
hypertension (16). A more precise assessment of donor smoke
exposure, passive or active, may provide more information for safer
donor-recipient matching.

Overall, this study provides guidance for the design of future
ARDS therapeutic drug trials. This study adds to the preponderance
of evidence suggesting that clinical trials must begin to integrate
precise phenotyping of ARDS patients into patient selection,
including their tobacco exposure, to identify effective patient-specific
therapeutics for ARDS. Finally, and perhaps most importantly,
ongoing public health efforts to highlight the profound impact of
tobacco smoke exposure on ARDS risks are integral to decreasing the
population-based risk of a syndrome with high morbidity, mortality,
and societal cost.�
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The Shorter, the Better: Can We Improve Efficiency of Idiopathic
Pulmonary Fibrosis Trials?

Idiopathic pulmonary fibrosis (IPF) is the prototypic fibrosing
lung disease, characterized by relentless progression and poor

prognosis (1). Patients gradually deteriorate despite treatment
with the current standard of care, nintedanib or pirfenidone (2).
These drugs have been approved after decades of failed trials and
heated discussion on the choice of the best efficacy endpoint.
Endpoints have been investigated in thousands of patients before
it was decided that the change of FVC over 1 year was the right
one, a decision based mainly on the correlation between FVC
changes and mortality and accepting that studies with mortality
as endpoint were not feasible (3).
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Measuring FVC is a simple, reproducible, and widely available
tool to monitor IPF progression. Both substantial (>10%) and
marginal (between 5% and 10%) declines in FVC at 6 months are
associated with increased risk of death (4–6). One challenge in
current clinical trials is allocation of patients to true placebo when
approved treatments are available. The alternative strategy of
identifying a treatment effect on top of antifibrotic treatment leaves
smaller margins to detect differences and requires more patients and
long trial duration. Therefore, novel strategies to improve trial
efficiency in IPF are most needed.

In this issue of the Journal, Khan and colleagues (pp. 936–948)
used a solid statistical approach to assess the reliability of a 3-month
change in functional parameters as a surrogate efficacy endpoint in
IPF trials (7). The authors performed a systematic review and meta-
analysis using individual patient data from large IPF trials (certainly a
strength of their study) to explore the relationships between a
3-month change in physiological parameters and clinically relevant
outcomes. The data generated from almost 2,000 patients with IPF
indicate that a 2.5% relative FVC decline at 3 months is associated
with a 15% increased risk of mortality and a 30% increased likelihood
of disease progression. An optimal threshold of 5.7% in FVC change
at 3 months is predicting a significantly higher risk of death: the
accuracy of this 3-month FVC change is comparable to a 10% change
in a 12-month period.

In the treatment arms of six trials evaluating currently
approved antifibrotics, a 2.5% relative FVC decline at
3 months is associated with a 20% risk increase in mortality
and 46% greater likelihood of disease progression. Importantly,
the comparison of FVC decline between treatment arms and
their corresponding placebo arms showed that a statistically
significant treatment effect is present after 3 months (40.9-ml
difference between placebo and treatment arms, a relative
change difference of 1.6%). The authors conclude that
3-month declines in lung function are predictive of disease
progression, irrespective of antifibrotic treatment, and could
serve as an earlier endpoint or a prognostic enrichment tool
for future IPF trials.

Khan and colleagues should be praised for the methodological
robustness of their study, providing an unbiased insight into the
extent to which FVC change could be exploited. An efficacy endpoint
measurable in a shorter timeframe could more rapidly provide
evidence of (in)efficacy, optimizing the resources needed in IPF trials
andmaking study participation more sustainable. Improving the
efficiency of trials in IPF and pulmonary fibrosis in general should be
a priority for the respiratory community. New opportunities are on
the horizon, including the use of Bayesian approaches (8) and the
implementation of home spirometry; 3-month change in FVC
measured via handheld spirometers showed high sensitivity for
predicting subsequent survival and could be used as an efficacy
endpoint in short proof-of-concept trials (9), although recent findings
suggest that this approach needs further validation (10, 11).

The findings of Khan and colleagues will also help to enroll
patients with a more “progressive” disease. It will be important to
validate these results in other nonidiopathic fibrotic lung diseases, as
this additional evidence would also contribute to the ongoing process
of defining what is “progressive” in patients with pulmonary fibrosis.

The advantages of using a 3-month interval in FVC change
come at a price though. The authors estimate that a hypothetical trial

using FVC decline at 3 months as the primary efficacy endpoint
should approximately double the number of patients, as compared
with a “standard” 12-month trial. Althoughmore patients could feel
encouraged to participate in shorter trials, this should be carefully
balanced with the challenge of a most intensive recruitment phase, a
challenge even more critical in the current coronavirus disease
(COVID-19) pandemic era.

The current study included trials of a bygone IPF era when
placebo arms were entirely formed by naive, untreated patients.
Pirfenidone or nintedanib are now an essential component of the
placebo groups in IPF trials, thus sensibly decreasing the rate of
functional decline of this group. As such, it could be argued that a
3-month window to detect a treatment effect may not be the best fit,
as separation of functional trend slopes of placebo and treatment
arms could be delayed in time owing to smaller effect sizes. However,
recent studies in IPF have also shown that the patients in the placebo
arms with background therapy were more progressive than would
have been expected (12). These patients were not (yet) included by
the authors in their analyses. On the other hand, a short trial duration
might increase acceptance of a “pure” placebo group of patients, at
least in phase 2 trials.

The choice of using FVC decline as a standalone primary
endpoint should not be taken for granted. The incorporation of
alternative outcomes could enhance trial efficiency. If backed by
validation and consensus on implementation strategies (13), patient-
reported outcomes will be given higher priority in the design of future
IPF trials. Quantitative assessment of chest imaging via computer-
aided imaging analysis could increase sensitivity to capture subtle
changes in lung parenchyma indicating progressive disease (14–16).
The radiological extent of pulmonary fibrosis was included as
secondary endpoint in the recent successful phase 2 trial of
pamrevlumab, which showed to decrease fibrotic progression on
computed tomography scan at 12 months (17). Change over time in
lung function will probably remain the mainstay for assessing drug
efficacy in IPF. Khan and colleagues show that shorter trials may be a
way forward. Nonetheless, a shorter timeframe for change in lung
function should be complemented by other outcomes of interest to
maximize trial effectiveness and capture a range of benefits beyond
slowing down disease progression, as our goal is to halt and ideally
reverse pulmonary fibrosis, making patients feel better.�
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Hypoxia and Sleep-disordered Breathing
Friend or Foe?

Hypoxia is a hallmark feature of respiratory disease and has
multiple effects on the central nervous system. For example,
experimentally induced acute sustained isocapnic hypoxia (oxygen
saturation as measured by pulse oximetry [SpO2

], 80–85%) blunts
respiratory sensation (1) and symptom perception in asthma (2)
and suppresses cough reflex sensitivity (3) and arousal responses to
airway closure during sleep in healthy individuals (4). The effects
of repetitive intermittent hypoxia, as occurs nightly in sleep-
disordered breathing, are generally considered deleterious for the

cardiovascular system. For instance, 2–4 weeks of nightly
intermittent hypoxia increases daytime blood pressure and
sympathetic nerve activity in healthy individuals (5, 6), potentially
via renin-angiotensin mechanisms (7). In addition, the overnight
sleep apnea–related hypoxic burden metric, which includes both
hypoxemia frequency and magnitude components, predicts
cardiovascular mortality (8–10).

However, as highlighted in this issue of the Journal in
the current proof-of-concept physiology study conducted in a
group of hypertensive men with obstructive sleep apnea
(OSA) by Panza and colleagues (pp. 949–958) (11) and by
others (12, 13), not all aspects of hypoxemia are necessarily
deleterious. The rationale for the current study was based
largely on the authors’ prior work that investigated specific
hypercapnic intermittent hypoxia regimes and the subsequent
facilitatory effects on respiratory and upper airway neurons
(14, 15) and the work of others that indicates that mild
intermittent hypoxia during wakefulness can reduce blood
pressure via nitric oxide mechanisms in untreated
hypertensive patients in whom OSA status is unknown (16).
The three key study findings were that intermittent hypoxia
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