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CDKN2C-Null Leiomyosarcoma: A Novel,
Genomically Distinct Class of TP53/
RB1-Wild-Type Tumor With Frequent C/C
Genomic Alterations and 1p/19qg-Codeletion

Erik A. Williams, MD!; Radwa Sharaf, PhD'; Brennan Decker, MD, PhD?; Adrienne J. Werth, MD3; Helen Toma, MD3;

Meagan Montesion, PhD?; Ethan S. Sokol, PhD!; Dean C. Pavlick, BS*; Nikunj Shah, BS'; Kevin Jon Williams, MD*;

Jeffrey M. Venstrom, MD?; Brian M. Alexander, MD, MPH?; Jeffrey S. Ross, MD''5; Lee A. Albacker, PhD!; Douglas I. Lin, MD, PhD!;
Shakti H. Ramkissoon, MD, PhD*%; and Julia A. Elvin, MD, PhD*

PURPOSE Leiomyosarcoma (LMS) harbors frequent mutations in TP53 and RB1 but few actionable genomic
alterations. Here, we searched for recurrent actionable genomic alterations in LMS that occur in the absence of
common untreatable oncogenic drivers.

METHODS Tissues from 276,645 unique advanced cancers, including 2,570 uterine and soft tissue LMS, were
sequenced by hybrid-capture—based next-generation DNA and RNA sequencing/comprehensive genomic
profiling of up to 406 genes. We characterized clinicopathologic features of relevant patient cases.

RESULTS Overall, 77 LMS exhibited homozygous copy loss of COKN2C at chromosome 1p32.3 (3.0% of LMS).
Genomic alterations (GAs) in TP53, RB1, and ATRX were rare compared with the remainder of the LMS cohort
(11.7% v73.4%, 0% v54.5%, 2.6% v 24.5%, respectively; all P < .0001). CDKN2C-null LMS patient cases
were significantly enriched for GAs in CIC (40.3% v 1.4%) at 19q13.2, CDKN2A (46.8% v7.0%), and RAD51B
(16.9% v 1.7%; all P < .0001). Chromosome arm-level aneuploidy analysis of available LMS patient cases
(n=1,284) found that 81% (58 of 72) of CDKN2C-null LMS exhibited 1p/19g-codeletion, a significant enrichment
compared with 5.1% in the remainder of the LMS cohort (P < .0001). In total, 99% of CDKN2C-null LMS were in
women; the median age was 61 years at surgery (range, 36-81 years). Fifty-five patient cases were uterine primary,
four were nonuterine, and the remaining 18 were of uncertain primary site. Sixty percent of cases showed at least
focal epithelioid variant histology. Most patients had advanced-stage disease, with 62% of confirmed uterine
primary LMS at International Federation of Gynecology and Obstetrics stage IVB. We further validated our findings
in two publicly available datasets: The Cancer Genome Atlas and the Project GENIE initiative.

CONCLUSION CDKNZ2C-null LMS defines a genomically distinct tumor that may have prognostic and/or ther-
apeutic clinical implications, including possible use of specific cyclin-dependent kinase inhibitors.

JCO Precis Oncol 4:955-971. © 2020 by American Society of Clinical Oncology
Creative Commons Attribution Non-Commercial No Derivatives 4.0 License @@@@

INTRODUCTION

Leiomyosarcoma (LMS), a neoplasm defined by smooth
muscle differentiation, is the most common form of
uterine sarcoma.* LMS is aggressive and resists stan-
dard therapy, with high rates of recurrence and pro-
gression. Multiple studies have shown an overall 5-year
survival of 25%-76%, with survival for patients with
metastatic disease at presentation approaching 10%-
15% .2 Stage of disease, as defined by the International
Federation of Gynecology and Obstetrics (FIGO)® or the
American Joint Committee on Cancer (AJCC),* at the
time of diagnosis, is the most important prognostic factor
for uterine LMS.! Surgery is the standard of care for

localized tumors, with hormonal and cytotoxic chemo-
therapy reserved for advanced stages.®

Genomic studies of LMS have demonstrated notable
mutational heterogeneity, frequent inactivation of TP53
and RB1 through varied mechanisms, and widespread
copy number alterations.® LMS is often associated
with complex karyotypes with numerous chromosomal
gains and losses.” LMS has demonstrated occasional
potentially targetable genomic alterations (GAs), but
novel targeted therapeutic agents have not been widely
used.®1° Herein, we describe a novel recurrent ge-
nomic signature of cyclin-dependent kinase inhibitor-
2C gene (CDKNZ2C) homozygous loss in LMS primarily
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CONTEXT

Key Objective

Leiomyosarcoma (LMS), an aggressive tumor with limited curative options, shows frequent mutations in 7TP53 and RB1 but
few actionable genomic alterations. Here, we searched for recurrent actionable genetic alterations in LMS.

Knowledge Generated

A novel, genomically distinct class of LMS (3.0%; 77 of 2,570 cases) harbor homozygous loss of CDKN2C, which encodes the
cyclin-dependent kinase inhibitor-2C. CDKN2C-null LMS lack typical TP53 and RB1 mutations; show concurrent ho-
mozygous deletion of CIC, CDKN2A, and RAD51B; and show frequent 1p/19g-codeletion.

Relevance

The finding of recurrent CDKN2C-null LMS provides insight into tumor biology and raises the possibility for use of specific
cyclin-dependent kinase inhibitors in this aggressive disease.

from the uterus, with significantly low frequency of TP53
and RBI GAs.

METHODS
Cohort and Genomic Analyses

Comprehensive genomic profiling was performed in a
Clinical Laboratory Improvement Amendments—certified,
College of American Pathologists—accredited laboratory
(Foundation Medicine, Cambridge, MA). Approval for this
study, including a waiver of informed consent and a HIPAA
waiver of authorization, was obtained from the Western
Institutional Review Board (Protocol No. 20152817). The
pathologic diagnosis of each patient case was confirmed
on routine hematoxylin and eosin (H&E)-stained slides.
Sections were macrodissected to achieve > 20% estimated
percent tumor nuclei in each case, for which the percent
tumor nuclei equals 100 times the number of tumor cells
divided by total number of nucleated cells. In brief, > 60 ng
of DNA was extracted from 40-pm sections of tumor
samples in formalin-fixed, paraffin-embedded tissue
blocks. The samples were assayed by adaptor ligation
hybrid capture, performed for all coding exons of 236 (v1),
315 (v2), or 405 (v3) cancer-related genes plus select
introns from 19 (v1), 28 (v2), or 31 (v3) genes frequently
rearranged in cancer (Appendix Table Al).}-!2 For sam-
ples with available RNA, targeted RNA sequencing was
performed for rearrangement analysis in 265 genes.'?
Sequencing of captured libraries was performed using
the Illumina HiSeq 4000 System (lllumina, San Diego, CA)
to a mean exon coverage depth of targeted regions of >
b00x, and sequences were analyzed for GAs, including
short variant alterations (base substitutions, insertions, and
deletions), copy number alterations (focal amplifications and
homozygous deletions), and select gene fusions or
rearrangements.'#131 To maximize mutation detection
accuracy (sensitivity and specificity) in impure clinical
specimens, the test was previously optimized and validated
to detect base substitutions at a > 5% mutant allele fre-
quency, indels with a > 10% mutant allele frequency with >
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99% accuracy, and fusions occurring within baited introns/
exons with > 99% sensitivity.!! Germline and somatic status
of pathogenic alterations was not delineated. Tumor muta-
tional burden (TMB; mutations/Mb) was determined on
0.8-1.1 Mb of sequenced DNA.* Microsatellite instability
was determined on up to 114 loci.'®

Copy number analysis. Copy number analysis to detect
gene-level amplifications at > 6-8 copies depending on
tumor ploidy and homozygous deletions was performed
as previously described.!! In brief, the aligned DNA se-
quences of each tumor specimen were normalized against
a process-matched normal, producing log-ratio and minor
allele frequency data. Next, whole-genome segmentation
was performed using a circular binary segmentation al-
gorithm on the log-ratio data. A Gibbs sampler fitted copy
number model and a grid-based model were fitted to
the segmented log-ratio and minor allele frequency data,
producing genome-wide copy number estimates. Finally,
the degrees-of-fit of candidate models returned by Gibbs
sampling and grid sampling were compared, and the op-
timal model was selected by an automated heuristic.

Signal-to-noise ratios for each genomic segment were
used to determine gain or loss per chromosome arm on
the basis of tumor purity and ploidy; the sum of segment
sizes determined the fraction of each arm gained or lost.
Chromosomes were assessed for arm-level aneuploidy,
defined as positive if > 50% of the arm was altered. This
threshold was previously validated on 109 /DH1/2-mutant
glioma samples with 1p/19g-codeletion fluorescence
in situ hybridization (FISH) results available. Patient cases
were blinded to FISH results, and 1p/19g-codeletion
status was determined via arm-level aneuploidy analy-
sis. Concordance was 95%, sensitivity was 91%, and
positive predictive value was 100%. A query for chro-
mosome 1p and 19q arm-level aneuploidy was per-
formed on LMS patient cases with available aneuploidy
data (n = 1,284), with positive patient cases defined as
1p/19g-codeleted.
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Clinicopathologic analysis of LMS cohort harboring homo-
zygous CDKN2C deletion. The cohort of COKN2C-null LMS
comprised 77 cases, each from a different patient, that
were submitted to Foundation Medicine for comprehensive
genomic profiling during routine clinical care. Human in-
vestigations were performed after approval by a local hu-
man investigations committee and in accordance with an
assurance filed with and approved by the Department of
Health and Human Services, when appropriate. Clinicopath-
ologic data, including patient age, sex, tumor site, and FIGO
stage or AJCC (8" edition) stage, were extracted from the
accompanying pathology report.**¢ Primary site data were not
available for a subset of patient cases (“indeterminant pri-
mary”). The histopathology was assessed on routine H&E-
stained slides of tissue sections submitted for genomic profiling
by two board-certified pathologists (E.A.W., D.I.L.).

Quantitative data were analyzed using the Fisher exact test
because of the categoric quality of the data and the size of
the cohort. For the age and TMB comparisons between
two groups, the nonparametric Mann-Whitney U test was
used. A two-tailed P value of < .05 was considered sta-
tistically significant; the Bonferroni correction was applied
for multiple simultaneous comparisons.

Review of publicly available datasets. The Cancer Genome
Atlas (TCGA) Network’s sarcoma genomic dataset!” and
the American Association for Cancer Research (AACR)
Project GENIE Consortium dataset (v7.0-public)!® were
interrogated for LMS with homozygous loss of CDKN2C.
Histopathology of TCGA patient cases was reviewed by
two board-certified pathologists (E.A.W., D.I.L.).

RESULTS

A Novel Class of CDKN2C-Null LMS: Clinicopathologic
Features

From an internal series of 276,645 unique advanced
cancers, including 2,570 LMS, of which 939 were of
confirmed uterine origin, we identified 77 LMS with ho-
mozygous copy loss of CDKN2C at chromosome 1p32.3
(3.0% of all LMS [77 of 2,5701, 5.9% of uterine LMS [55
of 939]). Clinical characteristics of the 77 patients with
this novel class of CDKN2C-null LMS are summarized in
Table 1. These patients were significantly older than the
remainder of the LMS cohort (median age, 61 v 57 years;
P =.0009, Mann-Whitney U test). Patients were enriched
for female sex compared with the remainder of the LMS
cohort (99% [76 of 771 v79% [1,968 of 2,493]; P < .0001,
Fisher's exact test). Six female patients had a prior history of
leiomyomatosis (n = 2) or uterine smooth muscle tumor of
uncertain malignant potential (STUMP; n = 4). The majority
of CDKN2C-null LMS patients showed clinically advanced/
metastatic disease, with 62% of confirmed uterine primary
occurrences documented at FIGO stage IV (n = 34 of 55)
and 86% of indeterminant or soft tissue primary cases
documented at AJCC stage IV (n = 19/22), as summarized

JCO Precision Oncology

TABLE 1. Clinical Characteristics of Patients With CDKN2C-Null
Leiomyosarcoma

Characteristic No. (%)
No. of patients 77
Median (range) age at diagnosis, years 61 (36-81)
Sex
Female 76 (99)
Male 1(1)
Primary site
Uterine 55 (71)
Soft tissue 4 (5)
Indeterminant 18 (23)
FIGO staging (uterine primary)
IB 6 (11)
A 2 (4)
1B 4 (7)
A 2 (4)
1B 1(2)
lc 4(7)
IVB 34 (62)
Unknown 3 (6)
AJCC staging (soft tissue or indeterminant primary)
IA 1(5)
W% 19 (86)
Unknown 2(9)

Abbreviations: AJCC, American Joint Committee on Cancer; FIGO,
International Federation of Gynecology and Obstetrics.

in Table 1. Locations of the sequenced tumor specimens
are summarized in Appendix Table A2.

Comprehensive Genomic Profiling of CDKN2C-Null LMS

The distribution of GAs in the 77 CDKN2C-null LMS is
displayed in Figure 1. TP53, RB1, and ATRX GAs were rare
in comparison with the remainder of the LMS cohort
(Table 2; Appendix Table A3). CDKN2C-null LMS com-
prised 14% (68 of 486) of TP53/RBI1-wild-type LMS. The
most frequent GAs were identified in CIC at 19g13.2,
CDKNZ2A, and RAD51B (Table 2), and unsupervised anal-
ysis showed significant enrichment of these alterations
in the CDKN2C-null cohort (Appendix Fig Al). Eighty-five
percent (60 of 71) of patient cases evaluated for FAFI
showed homozygous deletion of FAFI at 1p32.3, a gene
adjacent to CDKN2C (9.7 kb apart). No CDKNZ2C-null LMS
in our cohort had inactivating GAs in FUBP1 or pathogenic
alterations in IDH1/2 or TERTp.

The median TMB was 2.4 mutations/Mb (range, < 0.8-9.6;
Q1-Q3, 1.6-3.2), similar to the remainder of the LMS co-
hort (median, 2.4 mutations/Mb; range, < 0.8-203; Q1-Q3,
1.6-4.0) but slightly lower overall (P=.0425, Mann-Whitney
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FIG 1. Mutational landscape of CDKN2C-null leiomyosarcoma. Summary tile plot of pathogenic variants identified in 77 cases of CDKN2C-null leiomyo-
sarcoma. Each column represents data for a single patient. Age, sex, tumor ploidy, and 1p/19g-codeletion status are also provided for each case. The

histogram on top shows tumor mutational burden (TMB; mutations/megabase).

U test). No microsatellite-unstable patient cases were
present in the CDKN2C-null cohort.

Within the cohort of CDKN2C-null LMS, comparison of
patients < 61 years of age with patients > 61 years revealed
significant differences in frequency of CIC alterations
(54% [20 of 371 v28% [11 of 40]; P=.022) and RAD51B
alterations (5% [2 of 371 v28% [11 of 40]; P=.0136). No
other significant differences based on age were identified.
Comparison of patient cases on the basis of clinical stage,

958 © 2020 by American Society of Clinical Oncology

history of lower grade smooth muscle neoplasm, or primary
site did not reveal any significant differences in GAs.

Three patients had two separate tissue specimens analyzed
(Appendix Table A4). For all three patients, each initial se-
quencing result, including CDKN2C loss, was identified in the
subsequent paired-specimen result. One patient had se-
quencing of both the primary uterine LMS and a subsequent
lung metastasis. The lung mass showed additional homozygous
loss of CIC.
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TABLE 2. Comparative Demographics and Percent Frequency of Genomic Alterations Stratified by COKN2C Status

Variable CDKN2C-Null LMS Remaining LMS Cohort P
Female sex, % (n/total N) 99 (76/77) 79 (1,968/2,493) < .0001
Median (range) age, years 61 (36-81) 57 (< 1to > 89) .0009
TMB (Q1-Q3), mut/Mb, % (n/total N) 24 (1.6-3.2) 2.4 (1.6-4.0) .0425
MSI high, % (n/total N) 0 (0/63) 0.2 (5/2,093) 1.0000
Genomic alteration, % (n/total N)
1p/19g-codeletion 85 (33/39) 5 (62/1,212) < .0001
cic 40 (31/77) 1 (35/2,473) < .0001
CDKNZ2A 47 (36/77) 7 (175/2,493) < .0001
RAD51B 17 (13/77) 2 (43/2,473) < .0001
TP53 12 (9/77) 73 (1,830/2,493) < .0001
RBI 0 (0/77) 55 (1,359/2,493) < .0001
ATRX 3 (2/77) 25 (606/2,473) < .0001
PTEN 9 (7/77) 16 (399/2,493) 113
ALK fusion 3 (2/77) 2 (41/2,493) 371
BRAF fusion 3 (2/77) 0.2 (4/2,493) 0123
FGFRI fusion 1(1/77) 0.1 (2/2,493) .0873
NTRKI fusion 1(1/77) 0.1 (3/2,493) 115

NOTE. For percent values, number of positive cases over the total
correction for 16 simultaneous comparisons was applied; significant
Abbreviations: LMS, leiomyosarcoma; MSI, microsatellite instability

A query and review for chromosome 1p and 19q arm-level
aneuploidy in available LMS patient cases (n = 1,284)
revealed that 99% (71 of 72) of CDKN2C-null LMS patient
cases had whole-arm aneuploidy of the short arm of
chromosome 1, and 81% (58 of 72) had aneuploidy of
the long arm of chromosome 19 and 1p/19g-codeletion.
Significant enrichment for 1p/19g-codeletion was identified
in comparison with the remainder of the evaluated LMS
cohort (81% [58 of 72] v 5% [62 of 1,212]; P < .0001).
Copy number plots of two exemplary cases of COKN2C-null
LMS exhibiting 1p/19g-codeletion are shown in Figures 2A
and 2B. Additional recurrent chromosomal arm-level
changes were identified in the 72 patient cases available,
including most frequently aneuploidy of chromosomes
6p (n=35),9p (n=19), 10g (n =28), 11p (n =39), 13q
(n =46), 14q (n = 46), and 169 (n = 52).

A review of 1p/19g-codeletion status in available LMS
patient cases without homozygous deletion of CDKN2C
(n = 1,212) revealed 62 1p/19g-codeleted LMS (5%;
Fig 2C). These 62 CDKNZ2C-retained LMS showed GAs
in TP53 (52%; n = 33), RBI (45%; n = 28), ATRX (16%;
n = 10), and PTEN (13%; n = 8). GAs were also identified in
CDKNZA (23%; n = 14) and ALK (10%; n = 6; all acti-
vating rearrangement events). A minority showed GAs in
RAD51B (8%; n = 5), CIC (7%; n = 4; all homozygous loss),
and FAFI (5%; n = 3). Three of the four patient cases with
homozygous deletion of CIC also showed homozygous de-
letion of both RAD51B and FAF1. All four occurred in uterine
LMS (one of which with a history of STUMP).

JCO Precision Oncology

number of evaluated cases is included in parentheses. The Bonferroni
P values (< .003) are in bold.
; TMB, tumor mutational burden.

All non-LMS sarcoma patient cases in the Foundation
Medicine dataset (n = 12,097) were evaluated for COKN2C
status. Twenty-two of 1,297 gastrointestinal stromal tumors
(GISTs) were CDKNZ2C-null (1.7% of GISTs). Twenty-one
had a KIT mutation, and the single remaining GIST had
a PDGFRA mutation. None of the 14 CDKNZ2C-null GIST
cases with 1p/19q data had 1p/19q codeletion. Nineteen
additional sarcoma occurrences with homozygous deletion
of CDKNZ2C were identified (0.18% of non-LMS non-GIST
sarcomas). These included diverse sarcoma diagnoses, in-
cluding six high-grade sarcomas not otherwise specified, two
osteosarcomas, two malignant peripheral nerve sheath tu-
mors, and two inflammatory myofibroblastic tumors. Geno-
mics were also varied, with alterations identified in
CDKN2A (68%;n=13), TP53(42%;n=8), NF1(26%;
n=>5), NF2 (26%; n = 5), and ALK (16%; n = 3; all acti-
vating rearrangement events). No GAs in CIC or RAD51B
were identified. Eleven of the 19 patient cases had 1p/19g-
codeletion data available; two (18%) of the 11 had 1p/19¢-
codeletion. Both were ALK rearrangement—positive tumors
in women (ages, 63 and 72 years).

We also searched our entire LMS cohort (N = 2,570) for cases
with pathogenic alterations in CDKN2C other than homozy-
gous deletion. Only one case was identified, in a 52-year-old
woman with an estrogen receptor—positive, progesterone
receptor—positive (per report, by immunohistochemis-
try) uterine LMS with a truncating mutation in COKN2C
(p.R68*). Concurrent homozygous deletions of CIC
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FIG 2. Copy number (CN) plots of three leiomyosarcomas (LMS) with known CDKNZ2C status and 1p/19g-codeletion (blue arrows). The y-axes display log-
ratio measurements of coverage from each case as compared with a normal reference sample, with assessed CNs denoted by dashed horizontal lines. Each
dot represents a genomic region evaluated by the assay (cyan, single-nucleotide polymorphism; blue, exon), which are organized by genomic position. Red
lines designate average log-ratio in a segment, and green lines represent model prediction. (A) CDKN2C-null LMS with a truncating variant in CIC (p.Q907*)
and homozygous deletion of CODKNZ2A at chromosome 9p21.3 (red arrow). (B) CDKN2C-null LMS with homozygous deletion of C/Cat chromosome 19g13.2
(red arrow) and RAD51B at chromosome 14q24.1 (red arrow). (C) CDKN2C-retained LMS with deep deletion of RBI at chromosome 13q14.2 (red arrow)

and a CN plot of high complexity.

and RAD51B were identified; 1p/19q status was not epithelioid LMS. Twenty-three cases (33%) were spindle

available. cell LMS. Nineteen cases (27%) showed mixed histology,
including 11 mixed spindle and epithelioid LMS; four mixed
Histopathology spindle and myxoid LMS; two mixed epithelioid and myxoid

LMS; and two mixed spindle, epithelioid, and myxoid LMS.

Histopathologic evaluation was performed on all available .
A single case showed small round cell morphology.

high-resolution digital pathology H&E slides of our cohort of
CDKNZ2C-null LMS (n =70). Histology was heterogeneous, Per immunohistochemistry reports, COKN2C-null LMS showed
as shown in Figure 3. Twenty-seven cases (39%) were diffuse positivity for estrogen receptor (29 of 29 LMS) and

960 © 2020 by American Society of Clinical Oncology
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FIG 3. Histopathology of CDKN2C-null leiomyosarcoma ranged from (A, B) epithelioid to (C) spindled (hematoxylin &
eosin [H&E] stains, 200x). (D) Occasional cases showed focal myxoid histology (H&E stain, 200x).

progesterone receptor (24 of 26; remaining two with focal
positivity). CDKNZ2C-null LMS were also positive for
desmin (30 of 33; remaining three with focal positivity),
smooth muscle actin (25 of 25), muscle-specific actin
(11 of 11), and caldesmon (6 of 6). HMB-45 was focally
positive in two of nine cases, and CD10 was positive
in one of 14 cases. Tumors were reportedly negative
for S100 (n = 15), various keratin markers (n = 19), CD34
(n=11), and CD117 (n = 11).

Publicly Available Datasets

The frequency of CDKN2C-null cases in LMS in our dataset
prompted us to interrogate the sarcoma genomic dataset of
TCGA Network!” and the AACR Project GENIE Consortium
dataset (v7.0-public).'® A total of 12 CDKN2C-null LMS
patient cases were identified (TCGA: n = 3 [4%] of 80;
GENIE: n =9[2%] of 449; Table 3). The CDKN2C-null LMS
patient cases were enriched for female sex (n = 12 of 12),
uterine origin, and epithelioid histology. Patient cases
showed frequent homozygous loss of C/C (n = 5 [42%] of
12), CDKNZ2A (n = 4 [33%] of 12), and RAD5IB (n = 3
[25%] of 12), and all were wild type for TP53, RBI,
and ATRX (n = 12 of 12).

DISCUSSION

In 2,570 patient cases of LMS, CDKN2C-null LMS (n = 77;
3.0%) comprised a genomically distinct molecular subgroup.

JCO Precision Oncology

CDKN2C-null LMS typically lacked mutations in TP53,
RB1, and ATRX but showed frequent 1p/19g-codeletion
(81%), and nearly half (40.3%) showed homozygous
deletion or inactivating truncations of CI/C. Clinical fea-
tures were significantly different from other LMS: patients
were slightly but statistically significantly older, and the
vast majority (76 of 77 patients) were women. Most were
of uterine primary site of origin. A high percentage
demonstrated epithelioid variant features on histology, and
limited clinical data suggest a possible association with and
progression from lower-grade uterine smooth tumors, such
as leiomyomatosis and STUMP.

CDKNZ2C at 1p32.3 encodes the homologous p18INK4C
cell cycle regulatory protein that blocks cell cycle pro-
gression by inhibiting the cyclin D—-dependent kinases
CDK4 and CDK6.'%2! Loss of CDKN2C results in loss of
potent inhibition of CDK4/6 in the cyclin D-CDK4/6-INK4-
Rb pathway. CDKN2C is also a key factor for ATM/ATR-
mediated activation of the tumor suppressor p53, and
CDKNZC loss has been shown to block p53 induction in
response to DNA damage.?>?> CDKNZ2C loss has been
documented in a subset of diverse tumor types, includ-
ing multiple myeloma, pituitary adenoma, and thyroid
carcinoma.?*2¢ CDKN2C loss has also been documented in
a small percentage of oligodendroglioma.?”-?® The adjacent
FAFI gene at 1p32.3 encodes FAS-associated factor 1,
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which enhances FAS-mediated apoptosis, and its loss may
contribute to tumor pathogenesis.?®

The CIC gene on chromosome 19q13.2 represses genes
induced downstream to RTK pathway activation.® In the
absence of RTK signaling, CIC blocks transcription of genes
that have diverse effects on cellular proliferation, metabolism,
and migration.3 Along with single copy loss of C/C on 19q,
concurrent inactivating mutations in CIC are identified in
a high percentage of oligodendrogliomas.?

Whole-arm 1p/19g-codeletion, with concurrent mutation in
IDH1 or IDH2, is entity-defining for oligodendrogliomas.33%°
Oligodendrogliomas are associated with relatively long overall
survival, and treatment strategies are often stratified on the
basis of 1p/19q status.>**® The codeletion is a result of
unbalanced translocation between two chromosomes,
with subsequent loss of der(1;19)(p10;ql0), likely be-
cause chromosomes 1 and 19 are near each other in the
nonrandom organization of the nucleus.> ! A large per-
centage of oligodendrogliomas also show C/C and FUBPI
mutations.3! Our cohort of CDKN2C-null LMS shows notable
similarities and differences to oligodendroglioma; 40% of our
cohort showed an inactivating alteration in CI/C, most com-
monly homozygous deletion. Although FUBPI at 1p31.1 is
somatically mutated in a subset of oligodendroglioma,
no CDKN2C-null LMS patient cases in our cohort had in-
activating GAs in FUBP1 or pathogenic alterations in IDHI1/2
or TERTp. The recurrent chromosomal arm-level losses in
our cohort may indicate that additional tumor suppressor
genes are located on these arms. Rare sarcoma-like tumors
originating from oligodendrogliomas have been reported,
with documented /DH1 mutation and 1p/19g-codeletion,
and have been termed “oligosarcoma.”#2** Rodriguez
et al*® identified 6 of 7 patient cases of oligosarcoma with at
least focal smooth muscle actin positivity of the sarcoma-
tous component by immunohistochemistry and one patient
case with smooth muscle differentiation by electron mi-
croscopy. These results indicate a similarity in differentiation
to our cohort of LMS.

Among all sarcomas with CDKN2C loss, 1p/19g-codeletion
appears to be nearly exclusive to LMS. In our overall LMS
cohort, however, occasional COKN2C-retained LMS showed
TP53 and RBI alterations and were positive by the 1p/19g-
codeletion detection algorithm. We speculate that, given the
complexity of these genomically unstable occurrences, oc-
casional CDKN2C-retained LMS satisfy these criteria (Fig 2C).
As such, identification of homozygous deletion of CDKN2C
may be the most specific distinguishing feature.

Cytogenetic findings in LMS and leiomyoma have been
previously reported, although without characterization of
CDKNZC status. A greater frequency of 1p loss has been
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documented in metastasized LMS.*® From a cytogenet-
ics study of 800 uterine leiomyomata, nine diploid oc-
currences with 1p loss were identified, with other
associated alterations, particularly chromosome 19 and/or
chromosome 22 loss.*® Transcriptional profiling of two of
the 1p-deleted leiomyomas in that study showed alignment
with malignant LMS in a hierarchical clustering analysis.*®
In another study, 1p loss was identified in approximately
one quarter of uterine cellular leiomyomata.*” Three reports
on a total of eight pulmonary-based “benign metastasizing
leiomyoma” reported 19q and 22q terminal deletion in
each case.®®%° Rare uterine leiomyomas with GAs in
RAD51B have also been identified.®* The overlap in GAs
between our cohort of COKN2C-null LMS and a subset of
leiomyoma of uncertain CDKN2C status in the literature
suggests a possible connection between these entities.

Evaluations of GAs in epithelioid or myxoid uterine smooth
muscle neoplasms are limited in the literature.52% Al-
though a high percentage of COKN2C-null LMS in our study
demonstrated epithelioid features on histology, histology
was also varied. Immunohistochemistry results extracted
from pathology reports were typical for uterine LMS, with
expression of characteristic smooth muscle markers.®”

Given the overall low response rate of LMS to standard
therapies, the identification of this targetable alteration in
CDKN2C may be useful for treatment decisions. CDK4/6
inhibitors have previously shown effectiveness in a LMS
with a CDKN2A alteration.® Nearly half of the CDKN2C-null
LMS harbored loss of CDKN2A; CDK4/6 inhibitors may be
effective in replacing the loss of inhibition of CDK4/6 that
results from CDKN2C and CDKNZA loss in these patient
cases that recur after standard chemotherapy regimens. A
minor subset of COKN2C-null and/or 1p/19g-codeleted
LMS harbored activating fusions in ALK, BRAF, FGFRI,
and NTRK1, for which targeted inhibitors may be of utility.®

Limitations of this study include its retrospective nature and
the enrichment for aggressive tumors, mostly metastatic to
distant sites. The latter may be due to collection bias from
submission of specimens later in the disease course.

Additional studies will be needed to correlate the finding of
CDKNZ2C loss in LMS with prognostic data and treatment
outcomes. If clinically indicated, future studies are needed
to evaluate other diagnostic modalities, such as CDKN2C
testing through immunohistochemical surrogates®®*° or
1p/19qg FISH testing. Future studies are also needed to
identify the gene expression profile of this novel genomic
subtype.®® Comprehensive genomic profiling of LMS may
provide insights into LMS biology and potentially inform
therapeutic options, including specific cyclin-dependent
kinase inhibitors.
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FIG A1. Volcano plot for COKN2C-null leiomyosarcoma. Attributes with P value < .0001 are labeled. Red and blue indicate positive and negative

correlation, respectively, in CDKN2C-null leiomyosarcoma (n = 77) compared with the remainder of the leiomyosarcoma cohort (n = 2,493). Chromosomal
arm-level aneuploidy analysis was available in a subset of COKN2C-null leiomyosarcoma (n = 72) and CDKNZ2C-retained leiomyosarcoma (n = 1,212).
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TABLE A2. Locations of Sequenced Tumor Specimens
Location No. of Cases

Primary site 29
Uterine 25
Abdominal wall 1

Hip/gluteal 1

Sacrum 1

Small bowel 1

S
[00]

Metastatic site

Lung

Retroperitoneum

Abdominal wall

Limb soft tissue

Omentum

Liver

Paraspinal

Peritoneum

Pleura

Colon

Kidney

Chest wall

Mesentery

Small intestine

Hilar lymph node

Vagina

Posterior mediastinum
Heart

H R = =P, INDINDINDNINDNDW W w DO
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