q suggest a common origin of oligodendroglioma and oligoastrocytoma. J Neuropathol Exp Neurol 54:91-95, 1995
- Cairncross JG, Ueki K, Zlatescu MC, et al: Specific genetic predictors of chemotherapeutic response and survival in patients with anaplastic oligodendrogliomas. J Natl Cancer Inst 90:1473-1479, 1998
- Ohgaki H, Kleihues P: Population-based studies on incidence, survival rates, and genetic alterations in astrocytic and oligodendroglial gliomas. J Neuropathol Exp Neurol 64:479-489, 2005
- Taal W, van der Rijt CCD, Dinjens WNM, et al: Treatment of large low-grade oligodendroglial tumors with upfront procarbazine, lomustine, and vincristine chemotherapy with long follow-up: A retrospective cohort study with growth kinetics. J Neurooncol 121:365-372, 2015
- Griffin CA, Burger P, Morsberger L, et al: Identification of der(1;19)(q10;p10) in five oligodendrogliomas suggests mechanism of concurrent 1p and 19q loss. J Neuropathol Exp Neurol 65:988-994, 2006
- 40. Jenkins RB, Blair H, Ballman K V., et al: A t(1;19)(q10;p10) mediates the combined deletions of 1p and 19q and predicts a better prognosis of patients with oligodendroglioma. Cancer Res 66:9852-9861, 2006
- 41. Horbinski C: Something old and something new about molecular diagnostics in gliomas. Surg Pathol Clin 5:919-939, 2012
- 42. Shoji T, Saito R, Kanamori M, et al: Sarcoma-like tumor originating from oligodendroglioma. Brain Tumor Pathol 33:255-260, 2016
- 43. Rodriguez FJ, Scheithauer BW, Jenkins R, et al: Gliosarcoma arising in oligodendroglial tumors ("oligosarcoma"): A clinicopathologic study. Am J Surg Pathol 31:351-362, 2007
- 44. Hiniker A, Hagenkord JM, Powers MP, et al: Gliosarcoma arising from an oligodendroglioma (oligosarcoma). Clin Neuropathol 32:165-170, 2013
- 45. Mandahl N, Fletcher CDM, Dal Cin P, et al: Comparative cytogenetic study of spindle cell and pleomorphic leiomyosarcomas of soft tissues: A report from the CHAMP Study Group. Cancer Genet Cytogenet 116:66-73, 2000
- 46. Christacos NC, Quade BJ, Dal Cin P, et al: Uterine leiomyomata with deletions of 1p represent a distinct cytogenetic subgroup associated with unusual histologic features. Genes Chromosom Cancer 45:304-312, 2006

- 47. Hodge JC, Pearce KE, Clayton AC, et al: Uterine cellular leiomyomata with chromosome 1p deletions represent a distinct entity. Am J Obstet Gynecol 210: P572.E1-572.E7, 2014
- 48. Nucci MR, Drapkin R, Dal Cin P, et al: Distinctive cytogenetic profile in benign metastasizing leiomyoma: Pathogenetic implications. Am J Surg Pathol 31:737-743, 2007
- 49. Raposo MI, Meireles C, Cardoso M, et al: Benign metastasizing leiomyoma of the uterus: Rare manifestation of a frequent pathology. Case Rep Obstet Gynecol 2018:5067276, 2018
- 50. Bowen JM, Cates JM, Kash S, et al: Genomic imbalances in benign metastasizing leiomyoma: Characterization by conventional karyotypic, fluorescence in situ hybridization, and whole genome SNP array analysis. Cancer Genet 205:249-254, 2012
- 51. Mehine M, Kaasinen E, Mäkinen N, et al: Characterization of uterine leiomyomas by whole-genome sequencing. N Engl J Med 369:43-53, 2013
- 52. Karaiskos C, Pandis N, Bardi G, et al: Cytogenetic findings in uterine epithelioid leiomyomas. Cancer Genet Cytogenet 80:103-106, 1995
- Holzmann C, Markowski DN, Koczan D, et al: Genome-wide acquired uniparental disomy as well as chromosomal gains and losses in a uterine epithelioid leiomyoma. Mol Cytogenet 7:19, 2014
- 54. Reyes C, Karamurzin Y, Frizzell N, et al: Uterine smooth muscle tumors with features suggesting fumarate hydratase aberration: Detailed morphologic analysis and correlation with S-(2-succino)-cysteine immunohistochemistry. Mod Pathol 27:1020-1027, 2014
- 55. Arias-Stella JA III, Benayed R, Oliva E, et al: Novel *PLAG1* gene rearrangement distinguishes a subset of uterine myxoid leiomyosarcoma from other uterine myxoid mesenchymal tumors. Am J Surg Pathol 43:382-388, 2019
- 56. Chiang S, Samore W, Zhang L, et al: PGR gene fusions identify a molecular subset of uterine epithelioid leiomyosarcoma with rhabdoid features. Am J Surg Pathol 43:810-818, 2019
- 57. Lee CH, Turbin DA, Sung YCV, et al: A panel of antibodies to determine site of origin and malignancy in smooth muscle tumors. Mod Pathol 22:1519-1531, 2009
- 58. Solomon DA, Kim JS, Jenkins S, et al: Identification of p18 INK4c as a tumor suppressor gene in glioblastoma multiforme. Cancer Res 68:2564-2569, 2008
- 59. Tanboon J, Williams EA, Louis DN: The diagnostic use of immunohistochemical surrogates for signature molecular genetic alterations in gliomas. J Neuropathol Exp Neurol 75:4-18, 2016
- 60. Guo X, Jo VY, Mills AM, et al: Clinically relevant molecular subtypes in leiomyosarcoma. Clin Cancer Res 21:3501-3511, 2015

APPENDIX

FIG A1. Volcano plot for *CDKN2C*-null leiomyosarcoma. Attributes with *P* value < .0001 are labeled. Red and blue indicate positive and negative correlation, respectively, in *CDKN2C*-null leiomyosarcoma (n = 77) compared with the remainder of the leiomyosarcoma cohort (n = 2,493). Chromosomal arm-level aneuploidy analysis was available in a subset of *CDKN2C*-null leiomyosarcoma (n = 72) and *CDKN2C*-retained leiomyosarcoma (n = 1,212).

TABLE A1. List of Sequenced Gene Description	aenes in	I the For	undation(One CDx	and F1F	Platforr	ns			Gene Symbo	10									
In FoundationOne CDx panel																				
With full coding exonic regions for detection of	178V	ACVR1B	AKTI	AKT2	AKT3	ALK	AMERI	APC	AR	ARAF	ARFRP1	ARIDIA ,	4 I TXSb	TM P	TR AT	rrx AU	RKA AUF	RKB AXL	BAP	1
substitutions, indels, and copy number alterations	BARDI	BCL2	BCL2LI	BCL2L2	BCL6	BCOR	BCORLI	BRAF	BRCAI	BRCA2	BRD4	BRIPI	87G1 B	TG2 E	TK C1	Ilorf30 CA	LR CAF	IDII CBF	s CBL	
	CCND1	CCND2	CCND3	CCNEI	CD22	CD274	CD70	CD79A	CD79B	CDC73	CDH1	CDK12 (CDK4 C	DK6 C	DK8 CI	DKNIA CD.	KNIB CDH	ONZA CDK	V2B CDK	N2C
	CEBPA	CHEK1	CHEK2	CIC	CREBBP	CRKL	CSFIR	CSF3R	CTCF	CTNNAI	CTNNB1	CUL3 (CXCR4 D	AXX L	DR2 DV	VMT3A DO	TIL EEC	EGFI	EP3	8
	EPHA3	EPHB1	ERBB2	ERBB3	ERBB4	ERG	ERRFII	ESRI	EZH2	FAM123B	FAM46C	FANCA	FANCC F	ANCG F	ANCL FF	IS FB.	XW7 FGF	10 FGF.	4 FGF.	61
	FGF23	FGF3	FGF4	FGF6	FGFR1	FGFR2	FGFR3	FGFR4	ΗJ	FLCN	FLTI	FLT3 I	FOXL2 F	UBP1 G	ABRA6 G/	ATA3 GA	TA4 GA1	A6 GID4	GNA	11
	GNA13	GNAQ	GNAS	GRM3	GSK3B	H3F3A	HDACI	HGF	HNFIA	HRAS	HSD3B1	103 EQI	II IHO.	NH2 N	SFIR IK	BKE IKZ	FI INP.	P4B IRF2	IRF4	~
	IRS2	JAKI	JAK2	JAK3	NUL	KDM5A	KDM5C	KDM6A	KDR	KEAP1	KEL	KIT	ктнте к	MT2A H	MT2D KH	RAS LYI	V MAI	e MAF	2K1 MAF	2K2
	MAP2K4	MAP3KI	MAPKI	I TOW	ZMDM2	MDM4	MED12	MEF2B	MENI	MET	MITF	WLH1)	WWSET A	V 7di	IREII M	REIIA MS	H2 MSI	HSW EF	6 MTA	Р
	MTOR	митүн	MYC	MYCL	MYCN	MYD88	NFI	NF2	NFE2L2	NFKBIA	NKX2-1	NOTCHI	NOTCH2 N	OTCH3 N	IN IWd	RAS NS	DZ NSI	33 NT50	2 NTR	IXI
	NTRK2	NTRK3	P2RY8	PALB2	PARK2	PAX5	PBRM1	PDCD1	PDCD1LG2	PDGFRA	PDGFRB	PDK1	PIK3C2B F	IK3CA F	IK3CB PI	K3R1 PIN	IV DW	SS POLI	TOH IO	ш
	PPP2R1A	PRDM1	PRKARIA	PRKCI	PRKN	PTCH1	PTEN	PTPN11	PTPRO	QKI	RACI	RAD21	RAD51 F	AFI F	ARA RE	31 RB	MIO RET	- RICT	OR RNF	-43
	ROSI	RPTOR	SDHA	SDHB	SDHC	ahas	SETD2	SF3B1	SGK1	SMAD2	SMAD4	SMARCA4	SMARCB1 S	MO S	NCAIP SC	DCS1 SO	xos zox	9 SPEI	I SPO	d
	SRC	STAG2	STAT3	STK11	SUFU	SYK	TBX3	TERC	TET2	TGFBR2	TNFAIP3	TNFRSF14	1P53 1	SCI 1	scz uz	2AFI VEC	3FA VHL	SHM	CI WHS	SCILI
	WTI	WTX	IOAX	ZNF217	ZNF703															
With select intronic regions	ALK	BCL2	BCR	BRAF	BRCAI	BRCA2	EGFR	ETV4	ETV5	ETV6	EWSR1	FGFRI	EGFR2 F	GFR3 h	IT KI	NT2A MS	Н2 МҮІ	3 MYC	101	CH2
	NTRKI	NTRK2	NUTMI	PDGFRA	RAFI	RARA	RET	ROSI	SLC34A2	TERT	TMPRSS2									
In F1H DNA panel																				
With full coding exonic regions for detection of	ABII	ACTB	ADGRA2	AKTI	AKT2	AKT3	ALK	AMERI	APC	APHIA	AR	ARAF ,	4RFRP1 A	RHGAP26 A	RIDIA AF	RID2 ASI	NTL ASX	LI ATM	ATR	
substitutions, indels, and copy number alterations	ATRX	AURKA	AURKB	AXINI	AXL	B2M	BAPI	BARDI	BCLIO	BCLIIB	BCL2	BCL2L2 I	BCL6 B	COR E	CORLI BI	RC3 BLI	M BR/	IF BRC	AI BRC	342
	BRD4	BRIPI	BRSKI	BTGI	BTG2	BTK	BTLA	C1 lorf30	C17orf39	CAD	CARD11	CBFB (CBL C	CND1 C	CND2 CC	CO EQUID	NEI CCT	6B CD2	cD2	74
	CD36	CD58	CD70	CD79A	CD79B	CDC73	CDH1	CDK12	CDK4	CDK6	CDK8	CDKNIB (DKN2A C	DKN2B C	DKN2C CE	EBPA CH	EKI CHE	EK2 CIC	CIIT	4
	CKSIB	CPSI	CREBBP	CRKL	CRLF2	CSFIR	CSF3R	CTCF	CTNNAI	CTNNB1	CUXI	CXCR4 I	DAXX D	DR2 L	ID XEXO	VM2 DN	MT3A DO1	71. DTX	SUU	24
	DUSP9	E2A	EBF1	ECT2L	EED	EGFR	ELP2	EMSY	EP300	EPHA3	EPHA5	EPHA7 I	EPHB1 E	RBB2 E	RBB3 EF	RB4 ER	G ESK	1 ETO	ETS.	1
	ETV6	EXOSC6	EZH2	FAFI	FAM123B	FAM46C	FANCA	FANCC	FANCD2	FANCE	FANCF	FANCG	FANCL F	AS F	BX011 FE	3X031 FB.	XW7 FGF	10 FGF.	4 FGF.	61
	FGF23	FGF3	FGF4	FGF6	FGFR1	FGFR2	FGFR3	FGFR4	FHIT	FLCN	FLTI	FLT3	rLT4 F	TAMCHI E	DXTS EC	XOI FO.	XO3 EOX	PI FRS	GAD	D45B
	GATAI	GATA2	GATA3	GID4	GNAII	GNA12	GNA13	GNAQ	GNAS	GPR124	GRAF	GRINZA (9 BEXSE	TSEI F	DACI HI	DAC4 HD	AC7 HGI	- HIST	INIC HISI	IHID
	HISTIHIE	HISTIH2AC	C HISTIH2A	3 HISTIH2A	L HISTIH2AM	HIST1H2B	C HISTIH2E	U HISTIH2B	X HISTIH2BO	HISTIH3B	HNFIA	HRAS	N IVADAAI N	и ж	ai Ec	HII IH	H2 IKB	KE IKZF	i IKZF	2
	IKZF3	IL 7R	INHBA	INPP4B	INPP5D	IRF1	IRF4	IRF8	IRS2	JAKI	JAK2	JAK3	IARID2 J	UN H	AT6A KI	DM2B KD.	M4C KDN	A5A KDM	5C KDN	164
	KDR	KEAP1	KIT	97НТХ	KMT2A	KMT2C	KRAS	LEFI	10W1	LRPIB	LRRK2	MAF	WAFB N	IAGEDI A	14LT1 MA	AP2KI MA	P2K2 MAI	P2K4 MAF	3K1 MAF	3K14
	MAP3K6	MAP3K7	MAPKI	MCLI	MDM2	MDM4	MED12	MEF2B	MEF2C	MENI	MET	MIBI	WITF A	1KI67 A	WI IHTI	רד אור	WW 87	SET MPL	MRE	11:
	MRE1 IA	MSH2	WSH3	MSH6	MTOR	митүн	MYC	MYCL	<i>WYCL1</i>	MYCN	MYD88	MYO184	NYST3 A	COR2 N	CSTN NI	FI NF.	2 NFE	:2L2 NFK	3IA NKX	2-1
	IDON	NOTCH1	NOTCH2	IMAN	NRAS	IDSN	NSD2	NT5C2	NTRK1	NTRK2	NTRK3	NUP93	A 864UN	2RY8 F	AGI PI	aka PA	LB2 PAS	ik PAX:	PBR	IW.
	PC	PCBP1	PCLO	PDCD1	PDCD11	PDCD1LG2	PDGFRA	PDGFRB	PDK1	PDLI	PDL2	PHF6	PIK3CA F	IK3CG F	IK3R1 PI	K3R2 PIN	41 PO1	1 POU	2AF1 PRD	TW1
	PRKARIA	PRKDC	PRSS8	PTCH1	PTEN	IINd1d	PTPN2	PTPN6	PTPRO	RAD21	RAD50	RAD51	RAFI R	ARA F	ASGEF1A RE	31 RE.	LN RET	- RHO	4 RICI	ror
	RNF43	ROSI	RPTOR	RUNXI	RUNXITI	SIPR2	SDHA	SDHB	SDHC	DHDS	SERP2	SETBP1	SETD2 S	F3B1 S	GKI SH	HS dH	I'WS I'-d	4DZ SMA	D4 SMA	RCAI
	SMARCA4	SMARCB1	SMCIA	SMC3	SMO	SOCSI	SOCS2	SOCS3	SOX10	SOX2	SPEN	SPOP	SRC S	RSF2 S	TAG2 ST	'AT3 ST/	474 STA	T5A STA	5B STA	76
	STK11	SUFU	SUZ12	SYK	TAFI	TBLIXRI	TCF3	1771	TCLIA	TET2	TGFBR2		TMEM30A 7	MSB4XP8 1	VI ETSW	VFAIP3 TN	FRSF11A TNF	RSF14 TNF	SF17 TNF	RSF6
	TOP1	TP53	TP63	TRAF2	TRAF3	TRAF5	TSCI	TSC2	TUSC3	TYK2	U2AF1	U2AF2	и лнг	DR90 V	IHSCI W	ISP3 WT	CTW I	K XBP.	XPO	1
	WIAPI	ZMYM2	ZNF217	ZNF24	ZNF703	ZRSR2	ZSCAN3													
With select intronic regions	ALK	BCL2	BCL6	BCR	BRAF	CCND1	CRLF2	EGFR	EPOR	ETVI	ETV4	ETV5	ETV6 E	WSR1 F	GFR2 IG	H IGH	19/	JAKI	JAK	
	KMT2A	TTW	MYC	NTRKI	PDGFRA	PDGFRB	RAFI	RARA	RET	ROSI	TMPRSS2	TRG								

 $\textbf{968} \ \Cite{O}$ 2020 by American Society of Clinical Oncology

Location	No. of Cases
Primary site	29
Uterine	25
Abdominal wall	1
Hip/gluteal	1
Sacrum	1
Small bowel	1
Metastatic site	48
Lung	7
Retroperitoneum	5
Abdominal wall	4
Limb soft tissue	4
Omentum	4
Liver	3
Paraspinal	3
Peritoneum	3
Pleura	2
Colon	2
Kidney	2
Chest wall	2
Mesentery	2
Small intestine	1
Hilar lymph node	1
Vagina	1
Posterior mediastinum	1
Heart	1

 TABLE A2.
 Locations of Sequenced Tumor Specimens

13. Comparisons of the Frequencies of Genomic Alterations in CDKN2C-Null LN n, CDKN2A, and RAD51B Mutations, or ALK Fusion

Variable	<i>CDKN2C</i> -Nuli TWS	All CDKN2C-Retained LMS	1p/19q-Codeleted LMS	<i>CIC</i> -Mutant LMS	CDKN2A-Mutant LMS	RAD51B-Mutant LMS	ALK-Rearranged LMS
No. of patient cases	77	2,493	62	35	175	43	41
Female sex, % (n/total N)	99 (76/77)	79 (1,968/2,493)	87 (54/62)	86 (30/35)	83 (146/175)	98 (42/43)	98 (40/41)
Median (range) age, years	61 (36-81)	57 (< 1 to ≥ 89)	56 (33-78)	57 (34-81)	59 (< 1-86)	57 (37-80)	58 (17-75)
Median (Q1-Q3) TMB, mut/Mb	2.4 (1.6-3.2)	2.4 (1.6-4.0)	2.5 (1.6-5.0)	2.4 (1.6-4.2)	3.2 (2.4-4.0)	3.8 (2.0-5.0)	3.2 (1.6-4.0)
MSI high	0 (0/63)	0.2 (5/2,093)	2 (1/62)	0 (0/30)	1 (1/146)	0 (0/37)	0 (0/35)
Genomic alteration, % (n/total N)							
TP53	12 (9/77)	73 (1,830/2,493)	52 (33/62)	51 (18/35)	46 (80/175)	70 (30/43)	37 (15/41)
RB1	0 (0/77)	55 (1,359/2,493)	45 (28/62)	49 (17/35)	14 (25/175)	63 (27/43)	15 (6/41)
ATRX	3 (2/77)	25 (606/2,473)	16 (10/62)	17 (6/35)	12 (20/172)	30 (13/43)	5 (2/40)
PTEN	9 (7/77)	16 (399/2,493)	13 (8/62)	17 (6/35)	9 (15/175)	19 (8/43)	5 (2/41)
1 p/19q-codeletion	81 (58/72)	5 (62/1,212)	100 (62/62)	22 (4/18)	17 (14/82)	19 (5/26)	32 (6/19)
CIC	40 (31/77)	1 (35/2,473)	7 (4/62)	100 (35/35)	0 (0/172)	9 (4/43)	0 (0/40)
CDKNZA	47 (36/77)	7 (175/2,493)	23 (14/62)	0 (0/35)	100 (175/175)	5 (2/43)	63 (26/41)
RAD51B	17 (13/77)	2 (43/2,473)	8 (5/62)	11 (4/35)	1 (2/172)	100 (43/43)	5 (2/40)
ALK fusion	3 (2/77)	2 (41/2,493)	10 (6/62)	0 (0/35)	15 (26/175)	5 (2/43)	100 (41/41)
BRAF fusion	3 (2/77)	0.2 (4/2,493)	0 (0/62)	0 (0/35)	0 (0/175)	2 (1/43)	0 (0/41)
FGFR1 fusion	1 (1/77)	0.1 (2/2,493)	0 (0/62)	0 (0/35)	0 (0/175)	0 (0/43)	0 (0/41)
NTRK1 fusion	1 (1/77)	0.1 (3/2,493)	0 (0/62)	0 (0/35)	1 (2/175)	0 (0/43)	0 (0/41)
NOTE. For percent values, the nu Abbreviations: LMS, leiomyosarco	imber of positive cas ma; MSI, microsatell	ses over the number of evaluation into instability, TMB, tumor m	ated cases is included in utational burden.	parentheses.			

Williams et al

JCO Precision O	ncology
-----------------	---------

SC	-
ed Specimer	C
Pair	
Available	
With	
Results	
A 4.	
TABLE	

NOTE. Matching genomic alterations are in bold.