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1  |  INTRODUC TION

The environment fluctuates at a range of timescales and in space 
across species ranges. If environmental changes occur over periods 

that are many multiples of species generation times, or if there are 
restrictions on gene flow between locations, organisms can evolve 
naturally selected adaptations to this variation (Charlesworth 
et al.,  2017). Additionally, and even in the absence of local 

Received: 10 February 2022 | Revised: 1 September 2022 | Accepted: 6 September 2022

DOI: 10.1111/mec.16696  

O R I G I N A L  A R T I C L E

Adapting to climate with limited genetic diversity: Nucleotide, 
DNA methylation and microbiome variation among populations 
of the social spider Stegodyphus dumicola

Anne Aagaard1  |   Shenglin Liu1 |   Tom Tregenza2  |   Marie Braad Lund3  |   
Andreas Schramm3  |   Koen J. F. Verhoeven4  |   Jesper Bechsgaard1  |   Trine Bilde1

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in 
any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.
© 2022 The Authors. Molecular Ecology published by John Wiley & Sons Ltd.

1Section for Genetics, Ecology & 
Evolution, Department of Biology, Aarhus 
University, Aarhus C, Denmark
2Centre for Ecology & Conservation, 
School of Biosciences, University of 
Exeter, Penryn Campus, UK
3Section for Microbiology, Department 
of Biology, Aarhus University, Aarhus C, 
Denmark
4Terrestrial Ecology Department, 
Netherlands Institute of Ecology (NIOO-
KNAW), Wageningen, The Netherlands

Correspondence
Anne Aagaard, Section for Genetics, 
Ecology & Evolution, Department of 
Biology, Aarhus University, Aarhus C, 
Denmark.
Email: anneaagaard@bio.au.dk

Funding information
Natur og Univers, Det Frie Forskningsråd, 
Grant/Award Number: 6108-00565; Novo 
Nordisk Foundation Interdisciplinary 
Synergy Grant, Grant/Award Number: 
NNF16OC0021110

Handling Editor: Victoria L. Sork

Abstract
Understanding the role of genetic and nongenetic variants in modulating phenotypes 
is central to our knowledge of adaptive responses to local conditions and environ-
mental change, particularly in species with such low population genetic diversity that 
it is likely to limit their evolutionary potential. A first step towards uncovering the 
molecular mechanisms underlying population-specific responses to the environment 
is to carry out environmental association studies. We associated climatic variation 
with genetic, epigenetic and microbiome variation in populations of a social spider 
with extremely low standing genetic diversity. We identified genetic variants that 
are associated strongly with environmental variation, particularly with average tem-
perature, a pattern consistent with local adaptation. Variation in DNA methylation in 
many genes was strongly correlated with a wide set of climate parameters, thereby 
revealing a different pattern of associations than that of genetic variants, which show 
strong correlations to a more restricted range of climate parameters. DNA methyla-
tion levels were largely independent of cis-genetic variation and of overall genetic 
population structure, suggesting that DNA methylation can work as an independent 
mechanism. Microbiome composition also correlated with environmental variation, 
but most strong associations were with precipitation-related climatic factors. Our re-
sults suggest a role for both genetic and nongenetic mechanisms in shaping pheno-
typic responses to local environments.
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adaptation, organisms may be able to cope with environmental vari-
ation through the capacity of a single genotype to express a range of 
phenotypes. This phenotypic plasticity gives organisms the potential 
to respond to environmental variation at short spatial or temporal 
scales (Fox et al., 2019; Ghalambor et al., 2007, 2015; Gonzalo-Turpin 
& Hazard, 2009). Phenotypes that are modulated plastically can be 
expressed very briefly, for example in behavioural reactions, or the 
rapid production of heat shock proteins (Dahlgaard et al.,  1998; 
Gong et al., 2012), or they can last over multiple generations (Hanson 
et al., 2017; Nätt et al., 2012), depending on the type of plastic re-
sponse and its underlying mechanism.

An important question, not least in the context of rapid global 
change, is whether and how fast adaptive responses can enable or-
ganisms to cope with environmental fluctuations and variability (Fox 
et al., 2019). In particular, species with low population genetic diver-
sity have limited capacity for genetic adaptations when challenged 
by environmental change (Ørsted et al.,  2019; Sgrò et al.,  2011; 
Willi et al.,  2006). This raises the question of whether this evolu-
tionary constraint can be compensated for by nongenetic mecha-
nisms with the potential to shape phenotypes (Donelson et al., 2019; 
Lande,  2009; Sgrò et al.,  2016). Advancing our understanding of 
phenotypic responses shaped by nongenetic mechanisms is import-
ant, as they may play a key role in modulating adaptive responses to 
environmental change in species with low genetic diversity.

Local phenotypic responses can occur via mechanisms other than 
genetic adaptations, including epigenetic marks (e.g., histone mod-
ifications and DNA methylation) that may regulate gene function, 
and may be mitotically and/or meiotically heritable (Cavalli,  2006; 
Heckwolf et al., 2019; Henikoff et al., 2004; Holliday, 1987; Wu & 
Morris, 2001). Epigenetic changes in, for example, DNA methylation 
profiles can alter the phenotype of the individual (Cubas et al., 1999; 
Heckwolf et al., 2019; Jablonka, 2017). The various functions of DNA 
methylation as an epigenetic feature are only partially understood, 
but a role in relation to phenotypic change, such as by regulation 
of gene function, has been suggested in several species (Gatzmann 
et al.,  2018; Keller et al.,  2016; Liu, Aagaard, et al.,  2019; Sarda 
et al.,  2012; Varriale,  2014; Xu et al.,  2021). Within invertebrates, 
methylation is enriched in gene bodies, but the function of this pat-
tern remains unclear (Duncan et al.,  2022). The highly structured 
distribution of DNA methylation across the genome suggests a func-
tional role, and various hypotheses have been proposed, such as reg-
ulating gene expression, either directly (cis) or by modifying histone 
acetylation (trans), alternative splicing and stabilizing gene expres-
sion (Choi et al., 2020; Duncan et al., 2022; Gatzmann et al., 2018; 
Kvist et al., 2018; Lev Maor et al., 2015; Liu, Ma, et al., 2019; Neri 
et al., 2017; Xu et al., 2021). Several studies have demonstrated that 
DNA methylation profiles can change as a function of environmental 
stressors in common garden experiments, in species such as corals, 
sticklebacks, cockroaches and dandelions (Dimond & Roberts, 2020; 
Metzger & Schulte, 2017; Peña et al., 2021; Verhoeven et al., 2010). 
This is consistent with the idea that variation in phenotypes may be 
mediated by environmentally induced changes in DNA methylation 
profiles, which may facilitate the ability of populations to cope with 

changes in local climatic conditions on a shorter timescale than that 
of adaptive genetic changes. Furthermore, studies have shown that 
epigenetic changes can be heritable and may persist across genera-
tions (Harney et al., 2022; Nätt et al., 2012; Riddle & Richards, 2002; 
Sutherland et al., 2000). Studies on how DNA methylation variation 
is structured across geographical locations and combining this with 
variation in environmental factors such as, for example, temperature 
and precipitation, can inform and substantiate hypotheses on the 
role of DNA methylation in generating locally advantageous phe-
notypes. Environmental association studies have revealed strong 
relationships between epigenetic variants and climatic or environ-
mental parameters (Fischer et al.,  2013; Gugger et al.,  2016; Rico 
et al., 2014; Verhoeven et al., 2010). However, it is often unclear if 
such relationships reflect epigenetic variants, or geographical varia-
tion in genetic control over epigenetic variants (Dubin et al., 2015).

It is also possible that local responses can be mediated by host–
symbiont interactions. All organisms engage in interactions with 
microbes, and the microbiome represents a source of variation. 
Symbiotic interactions have huge potential to modulate host phe-
notype. Indeed, there is ample evidence to suggest that symbiotic 
interactions with the bacterial microbiome can shape numerous 
physiological, reproductive and behavioural functions of the host 
(Bang et al., 2018; Dunbar et al., 2007; Moran et al., 2019; Mueller 
et al., 2020). Responses in host phenotype mediated by changes in 
microbiome composition may contribute to improved performance 
of individuals in their local environment (Henry et al., 2019; Mueller 
et al., 2020), through new and potentially locally beneficial functions 
such as improved nutrition, energy production, temperature resis-
tance or pathogen protection (Lynch & Hsiao,  2019; McFall-Ngai 
et al., 2013; Raza et al., 2020). Adjustments of the microbiome that 
provide beneficial local adjustments in host phenotype will naturally 
depend on the specific context, and can vary from changes in over-
all microbiome composition, to presence/absence and abundance of 
specific microbes or strains of microbes, and/or changes in strain com-
position of specific microbial species (Rennison et al., 2019; Rudman 
et al., 2019; Shigenobu & Wilson, 2011; Wernegreen, 2012). In pea 
aphids, populations harbour different strains of the obligate symbi-
ont Buchnera, which differ in the expression of a heat-shock gene 
caused by a deletion in the promoter sequence. Aphid populations 
harbouring low-expression Buchnera perform better in colder envi-
ronments, while populations harbouring high-expression Buchnera 
perform better in warmer environments (Dunbar et al.,  2007). In 
reef-corals it was recently shown that their symbiont composition 
is shaped by environmental temperature and potentially mediates 
adaptive host phenotypes (Herrera et al., 2021). Association studies 
between microbiome composition and environmental variation are, 
however, relatively scarce (Busck et al.,  2020; Suzuki et al.,  2019; 
Walters et al., 2020), and only a few studies have revealed differ-
ences in host phenotypes as a function of the environmental context 
and its microbiome (Walters et al., 2020).

Social spiders of the genus Stegodyphus harbour very low 
species-wide genetic diversity, and S. dumicola is known to have 
one of the lowest genetic diversities recorded in any animal species 
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(Leffler et al., 2012; Settepani et al., 2017). It has been suggested 
that the lack of genetic diversity in this species may reduce its evo-
lutionary potential (Settepani et al., 2017), but nevertheless they 
persist across broad climatic gradients in southern Africa, span-
ning several climate zones (Majer et al., 2015; Ngaira, 2007). We 
therefore hypothesize that responses to local environmental fac-
tors caused by nongenetic variants, such as DNA methylation and 
microbiome composition, may facilitate adaptive responses to local 
conditions. Although some level of heritable variation conferring 
local adaptation may be present (e.g., in response to temperature 
challenges; Malmos et al.,  2021), the high level of genetic simi-
larity of populations provides an excellent opportunity to evalu-
ate the role of epigenetic and microbiome variation in population 
differentiation.

A first step towards revealing the molecular mechanisms under-
lying population-specific responses can be taken through environ-
mental association studies (Morgan et al., 2018; Rellstab et al., 2015; 
Thomas, 2010; Ungerer et al., 2008). If there are population-specific 
evolutionary adaptations to climate, we expect to see associations 
between environmental parameters and genetic variants. Similarly, 
associations between epigenetic and microbial variants and envi-
ronmental parameters are predicted if these features, either as in-
duced or as inherited variants, have a role in phenotypic responses 
to local environmental factors. We use an environmental association 
approach in which we examine the relationship between genetic, 
epigenetic and bacterial microbiome diversity with a set of climatic 
parameters in populations of social spiders. Our aim is to charac-
terize the mechanisms that may govern phenotypic responses of 
the social spider S.  dumicola to different climatic variables within 
their natural habitats. Given low levels of genetic variation in the 
S. dumicola system (populations and species-wide), we hypothesize 

that DNA methylation and microbiome composition contribute to 
S. dumicola population differentiation, and are associated with envi-
ronmental and climatic variation across populations.

2  |  MATERIAL S AND METHODS

2.1  |  Study species and sampling

Stegodyphus dumicola is one of three independently evolved social 
spider species from the genus Stegodyphus (Settepani et al., 2016). 
S. dumicola live in family groups in nests of hundreds to thousands of 
individuals that live their entire life in and around their natal nest, re-
sulting in extremely high levels of inbreeding (Lubin & Bilde, 2007). 
Additionally, sex ratios are highly female-biased and only a small 
proportion of females participate in reproduction. Genetic drift is 
consequently a strong evolutionary force in this species (Settepani 
et al.,  2014, 2017). S.  dumicola is distributed in the southern part 
of Africa (Majer et al., 2015), across a range of climatic conditions 
(Figure 1).

We sampled one female from each of 15 S. dumicola nests in each 
of six different populations, 90 females (from 90 different nests) 
in total, during December 2015. Five populations are located on a 
north–south gradient in Namibia and one population is located in 
South Africa (Figure 1; Table S1). Individual spiders were cut in half 
and placed directly in DNA extraction buffer (ATL buffer, DNeasy 
Blood & Tissue; Qiagen) in the field and transported to the labora-
tory at Aarhus University at ambient temperature. Cutting the spi-
ders in half ensures proper penetration of buffer into the samples. 
One spider from each nest (i.e., a total of 90 spiders) was used for 
sequencing.

F I G U R E  1  (a) Map of southern Africa showing the locations of social spider populations. (b) Climatic separation of the geographical 
locations on the two main environmental axes from the PCA (see details in Figures S1–S3 and Table S2). (c) Yearly variation in three climatic 
variables; top: Mean temperature, Centre: Precipitation, bottom: Daily hours of direct sun.
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2.2  |  DNA extraction, sequencing and 
quantitative PCR

DNA was extracted from all samples using the DNeasy Blood and 
Tissue kit from Qiagen following the animal tissue protocol. Prior 
to extraction, samples were homogenized using a pellet pestle. For 
each round of DNA extraction, one extraction blank (i.e., no sam-
ple was added to the tube) was included. The resulting DNA ex-
tracts were used for either (i) whole-genome (WG) resequencing, (ii) 
whole-genome bisulphite (WGB) resequencing or (iii) bacterial 16S 
rRNA gene amplicon sequencing and quantitative polymerase chain 
reaction (qPCR).

For WG and WGB sequencing, we pooled the DNA from each 
population in equimolar ratios before construction of WG and WGB 
libraries, and sequenced on a HiSeq2500 platform. While individuals 
may not be equally represented in pooled sequencing, it enables us 
to find population-specific differences, while still being cost efficient. 
After first WG sequencing, another set of libraries were made from 
the same DNA samples to obtain high enough coverage, and a total 
of 12 WG libraries were sequenced. For bacterial 16S rRNA gene am-
plicon sequencing, the primers Bac341F and Bac 805R (Herlemann 
et al.,  2011) were used to amplify the V3–V4 region and libraries 
were prepared according to Illumina's 16S Metagenomic Sequencing 
Library Preparation guide. Paired-end (2 × 301  bp) sequencing was 
done on a MiSeq desktop sequencer (Illumina). Both DNA extraction 
blanks and PCR negatives were included for amplicon sequencing. 
Samples were run in two independent sequencing runs.

Quantitative polymerase chain reaction was used to estimate 
the number of bacteria in individual spiders as described previously 
(Busck et al., 2022). To compensate for differences in spider body 
size, we normalized the bacterial 16S rRNA gene copy number to a 
spider gene copy number (gene 5F, Settepani et al., 2016), and this 
ratio is referred to as bacterial load (number of bacterial 16S rRNA 
gene copies/number of spider gene copies). Highly similar coverage 
of the gene 5F relative to the entire genome indicates a single copy 
in all populations. All qPCRs were run in triplicate. For details see 
Busck et al. (2022).

2.3  |  Whole genome mapping and variant calling

Whole-genome sequencing of the 12 libraries resulted in 622 Gb 
of raw data (paired-end reads, each of 150 bp and insert size of 
300 or 500 bp). WGB sequencing of the six libraries resulted in 
274 Gb of raw data (paired-end reads with each read 100 bp and 
insert size of 169–225 bp). The raw data were filtered using trim 
galore version 0.4.1 by allowing “--trim1.” After the filtering, 264 
Gb remained.

We mapped the WG resequencing reads to the S.  dumicola ge-
nome (Liu, Aagaard, et al.,  2019) using bwa (version 0.7.15) “aln” (Li 
& Durbin,  2009) allowing a maximum of two mismatches and con-
verted them to bam files using samtools (version 1.2) (Li et al., 2009). 
We extracted single nucleotide polymorphisms (SNPs) using samtools 

mpileup with minimum mapping quality of 20 (Li,  2011) and the 
popoolation2 (version 1.201) script snp-frequency-diff.pl (--min-count 1 
--min-coverage 1 --max-coverage 50,50,50,50,50,40) (Kofler, Pandey, 
& Schlötterer, 2011). We estimated nucleotide diversities (π) for each 
population using a Variance-sliding.pl script (--window-size 10,000 
--step-size 10,000 --min-count 5 --min-coverage 10 --max-coverage 
400 --min-qual 20 --pool-size 15) from popoolation2 (Kofler, Orozco-
terWengel, et al., 2011), after converting bam files to pileup files using 
the mpileup function in samtools (Li et al., 2009). To obtain a single 
estimate of genetic diversity for all samples, we downsampled pop-
ulation bam files to the same size and merged them using the view 
and merge functions in samtools (Li et al., 2009) before converting to 
pileup format and Variance-sliding.pl. To construct the phylogenetic 
relationship among the studied populations, WG resequencing data 
from all individuals from each location were mapped to the S. dumi-
cola genome (Liu, Aagaard, et al., 2019) using bwa (version 0.7.15) “aln” 
(Li & Durbin, 2009) allowing a maximum of two mismatches and con-
verted to location-specific bam files using samtools (version 1.2) (Li 
et al., 2009). We called variants into vcf files using bcftools version 1.5 
(“mpileup” without indel calling [-I] and “call”) (Li, 2011). We extracted 
coding positions using samtools “faidx” (Li et al., 2009), and we called 
consensus sequences using bcftools version 1.5 “consensus” (Danecek 
& McCarthy, 2017). We joined consensus sequences into a single con-
catenated sequence per location and aligned them. We reconstructed 
a neighbour-joining phylogeny using mega x (Kumar et al., 2018). In total, 
1000 bootstraps were used to add support to the topology. Gene-
wise FST estimates were calculated using popoolation2 scripts Create-
genewise-sync.pl and fst-sliding.pl (--min-count 3 --min-coverage 
20 --max-coverage 100 --pool-size 30 --min-covered-fraction 0.0 
--window-size 1,000,000 --step-size 1,000,000).

We mapped WGB sequencing reads with bismark (version 0.19.9) 
(Krueger & Andrews, 2011) using --bowtie1. Methylation status of 
all C sites was called using Bismark_methylation_extractor and cov-
erage was extracted using the bismark2bedgraph script. DNA meth-
ylations were filtered to only include sites with a depth above 10 and 
below 30, and proportions of C sites methylated in CpG, CHG and 
CHH (where H = A, T, or C) context were calculated. The methyla-
tion level for each cytosine in CpG context was determined as the 
ratio of reads indicating methylation over the total number of reads 
for that position, a level referred to as site methylation level (SML) 
(Schultz et al., 2012). DNA methylations within gene bodies were ex-
tracted using the genome annotation and bedtools intersect version 
2.29.2 (Quinlan & Hall,  2010), and the weighted methylation level 
(WML) of all CpG sites in each gene separately was estimated (mean 
of proportions of mapped reads being methylated in all CpG sites) 
(Schultz et al., 2012). Nei's FST (Nei & Kumar, 2000) was calculated 
for each gene and between each population pair.

2.4  |  16S rRNA gene amplicon analysis

We obtained 16S rRNA amplicon sequences from individuals from 
78 nests (between 11 and 15 per population). From four nests (Otavi) 
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two individuals were sequenced per nest, the duplicate individuals 
were merged in phyloseq (McMurdie & Holmes, 2013) prior to calcu-
lating relative abundances of the amplicon sequence variants (ASVs). 
qPCR data were obtained from 69 of the individuals (between nine 
and 14 per population). A sample summary is given in Table S1.

cutadapt (Martin,  2011) was used for barcode and primer re-
moval and sequence quality trimming. Using R version 3.6.1 (R Core 
Team, 2019) the two independent sequencing runs were processed 
separately using dada2 version 1.12.1 (Callahan et al., 2016) for qual-
ity filtering, denoising and merging of paired-end reads. Filtering was 
set to maxEE = (2, 2), trncQ = 2 and truncLen = 280 and 200 bp for 
forward and reverse reads, respectively, in order to identify ASVs. 
Data from the two sequencing runs were merged prior to chimera 
finding and classification using dada2 and Silva small subunit (SSU) 
reference database nr132 (Quast et al., 2013). ASVs were filtered to 
a minimum length of 400 bp, and nonbacterial ASVs, chloroplasts 
and mitochondrial ASVs were excluded. Samples with fewer than 
8000 reads were removed from further analysis.

Using the r package phyloseq version 1.28.0 (McMurdie & 
Holmes, 2013), all samples were subsampled to the same read depth 
of 8227 reads (the smallest sample size, seed = 42). Both relative ASV 
abundances and absolute ASV abundances (based on bacterial load 
from qPCR analyses) were estimated. ASVs were filtered to only con-
tain ASVs with a prevalence above 25% in at least one population. This 
retained 57 ASVs for absolute abundance, and 60 ASVs for relative 
abundance. Bray–Curtis dissimilarity matrices were obtained using 
the vegdist function in vegan version 2.5-6 (Oksanen et al.,  2019). 
Bray–Curtis dissimilarities were calculated for all ASVs across all nests 
between and within populations, as well as for single ASVs and genera 
across each population using population-wise abundance means.

2.5  |  Environmental variables

Thirty years (1961–1990) of climate data were downloaded using the 
application new_locclim_1.10 (Grieser et al.,  2006), which interpo-
lates climate station measurements (FAOCLIM database) to the input 
GPS positions from the six populations, and outputs daily climate 
estimations of selected variables. Three to seven nest GPS points 
(Table S1) were used to represent each population to create a mean 
climate estimate for each of the populations. Downloaded climatic 
variables included 30-year mean daily estimates of mean, maxi-
mum and minimum temperature (°C), precipitation (mm), potential 
evapotranspiration (mm), sun fraction (%), day length (hr), sun hours 
(hr), water vapour pressure (hPa) and wind speed (km h−1). Shepard's 
Interpolation method was used for temperature data, while a thin-
plate-spline was used for the remaining variables. For each of these 
variables, monthly and yearly mean, maximum, minimum and varia-
tion was calculated, along with the number of days where tempera-
tures exceeded or went below set thresholds. Longitude, latitude 
and altitude were also included. The means of all monthly estimates 
were calculated, to obtain a monthly based yearly mean. All in all, 
99 climate variable factors were calculated for the six populations.

To reduce the number of environmental variables, a principal 
component analysis (PCA) was run on 96 out of 99 variables (those 
solely containing zeros were excluded), using scaled and centred pr-
comp in r. A summary can be seen in Figures S1–S3 and Table S2. 
Based on these analyses, the first five PC axes were applied as 
composite environmental variables explaining a substantial amount 
of variation of the initial 96 environmental variables. The distance 
between populations in PC axes was calculated using dist() in the r 
stats package. Because previous research has indicated that tem-
perature and precipitation are particularly important drivers for 
local phenotypic responses in arthropod species (Gefen et al., 2015; 
Malmos et al., 2021; Toolson, 1982) we selected 51 aspects of tem-
perature and precipitation (see x-axis Figure 6) (many of which may 
be correlated), and directly calculated population distances using 
dist() from the r stats package. For an explanation on how these pa-
rameters were calculated, see Table S3.

2.6  |  Environmental association analyses

Genetic (FST), DNA methylation (FST) and microbiome (Bray–Curtis 
dissimilarity) distances among the six populations were correlated 
to the distance in environmental PC axes through a set of analyses. 
(i) Partial Mantel tests were run for each gene separately to test for 
correlations between environmental axes and genetic divergence 
(FST) based on gene-body SNPs corrected for neutral population 
structure based on all SNPs (overall FST), and between environmen-
tal axes and DNA methylation divergence based on gene-body WML 
(gene-wise FST), using two different corrections: assumed neutral 
population structure based on all SNPs (overall FST); and cis-genetic 
variation based on the SNP variation in the given gene (gene-wise 
FST). (ii) Partial Mantel tests were run to test for correlations be-
tween microbiome ASVs and environmental axes, while correcting 
for neutral population structure based on all SNPs (overall FST). (iii) 
Multiple regressions were run on distance matrices (MRM function 
from the ecodist r package; Goslee & Urban,  2007) featuring FST 
distance measures for gene-body SNPs and WML, and Bray–Curtis 
dissimilarity of microbiome variables as a function of the distance in 
each environmental axis. Genes with no variation between popu-
lations were removed before analyses (all FST = 0). For gene-body 
WML corrected for cis genetic variation, associations using simple 
Mantel tests were used in cases with no SNPs within the given gene. 
To assess temperature and precipitation associations explicitly, we 
ran the above-mentioned Mantel and Partial Mantel tests, exchang-
ing distance in PC axes with distances in 51 individual temperature 
and precipitation aspects. p-Values are not particularly informa-
tive in this type of analysis where sample sizes can be extremely 
large and numerous closely related correlations are run. To identify 
biologically significant relationships we compared two distribu-
tions: (i) a distribution of actual correlation coefficients stemming 
from the above-mentioned partial Mantel analyses, and (ii) an ex-
pected distribution of the same correlations as in (i), but where the 
environmental axis or climate parameter were permuted (hereafter 
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termed the null distribution). To discern which climatic parameter 
or environmental axes showed stronger correlations than expected 
based on the null distribution, we took the number of genes (both 
nucleotide and methylation) in the actual distribution exceeding the 
99.99th percentile of the null distribution. This arbitrary threshold 
represents a conservative approach to identifying correlations that 
may represent adaptive variants in response to climate, and that 
are unlikely to occur only by chance. For the microbiome, a simi-
lar approach was used, but because we only analyse 61 ASVs, the 
99.99th percentile is not meaningful. Instead, we used the highest 
correlation coefficient from the null distribution as a threshold and 
included those that exceeded the highest correlation coefficient of 
the null distribution.

Gene ontology (GO) enrichment analyses were run for genes 
strongly correlated (above 99.99% threshold) to every environ-
mental axis for gene-wise SNPs corrected for population structure, 
WML corrected for population structure and cis-genetic variation. 
Gene functional annotation was performed using eggnog orthology 
data and eggnog mapper (emapper-2.1.9) using diamond search version 
0.9.21 (Buchfink et al.,  2021; Cantalapiedra et al.,  2021; Huerta-
Cepas et al.,  2019), while ontology enrichment analysis was done 
using the r packages gostats version 2.52.0 and gseabase version 
1.58.0. (Falcon & Gentleman, 2007; Morgan et al., 2022).

For data handling and analyses run in R, we used the following 
main packages: usedist version 0.4.0 (Bittinger, 2020) and dplyr ver-
sion 1.0.6 (Wickham et al.,  2021), while graphics were performed 
using base r (R Core Team,  2019), venndiagram version 1.6.20 
(Chen, 2018) and tmap version 2.3.2 (Tennekes, 2018).

3  |  RESULTS

3.1  |  Whole genome sequencing and bisulphite 
sequencing

The WG sequencing mapping rates of the six spider populations 
varied between 71.9% and 80.8% when mapped to the reference 
genome, with coverage depth ranging from 21 to 29 (Table S4). The 
total number of SNPs called in each population varied from 655,000 
to 1,119,000 (Table  S4). For WGB sequencing (WGBS) λDNA was 
used as a control for a bisulphite conversion rate, and 99% of the un-
methylated cytosines were converted. WGBS mapping rates of the 
six populations varied between 40.5% and 46.6%. The total num-
ber of sites that were at least partially methylated (>0 reads sug-
gesting methylation) in each population varied from 3,441,377 to 
6,218,880, while the number of sites that were methylated across 
all reads in each population varied from 398,114 to 580,440, about 
9% on average (Table S4). Most methylations were found in CpG se-
quence context, and of all cytosines in CpG context, between 9.4% 
and 11.3% were at least partially methylated in the six populations. 
Methylations in CHG and CHH sequence context comprised less 
than 1% in all populations. Mapping and SNP/methylation statistics 
are summarized in Table S4.

3.2  |  Bacterial microbiome

On average 30,321 quality filtered reads were obtained from 82 
samples and the minimum and maximum number of reads were 
8227 and 49,237, respectively (Table S1). A total of 3378 bacterial 
ASVs were identified, but the 10 most abundant ASVs accounted for 
more than 80% of all reads (Table S1, ASV table). The bacterial load 
(calculated as the number of bacterial 16S rRNA gene copies divided 
by the number of spider gene copies) was determined in 73 out of 
the 82 samples used for amplicon sequencing (Table S1, sample list). 
The average bacterial load was 5.7, ranging from 0.02 to 61.6, and 
the load did not differ significantly between populations (ANOVA, 
p = .0825, Figure S4).

The spider microbiome was dominated by Mycoplasma, 
Diplorickettsia, Borrelia and Weeksellaceae (Figure S5), corroborating 
a previous study in Stegodyphus dumicola (Busck et al., 2020, 2022). 
Bray–Curtis dissimilarity between individuals from different nests 
differed between populations, with the highest dissimilarity index 
found in Otavi (Figure S6). Overall, individuals from the same pop-
ulation had more similar microbiome composition compared with 
individuals from different populations. Significant differences in 
Bray–Curtis dissimilarities between populations were not driven 
by any single population (Figure  S6). We recovered similar results 
whether analyses were based on relative or absolute abundances 
(Figure S6).

3.3  |  Population phylogeny and population 
genetic diversity

A phylogenetic reconstruction of populations is shown in Figure 2. 
Phylogenetic relationships among populations cannot be predicted 
directly from geographical locations; for example, we show that 
Betta is phylogenetically closest to Otavi, while geographically clos-
est to Stampriet. Genome-wide nucleotide diversity varied from 
0.00021 in Betta to 0.00071 in Gobabis, while nucleotide diversity 
for all samples pooled was 0.00091.

3.4  |  Population divergences—Genetic, DNA 
methylation and microbiome

Pairwise molecular distances among populations, estimated as FST 
values, when averaging over all genes, were between 0.04 and 0.15 
based on SNPs, and between 0.004 and 0.01 for WML. Pairwise 
microbiome ASV distances among populations, estimated as Bray–
Curtis dissimilarities, ranged from 0.21 to 0.87 for relative abun-
dances and 0.19 to 0.80 for absolute abundances (Figure S7c,d). We 
found significant isolation-by-distance when considering nucleotide 
variation distance (r =  .75, p =  .048), and this correlation was pre-
dominantly driven by the Ndumo population, which is a long way 
to the east of the Namibian populations (Figure 3). No isolation-by-
distance was found when analysing WML and microbiome distances 
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(Figure 3). The distribution of FST values estimated per gene across 
the entire genome (Figure  S7a,b) revealed that population differ-
entiation based on DNA methylation (gene-body WML) is gener-
ally lower than population differentiation based on genetic variants 
(SNPs). However, for DNA methylation data, there is a long tail 
(Figure S7b), indicating that some genes are strongly differentiated 
among populations.

3.5  |  Environmental parameters

The six populations differ substantially in local climate, for example 
in mean and seasonal fluctuations in temperature and precipitation 
(see Figures 1 and S8). An overview of all investigated climate vari-
ables and their population patterns is provided in Figure S8. PCA on 
the environmental factors resulted in five axes each explaining a 
substantial amount of variance in the data (Figures S2 and S3). The 
first three axes explained 92% of the total variance. The popula-
tions are relatively well separated on PC1 and PC2 (Figure 1), with 
Karasburg and Ndumo being more different compared to the other 
populations (see Figure S9 for plots of the remaining PC axes). The 
20 main loadings driving each PC axis were extracted (Table S2), and 
this revealed that PC1 is driven mainly by precipitation, minimum 
temperature, sunshine fraction and sunshine hours, PC2 is mainly 
driven by maximum temperature and a mixture of other variables, 
while PC3 is driven mainly by wind, day length and mean tempera-
ture. PC4 is driven by temperature, potential evapotranspiration and 
water vapour pressure, while PC5 does not reveal any clear patterns 
regarding climate variables (see Table S2 for details).

3.6  |  Environmental association analyses

When averaging across all loci or symbionts, we found no isolation 
by environment (Wang & Bradburd, 2014) across any of the PC axes 
(Figure 4 and Figure S10). The lack of an overall isolation by envi-
ronment makes it possible to identify individual variants potentially 
involved in responses to local environments, and we subsequently 
analysed each gene/symbiont separately.

For most correlations between variation in climate axes and vari-
ation in genetic, DNA methylation and microbiome features, the his-
tograms of correlation coefficients for the null distributions appear 
normal (Figure 5a, grey distributions), while the distribution of actual 
correlation coefficients are right skewed in most cases (Figure 5a, 
coloured distributions; Figure S11). The peak of the observed cor-
relation coefficient distribution mainly falls within the negative cor-
relation coefficients, an observation that is difficult to interpret as 
climate-related responses, while the right-hand tail represents the 
most strongly positively correlated genes/microbiome features, 
which represent candidates for local adaptive variants. In the right-
hand tail, we generally see an excess of genes/microbiome features 
compared to the null distribution (Figures 5a and S11).

When correcting for neutral population structure, partial Mantel 
correlations between the distance in climatic axes and the genetic 
distance among populations showed substantially more genes cor-
relating strongly than expected based on the null distribution ob-
tained by permuting the environmental axes, especially PC2 and PC4 
(Figure 5a,b). For DNA methylation, partial Mantel analyses revealed 
more genes strongly correlating to PC axes than expected based on 
the null distribution (most clearly PC3 and PC4, Figure  5a,c). The 
same overall pattern was revealed, regardless of whether we cor-
rected for population structure (Figure 5c, dark bars) or cis nucleo-
tide variation (light bars). GO term enrichment analysis revealed that 
various broad categories of biological processes and molecular func-
tions were enriched in genes strongly correlated to environment 
(Table  S5), but none of them were clearly related to climate. We 
note that 2413 genes could not be functionally annotated, a com-
mon issue for nonmodel organisms. To further investigate whether 
the genes that show strong correlations to the climate axes were 
shared between nucleotide variants and DNA methylation variants, 
we used Venn diagrams (Figure 5e).

A very low number of genes showed a strong correlation with 
both DNA methylation variants and nucleotide variants (Figure  5e 
and Table S6, overlap). This is in contrast to the large number of genes 
co-occurring in both DNA methylation variants corrected for popula-
tion structure and cis genetic variants within each gene (between 60% 
and 95%, Figure 5d and Table S6, overlap). The large overlap among 
gene-wise methylation variants corrected for population structure 
or corrected for cis genetic structure indicates that variation in DNA 
methylation is not a function of cis-nucleotide variation. This suggests 
that DNA methylation is either a function of trans-nucleotide varia-
tion or arises independently of nucleotide variation.

Correlation analyses of microbiome Bray–Curtis dissimilarity 
across all ASVs and genera and divergence in climate axes revealed 

F I G U R E  2  Phylogenetic relationships among social spider 
populations (location names), bars show nucleotide diversities (π) 
for populations, and the black bar shows genetic diversity across all 
populations joined. Bootstrap values above 60% are shown.

Karasburg

Stampriet

Gobabis

Betta

Otavi

Ndumo

All samples

100

96

96

___
0.0002

Genetic diversity (π)
0e+00 2e−04 4e−04 6e−04 8e−04



5772  |    AAGAARD et al.

more ASVs/genera correlating strongly to climate axes than ex-
pected based on the null distribution (Figure 5a,d). Examples of the 
strongest correlations between climate and gene-wise SNP, WML 
and microbiome ASVs are shown in Figure S12, while distribution 
plots of correlation coefficients are presented in Figures 5a and S11.

To verify the results based on Mantel tests, we also anal-
ysed the associations using multiple regression tests on distance 
matrices (Castellano & Balletto,  2002; Guillot & Rousset,  2013; 
Legendre, 2000; Legendre et al., 2015; Raufaste & Rousset, 2001). 
These analyses yielded results very similar to the Mantel tests 
(Figure S14), suggesting that the revealed patterns are robust.

Genetic variation at individual genes correlated most closely es-
pecially with specific mean temperature parameters, as well as yearly 
minimum precipitation (Figure 6 top, blue bars). DNA methylation at 
individual genes often correlated with parameters related to mini-
mum temperature as well as yearly minimum precipitation (Figure 6 
top, orange bars). Both genetic and methylation variation within 
genes seem to correlate strongly with specific aspects of maximum 
temperature in a large number of genes (Figure 6 top). For the micro-
biome presented as ASVs or genera, many specific aspects of both 
mean temperature and precipitation were found to correlate more 
strongly with microbiome than the strongest correlation from the 
null distribution (Figure 6 bottom). Distribution plots of correlation 

coefficients for the correlations between genetic, DNA methylation, 
microbiome variation, and temperature and precipitation parame-
ters can be seen in Figure S15.

Heatmaps of the microbiome data (Figures S17 and S18) show 
that significant and very strong correlations are not generally driven 
by one or a few ASVs. Most ASVs correlate strongly and/or signifi-
cantly with few climatic parameters. An exception is Enhydrobactor 
(ASV 27, absolute abundance Figure  S17a), which correlates with 
multiple climate parameters (Figure  S17). A clear clustering of 
ASVs is evident around the precipitation parameters, mainly driven 
by Mycoplasma (ASV 4) and Proteus (ASV 26) (relative abundance, 
Figure S17b), but many ASVs contribute to the cluster. When sorting 
the ASVs according to abundance, however, no clear clustering was 
seen (Figure S18a,b).

4  |  DISCUSSION

Populations of the social spider species Stegodyphus dumicola in-
habit wide climatic gradients across southern Africa, raising the 
question of how they respond to variation in local conditions in 
the face of extremely low species-wide genetic diversity (Settepani 
et al.,  2017). We investigated sources of variation that potentially 

F I G U R E  3  Isolation-by-distance plots of (a) genetic divergence (FST), (b) DNA methylation divergence (FST), and (c,d) microbiome 
divergence (Bray–Curtis [BC] dissimilarity); BC dissimilarities were estimated as a function of both (c) relative and (d) absolute abundance. 
Isolation-by-distance was only significant when considering genetic divergence, but this was driven by the Ndumo population, and no 
isolation-by-distance was observed within Namibia.
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mediate local responses, by correlating environmental variation 
with genetic, epigenetic and microbiome variation. Here we high-
light three main conclusions that we discuss in more detail below. 
(i) In S. dumicola, despite low species-wide genetic diversity, we find 
genetic variants associated with environmental variation, consist-
ent with patterns of local adaptation to environmental conditions, 
particularly in relation to mean temperatures. (ii) DNA methylation 
variation is associated with environmental variation, as expected if 
there is an epigenetic role in response to local climatic conditions. 
DNA methylations show different environmental association pat-
terns than those of genetic variants, and show strong associations 
across temperature aspects. (iii) The bacterial microbiome correlates 
with environmental variation; most notably we detect the strongest 
associations with mean temperature and humidity-related climatic 
factors. These results suggest that both genetic adaptation and re-
sponses mediated by nongenetic mechanisms might contribute to 
population differentiation in S. dumicola.

4.1  |  Population genetics

Population genetic structure was characterized by weak but sig-
nificant isolation-by-distance, mainly driven by the South African 
Ndumo population, which is distant from the Namibian populations 

(>1500 km) (Figure  3a). When assessing only the five Namibian 
populations, it is clear that geographical and genetic distances do 
not match, suggesting that populations do not differentiate due to 
geographical distance. The genomic differentiation among popula-
tions (FST estimates of 9.4%) could be the result of neutral evolu-
tion, especially as a result of recurrent extinction and colonization 
events and genetic drift, or the differentiation could be caused 
by selection. Despite large census population sizes of S. dumicola 
(Settepani et al., 2017), we estimated extremely low genome-wide 
population-specific genetic diversities (on average π  =  0.00048) 
(Figure  2), corroborating similar findings of a RAD sequencing 
study (Settepani et al., 2017). In small populations characterized by 
inbreeding and lack of gene flow, such as seen in the social spiders, 
we expect to detect strong population genetic structure caused 
by lineage divergence. However, high population extinction/colo-
nization rates can act to homogenize genetic structure (Settepani 
et al., 2016, 2017), and indeed, species-wide genetic diversity was 
very low (across populations: π = 0.00091). This genetic pattern is 
expected to impede the efficacy of selection and local adaptation 
(Jensen & Bachtrog, 2011; Settepani et al., 2017), since the prob-
ability of segregating variants that are advantageous in a chang-
ing environment is lower when genetic diversity is low (Barrett & 
Schluter,  2008; Lande & Shannon,  1996; Rousselle et al.,  2020). 
Nevertheless, we identified associations between genetic and 

F I G U R E  4  Isolation-by-environment plots after averaging (a) genetic, (b) DNA methylation and (c,d) microbiome divergence across all loci 
and symbionts. The environmental divergence presented here is distance on PC axis 1. Isolation-by-environment plots with PC axes 2–5 are 
shown in Figure S10.
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environmental variants (Figure 5a), consistent with the existence 
of adaptive genetic diversity. In support of this scenario, the distri-
bution of genetic differentiation among populations of individual 
genes is relatively even (Figure S7a), contrasting with the expected 
left-skewed bell shape for neutral loci (Schwartz et al.,  2007), 
suggesting that selection may have affected individual genes 
differently.

4.2  |  Association patterns between climate 
variables and nucleotide variation

We identified hundreds of strong associations between nucleotide 
variants averaged across genes and climate axes (Figure 5b), contra-
dicting our hypothesis that populations with strong drift and low effi-
cacy of selection harbour low amounts of adaptive genetic variation. 

F I G U R E  5  Correlation results when running partial Mantel tests correlating gene-wise genetic distance, gene-wise methylation distance 
and distance in microbiome ASVs/genera with environmental distances. (a) Distribution plots of correlation coefficients for the expected null 
distribution (grey), made by permuting the environmental axes, and the actual distribution (coloured), made with the actual environmental 
axes. For the distribution plots of the remaining data sets see Figure S11. (b,c) Number of genes exceeding the 99.99th percentile of the 
null distribution. (b) Gene-wise nucleotide variation (blue). (c) Gene-wise DNA methylation variation corrected for population structure 
(dark orange) and cis genetic variation (light orange). (d) Number of microbiome features with a correlation coefficient exceeding the highest 
correlation coefficient in the null distribution. The microbiome is represented as relative abundance of ASVs (purple) and genera (hashed). 
Absolute abundance is given in Figure S13. The horizontal yellow lines indicate the theoretically expected number of genes/microbiome 
features (0.01 percent of correlations). (e) Venn diagrams showing the number of genes co-occurring between nucleotide variation (blue), 
DNA methylation corrected for population structure (dark orange) and DNA methylation corrected for cis genetic variation (light orange) 
(Table S6).

F I G U R E  6  Correlations, presented as the number of genes or microbiome components correlating very strongly with distance in specific 
temperature and precipitation parameters. Upper graph: Number of genes correlating more strongly than the 99.99th percentile of the null 
distribution. Blue bars: Gene-wise nucleotide variation, orange bars: DNA Methylation variation, dark orange bars: Corrected for population 
structure, light orange bars: Corrected for cis genetic variation. Bottom graph: Number of microbiome features represented as relative 
abundance correlating more strongly with environmental parameters than the highest correlation coefficient of the null distribution. Purple 
bars: Single ASVs, hashed bars: Genera. A similar representation of results for absolute abundance is presented in Figure S16.
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Focusing on associations between different aspects of temperature 
and precipitation and nucleotide variation within genes suggests 
that aspects of mean temperature (Figure 6) are the strongest driv-
ers of local adaptation to climate. In populations with high genetic 
drift, strong selection is required to maintain adaptive variation and 
local adaptation. Exposure to high temperatures is known to exert 
selection for phenotypic responses to avoid heat stress, leading to 
local adaptation in temperature responses in natural populations 
of arthropods (Sørensen & Loeschcke, 2002; Tregenza et al., 2021; 
Williams et al.,  2012). In addition, our study species, S.  dumicola, 
shows population-specific variation in behavioural and physiological 
responses to high temperatures (Barton, 2011; Malmos et al., 2021; 
Sandfeld et al., 2022), substantiating a role for genetic variation in 
temperature adaptation. However, relationships between genes that 
are differentiated between climatically divergent populations and 
specific phenotypic adaptations have yet to be established.

4.3  |  DNA methylation variation

We found relatively high CpG methylation in S. dumicola (about 10%) 
(Table  S4) as compared with most invertebrates (see overview by 
Bewick et al., 2017; de Mendoza et al., 2020). This finding corrobo-
rates previous findings in social spiders (Liu, Aagaard, et al., 2019). 
With no indication of genome-wide isolation-by-environment 
(Figure 4), the overall pattern of DNA methylation is seemingly not 
shaped by climate. However, analyses of DNA methylation of sin-
gle genes separately revealed a long tail of genes that show strong 
differentiation between populations (Figure S7b). It is possible that 
methylation in these genes is responsible for aspects of phenotype 
that relate to temperature tolerance (Agwunobi et al., 2021), for ex-
ample by potentially regulating gene expression or being involved 
in alternative splicing (Flores et al.,  2013; Lev Maor et al.,  2015; 
Liu, Aagaard, et al.,  2019; Xu et al.,  2021). The average level of 
DNA methylation divergence among populations was considerably 
lower than that of nucleotide divergence (Figure S7a,b, on average 
FST(WML) = 0.007). However, because these FST estimates are based 
on different types of data and analyses, they are not easily com-
parable (Coates et al., 2009). One plausible reason for lower diver-
gence in DNA methylation compared with nucleotide divergence is 
that a large proportion of DNA methylation may be constrained in its 
variation, for example due to roles in development (Gao et al., 2012), 
differences between tissues or individual differences (Marshall 
et al., 2019). This implies that only a subset of methylation variants 
may differentiate among populations. DNA methylations can be in-
duced by environmental variance as shown in fish, mammals, plants, 
birds and invertebrates (Bossdorf et al., 2008; Cropley et al., 2012; 
Harney et al.,  2022; Heckwolf et al.,  2019; Nätt et al.,  2012), and 
are proposed to have the potential to modulate phenotypes in a 
plastic manner (Duncan et al., 2022; Flores et al., 2012; Gatzmann 
et al.,  2018; Marshall et al.,  2019). Furthermore, inducible DNA 
methylations can be transmitted across generations, which exposes 
them to evolutionary forces at least on short timescales (Cubas 

et al., 1999; Nätt et al., 2012; Riddle & Richards, 2002; Sutherland 
et al., 2000).

4.4  |  Association patterns between climate 
variables and DNA methylation variation

Currently, we do not know whether DNA methylations can mediate 
local responses to ecological factors in spiders. However, we identi-
fied an excess of strong associations between variants in DNA meth-
ylation and divergence across climate axes (Figure  5c). Some genes 
differed substantially in their patterns of methylation between popula-
tions, a pattern consistent with a role in mediating responses to local 
climate differences. Methylations mediating responses to the local 
climate have been found in other species; for example, gene body 
methylation of a coral changed in response to transplantation, and 
corals with methylation patterns more similar to the local specimens 
had higher fitness (Dixon et al., 2018). Methylation patterns are influ-
enced by environmental factors such as salinity in Daphnia (Asselman 
et al., 2015), and both salinity and temperature in the ascidian Ciona 
(Hawes et al., 2018). In a cockroach, Diploptera punctata, methylation 
patterns in heat shock protein 70 respond to temperature, potentially 
providing a fast-response mechanism to regulate expression of heat 
shock proteins (Peña et al., 2021). We found that associations between 
DNA methylation level and climatic variables were largely independ-
ent of cis-genetic variation and of overall genetic population structure 
(Figure  5e, overlap between dark/light orange). This indicates that 
DNA methylation is not solely a function of the local DNA sequence it-
self, but we cannot rule out that DNA methylation is regulated by trans-
acting loci or influenced by SNPs further upstream of the gene region. 
Very few genes (seven in total) showed evidence of strong associations 
between both nucleotide and DNA methylation variants and climate 
axes (Figure 5e, overlap blue/orange), suggesting that nucleotide vari-
ants and DNA methylation to a large extent are independent. These 
few genes present interesting candidates to investigate functional re-
lationships in more detail, for example by using experimental molecular 
methods combined with analyses of gene expression associated with 
phenotypic changes. Speculative explanations for the pattern in these 
genes include: (i) locally adapted genes with DNA methylation variants 
fine-tuning the local response; (ii) genetically based differences in gene 
expression cause differences in DNA methylation patterns (Secco 
et al., 2015); and (iii) a plastic gene that has become locally adapted 
(plasticity first hypothesis, Perry et al., 2018).

More genes showed a strong association to climate in their DNA 
methylation than nucleotide variants (Figure  5b,c). This may be sur-
prising considering the lower number of genes that show significant 
differentiation among populations in DNA methylation compared to 
nucleotides (Figure S7a,b). Drift and limited gene flow act to increase 
differentiation of genetic variants, which may not be the case for DNA 
methylation variants if they are plastically induced. This could lead to 
more genes that are divergent with respect to nucleotide variation 
than to DNA methylation. However, if DNA methylations are generally 
transmitted across generations, drift will also lead to differentiation 
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of DNA methylation among populations. Despite the lower number 
of genes diverging in DNA methylation, many more genes are both 
strongly and significantly associated with climate in DNA methylation. 
This suggests that genes that are differentially methylated among pop-
ulations are important in mediating local responses to climate.

The scrutiny of selected temperature and precipitation variables 
and their associations to DNA methylation variation within genes 
suggests that DNA methylation may be particularly involved in re-
sponses to differences in minimum temperature, but many genes 
associate strongly across environmental parameters (Figure  6, 
orange bars). Associations between DNA methylation and tem-
perature have previously been identified. For example, DNA meth-
ylation level in 43 RAD loci was highly associated with maximum 
temperature in the oak species Quercus lobata in California (Gugger 
et al.,  2016). Methylation level in Hsp70 responds to heat in the 
mollusc Biomphalaria glabratahe (Ittiprasert et al., 2015). However, 
our results suggest that minimum temperature may be a driver for 
differential DNA methylation, potentially by responding to low tem-
perature through fast plastic responses. This was found in an alpine 
Brassicaceae that respond to chilling with an alteration of DNA 
methylation, suggesting that methylations mediate fast responses 
to cold stress (Song et al.,  2015). In the goldenrod gall moth, low 
temperatures cause an increase in expression of DNA methyltrans-
ferases (Williamson et al., 2021). A study on ticks showed the im-
portance of DNA methyltransferases in regulating the cold response 
(Agwunobi et al., 2021); they knocked out the DNA methyltransfer-
ases and ticks subsequently exposed to sublethal temperatures died.

Our results also indicate that local responses to precipitation may 
be mediated primarily by DNA methylation variation (Figure  6). In 
plants it has been shown that epigenetic signals may guide develop-
ment of stomatal cells in response to relative humidity in the environ-
ment (Tricker et al., 2012), and in humans associations between blood 
cell methylation patterns and ambient relative humidity were identi-
fied, which furthermore interacts with temperature (Bind et al., 2014).

4.5  |  Bacterial microbiome composition

Analyses of S.  dumicola microbiome composition revealed no pat-
tern of isolation by distance. Within the same location, we recovered 
substantial variation in microbiome composition between nests, with 
only little additional variation found between different geographical 
locations (Figure S6). This finding corroborates previous microbiome 
studies of S.  dumicola populations across Southern Africa (Busck 
et al., 2020, 2022). The actual symbionts identified in the S. dumicola 
microbiome also overlap substantially. We know from preliminary 
data that bacteria are not vertically but rather socially transmitted 
among nest mates in S. dumicola (our unpublished data). Within nests, 
the microbiome composition does not change much across genera-
tions, suggesting relatively high transmission fidelity within nests 
(Busck et al., 2022), but nests within a population often carry substan-
tially different microbiome compositions (Busck et al., 2020, 2022).

4.6  |  Association patterns between climate 
variables and microbiome variation

Correlation analyses revealed an excess of strong associations be-
tween microbiome composition and the majority of environmental 
axes (Figure  5d). In some cases, the microbiome composition or 
presence of certain strains was found to associate with the ambi-
ent environment of the host, revealing a host phenotype better 
fitted to a particular environment (Dunbar et al.,  2007; Herrera 
et al.,  2021). Such changes in microbiome composition can be 
caused by mutualistic relationships with the host, or differential 
survival within hosts across a climate gradient. Several aspects of 
precipitation associated more than expected with relative abun-
dance of bacterial symbionts (Figure 6). A previous study showed 
an association between high precipitation and microbiome compo-
sition (Busck et al., 2022), and together these studies indicate that 
the microbiome composition of S. dumicola is shaped by aspects 
of humidity. This association is driven by 10 ASVs from different 
taxonomic groups that correlate strongly and/or significantly with 
aspects of precipitation (Figure  S17). An effect of precipitation-
related variables has also been found in mosquitoes, where the 
gut microbiome changes along a landscape–moisture gradient 
(Medeiros et al.,  2021), and exposure to altered humidity has 
been shown to change the microbiome in mice (Yin et al., 2022). 
However, our association study cannot discern whether symbiont 
abundance is shaped directly by humidity irrespective of the host 
or indirectly by the host as a response to humidity. Further steps 
are required to disentangle these processes and investigate a po-
tential functional relationship with the host. In contrast to the pat-
terns recovered for genetic and epigenetic variation, we detected 
a more scattered pattern of strong associations between micro-
biome composition and aspects of mean temperature (Figure 5d), 
a pattern driven primarily by five ASVs from different genera 
(Figure S17). A relationship between temperature and microbiome 
was found in other species, for example for the insect Wolbachia 
in relation to mean temperature (Woodhams et al., 2020), or for 
the Drosophila gut microbiome (Mazzucco & Schlötterer,  2021; 
Walters et al., 2020).

We find that the most abundant symbionts are not necessar-
ily those showing the strongest correlations with the environment 
(Figure S18), indicating that strict abundance filters on microbiome 
data may remove functionally important symbionts. Under the as-
sumption of a mutualistic relationship between host and symbiont, 
this implies that symbionts that govern host phenotypic responses 
may be found among the less abundant symbionts in the microbi-
ome community. An example of a low-abundance taxon that can 
contribute valuable functions for the host is found in the human 
gut: Christensenellaceae are associated with health and longevity 
despite mostly being present with a relative abundance well below 
0.1% (Kong et al., 2016; Waters & Ley, 2019). In addition to abun-
dance and presence/absence, strain variation may be important in a 
mutualistic relationship between host and symbiont. Strain variation 
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caused by indel polymorphism was shown to be important in provid-
ing the host with different functions in the aphid symbiont Buchnera 
(Dunbar et al., 2007).

4.7  |  Concluding remarks

We aimed to take a step towards understanding varied sources 
of variation that allow a species to occupy a range of habitats, 
by examining associations between environmental variation 
and genetic, epigenetic and microbiome variation. We identified 
gene-wise genetic variants that are associated strongly with en-
vironmental variation, particularly in mean temperature, a result 
which is consistent with local genetic adaptation. DNA methyla-
tions show different environmental association patterns compared 
with genetic variants, by having strong correlations to all climate 
axes and across aspects of temperature and precipitation. This 
pattern follows the expectation of an epigenetic role in responses 
to local climatic conditions. The microbiome also correlated with 
environmental variation, but also showed an independent pat-
tern of association with most strong associations being with mean 
temperature and humidity-related climatic factors. We hypoth-
esize that nongenetic sources of variation underlying adaptive 
responses to environmental change may be important in species 
with low standing variation. The next steps would be to assess 
functional relationships and determine whether molecular variants 
associated with phenotypic change are inducible and/or transmit-
ted across generations. Common garden studies designed to sub-
stantiate links between the environment, phenotypic change and 
underlying molecular mechanism may be useful for establishing 
specific functional relationships, while causal relationships may 
require molecular experiments and analyses of gene expression 
connected with phenotypic change.
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