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Experimental noise cutoff boosts inferability of
transcriptional networks in large-scale gene-
deletion studies
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Generating a comprehensive map of molecular interactions in living cells is difficult and great
efforts are undertaken to infer molecular interactions from large-scale perturbation experi-
ments. Here, we develop the analytical and numerical tools to quantify the fundamental limits
for inferring transcriptional networks from gene knockout screens and introduce a network
inference method that is unbiased with respect to measurement noise and scalable to large
network sizes. We show that network asymmetry, knockout coverage and measurement
noise are central determinants that limit prediction accuracy, whereas the knowledge about
gene-specific variability among biological replicates can be used to eliminate noise-sensitive
nodes and thereby boost the performance of network inference algorithms.
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he functionality of a living cell is determined by the

interplay of multiple molecular components that interact

with each other. Generating a global map of these mole-
cular interactions is an essential step to advance our under-
standing of the molecular mechanisms behind disease,
development and the reprogramming of organisms for bio-
technolo§ical applications'. The current advances in gene-editing
methods® have scaled up the size of genome-wide single and
double knockout libraries, ranging from microbes® # to higher
eukaryotes® and open up a much more informative data source
than inferring gene-regulatory networks from unspecific pertur-
bations, such as stress or changes in growth conditions®. How-
ever, the detection of direct interactions between two genes from
association measures—for example, the covariance between tran-
script levels—remains a highly non-trivial task, given the sig-
nificant variation among biological replicates, the frequent case
where the number of parameters exceeds the number of inde-
pendent data points, and the high dimensionality of the inference
problem. In addition, direct interactions inferred from tran-
scriptome data typically oversimplify the molecular complexity
behind gene regulation, which frequently involves
protein—protein interactions and modifications on protein or
DNA level. Consequently, gene interaction networks inferred
from transcriptome studies should in general not be interpreted
as or compared with gene-regulatory networks. In this work we
first investigate the causes that affect network inferability by
introducing a simple network inferability measure and subse-
quently use the gained insight to design an unbiased, scalable
network inference algorithm.

Results

Network inferability. The existence of a direct interaction
between gene A as source of regulation (source node) and gene B
as target of regulation (target node) can be detected if a significant
part of the transcriptional activity of B can be explained by the
transcriptional activity of A but not by the transcriptonal activ-
ities of the remaining genes in the network. Thus, a necessary
condition for identifiability or inferability of links is the knowl-
edge about the information that can be transmitted by alternative
routes in the network, which can be obtained by targeted, external

perturbations of node activities”. As most gene perturbation

screens are incomplete—for example, owing to the fact that
essential genes cannot be knocked out—we have in general the
situation that a significant amount of interactions within an N-
gene network are non-inferable, regardless of the amount of
experimental replicates and the strength of perturbations.

Limits of network inferability. To estimate the upper bound of
links that can be inferred from knockout screens, we consider a
directed but not necessarily acyclic network of N nodes, with
node activities as observables and a predefined subset of nodes
that are perturbed independently by external forces. The per-
turbed nodes are randomly distributed within the network and we
denote by g the fraction of nodes that are perturbed. We assume
that an arbitrarily large set of perturbation experiments can be
generated, with the freedom to tune the perturbation strength for
each node independently. We further assume that other pertur-
bative sources and measurement noise are absent. Calculation of
the expected fraction of inferable links, F(g), can be carried out by
a simple counting procedure (Figs 1a and 2a), assuming that links
can be represented by noiseless, linear functions with non-zero
slope. Under these conditions, a directed link between source and
target node is inferable—or equivalently its link strength is
identifiable—if it is not possible to fully reconstruct the activity
state of the source node from the node activities of the remaining
network. Consequently, a link is inferable if a part of the variation
of the target node can be only explained by the source node, given
that a link between them exists, and implies non-zero partial
correlation between source and target node. To allow detection of
arbitrarily small partial correlations, we make sure that there
exists a finite fraction of experiments for each target node, where
the target node is not perturbed (Online Methods and Supple-
mentary Note 1). If, for example, only one node in the network is
perturbed that targets multiple other nodes, its node activity can
be fully reconstructed by any of its targets, resulting in zero
partial correlation coefficients, which implies that none of the
directed links can be inferred (Fig. 1a, right network). In contrast,
if two out of three nodes are perturbed, all links targeting the
unperturbed node are inferable (Fig. 1a, left network). In addi-
tion, nodes that have been identified as targets of the current
target node can be removed prior to inference. This is because an
existing link from the actual target node excludes them from
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Fig. 1 lllustrative example of network inferability. a Left network: fully inferable network; Right network: non-inferable network. b Fraction of inferable links
versus fraction of perturbed nodes in the network. Left panel: hub of outgoing nodes. Right panel: hub of incoming nodes

2 | (2018)9:133

| DOI: 10.1038/541467-017-02489-x | www.nature.com/naturecommunications


www.nature.com/naturecommunications

ARTICLE

a C
1 05 —&- SF-incoming hubs
" 0.8 / . Random .
N ] ~ -e- SF-outgoing hubs
o ([ o= 06 g
@) ® O [ S o 2
c 8 o
@204 5
e €
A® A@® < 02
[ ] [ 0
0 0.2 0.4 0.6 0.8 1 2 4 6 8 10
B@® BO Fraction of perturbed nodes Mean degree
d o € os
O O O [ - f<k>=2 = l<k>=7
° O .O L 03 /H“* o 04 k=2 It<k>=7
Perturbed node riginal link > ~
9 = > 03¢-----. .
O Unperturbed node Inferable link 2 02 3
ks S 02
< 5]_.) /——u ------------------
0.1 -e- SF, incoming hubs, <k>=2 < 0.1
- SF, outgoing hubs, <k>=2
0 0
2 3 4 5 6 1 2 3 4 5
v Log(N)
04 T T T T
® Social networks 0.4 .
® Biologi
0.35 L YeastPPI2 Biological networks 0.35 O‘O |
. °
Yeast PPI1 0.3 O,O
Yeast PPI3 0.25
03| ° -0 _
Email-Ei x
<X ma.l ! o arasite metabolic =02 O
> . .
= E.coli metabolic 0.15 @
3 025 ° 65@ |
< [
5 0.1
£
Human PPI2
0.2 |- ° 0.5 —
0 _ 1
Web-Google 0 0.1 0.2 0.3 0.4
Yeas.t TC Gnu‘eIIaOS/OG/OS ° Web-Standford |
° -
0.15 |- Web-Norte Epflons ° Web-BerkStan F —
Human PPI1 o° Wiki-vote .
Brain i
e o ° Twitt
E. coli TC2 Slashdot ° witter
0 1 1 1 1
0 5 10 15 20

Mean degree

Fig. 2 Inferability as a function of network parameters. a Directed links are inferable if either all outgoing links of the source node point to perturbed nodes
including the target node (left panel) or if all outgoing links of source node and target node point to perturbed nodes, with the target node not perturbed (right
panel). b Fraction of inferable links against the fraction of perturbed nodes using three network types: (i) scale-free network with exponent y =2.5 and mean
degree (k) =3, where nodes of higher degree target nodes of lower degree (outgoing hubs), (ii) same network as (i) but with all link directions inverted
(incoming hubs) or a network generated by random insertion of links with the same mean degree as scale-free networks (random network). Colour coding as
in ¢. ¢ Network inferability versus mean degree, using networks of b. d Network inferability versus scaling exponent for two types of scale-free networks. e
Asymptotic invariance of the two inferability measures introduced in the main text with respect to network size. f Network inferability as a function of mean
degree for social and biological networks. Correlation between the two inferability measures introduced in the main text (inset)

transmitting information back to it, as we exclude bidirectional
links from our analysis. This makes the network (Fig. 1la, left
network) fully inferable, as the link between the remaining two
perturbed nodes can be inferred by collecting experiments for
which the target node is unperturbed. We emphasise that our
approach to network inferability does not account for a priori
known restrictions on the network topology, as in the case of
directed acyclic graphs. Such constraints can strongly increase the
inferability of directed links®.

As F(q) is an upper bound for the expected number of directed
links that can be inferred from stationary node activities in the
absence of noise and other constraints on the network structure,
we now ask how this bound is related to the structural properties
of the network. To compare different network architectures, it is
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useful to define the network inferability, I, as the area under the
F(g)-curve, Ip:= f(l)F(q)dq. Comparison of Ir between two
general classes of network structures with node degrees either
power law or Poisson distributed shows that networks that are
enriched with nodes of high outdegree are the most difficult ones
to infer (Figs 1b and 2b). The reason is that whenever hubs with
high outdegree are perturbed there is a high chance that they
target more than one of the unperturbed nodes and without
additional perturbations it is impossible to detect which of the
targets are affected directly and which indirectly. Differences in
inferability due to network structure are most predominant for
networks with low mean degree and become less predominant
with high mean degree (Fig. 2c). As our measure of inferablity, I,
is essentially determined by the outdegree distribution, the curve
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starts saturating for scale-free exponents y > 3, as in this regime
the variance of the number of links per node is essentially
constant for increasing y and fixed mean degree® (Fig. 2d). The
network inferability, Ir, is asymptotically independent of network
size (Fig. 2e). We further investigated the inferability of causal
interactions in biological and social networks as a function of the
mean degree (Fig. 2f). The decreasing trend can be explained by
the higher number of alternative routes that come with a more
strongly connected network. The low inferability of gene-
regulatory networks can be attributed to master regulators that
regulate a large fraction of the genome (hubs with high
outdegree), whereas the comparatively high inferability of protein
interaction networks is a consequence of the low number of
different binding domains per protein and that only a fraction of
the existing interactions have been identified due to limitations of
experimental methods!®. If we assume that the conditional
probability P(k, I, mlk - I) of finding two connected nodes in the
directed network, where the source node has k 2 1 outgoing links,
the target node has [ 2 0 outgoing links, and both share m nodes
as common targets of their outgoing links, can be factorised, the
resulting inferability measure, I}, is simply a function of the
outdegree distributions, P(k) and P(l). We observed that I} ~ I
for all networks investigated in this work (Fig. 2f, inset). This
result shows that for a large variety of networks structures the
outdegree is the dominating factor that determines network
inferability. Consequently, if the perturbed nodes are not selected
at random but are biased towards higher outdegree, inferability is
further reduced.

Network inference concepts. From our analyses of network
inferability we gained the insight that the number of potential
alternative routes how a source node can affect a target node
correlates positively with the outdegree of the source node and
inversely with the expected inferability of the directed link
between source and target, given that perturbed nodes are uni-
formly distributed in the network. Consequently, network infer-
ence algorithms should strongly benefit from an a priori
reduction in the number of alternative routes. In the following we
present an unbiased network inference algorithm that eliminates
alternative routes with low signal-to-noise ratio as a preproces-
sing step. Inference of transcriptional networks on genome scale
is best realised by methods that are (i) asymptotically unbiased,
(ii) scalable to large network sizes, (iii) sensitive to feed-forward
loops and (iv) can handle data sets with and without knowledge
about which nodes are targeted by experimentally induced
perturbations”> 12716 (Supplementary Note 2). Inference methods
for directed networks typically require individual perturbation of
all nodes” or many perturbations of different strengths to com-
pute conditional association measures® 7 or conditional prob-
abilities'®. Generation of time course data seems to be the most
natural way to infer directed networks by simplY analysing the
temporal ordering of the transcriptional activities'® 2°. However,
this approach precludes the use of knockout experiments and
requires fast acting perturbations in combination with monitor-
ing node activities over time, which is experimentally demandlng,
especially if nodes respond on very different time scales?!

Experimental variability and technical noise. Inference is fur-
ther complicated by the fact that transcriptome data contain a
significant amount of stochastic variation between biological
replicates despite pooling over millions of cells (Fig. 3a). It is
interesting to see that the variation across biological replicates for
baker’s yeast® is close to a normal distribution and follows almost
exactly a f-distribution with 11 degrees of freedom over five
standard deviations (Fig. 3a, inset). The same data set also shows
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Fig. 3 Distribution of wild-type expression levels for S. cerevisiae from 748
biological replicates. a Distribution of the relative expression, log,(r;), with
ri := x/x"* and x; the expression of gene i relative to x"‘m’ followed by
standardisation of the log, fold changes (z-score). The values x""” have
been obtained by first pooling the 748 biological replicates before
measuring gene expression. The distribution is well described within five
standard deviations by a t-distribution with 11 degrees of freedom (red line).
b Distribution as in a but now for differences among technical replicates. ¢
Correlation between gene expression levels is significantly higher than
expected by chance (inset) d lllustration of a noise induced false positive
link (red arrow) as described in the main text. Data for a three-node
network with two links was generated by applying independent
perturbations on node 1 and node 2. The link strength of the non-existing
link from node 1to node 3 relative to the existing link from node 2 to node 3
was inferred using three different methods (i) partial correlations (blue
squares), (ii) conditional mutual information (green triangles) and PRC (red
circles)

that variability among biological replicates is much larger than
technical noise (Fig. 3b) for this experimental setup. As variability
among biological replicates may arise from subtle differences in
growth conditions that induce changes in gene regulation, we
expected to see significant cross-correlations among genes
(Fig. 3c), whose magnitude is much larger than expected by
chance (Fig. 3¢, inset). These cross-correlations can be exploited
for inferring the structure of undirected networks!?, if the driving
noise is independent and identically distributed for all nodes
(Supplementary Note 2). In contrast, technical noise not only
reduces the statistical significance for detecting true interactions
but can also induce a significant fraction of false positive inter-
actions, especially if the interaction network under investigation
is sparse. Such noise induced misclassification of links can be
illustrated by a simple linear network A - B - C for which stan-
dard inference methods—such as partial correlations—interpret
the information that A has about C erroneously as a direct link
between A and C if the state of B is corrupted by measurement
noise (Fig. 3d). The reason is that a part of the correlation
between A and C cannot be explained by B.

Algorithm for large-scale and unbiased network inference. To
make use of the rapidly growing amount of single-gene knockout
screens for Wthh transcriptome data are®> or may become
available?” 23, we developed a method to infer directed networks
on a genome scale, where the number of genetic perturbations is
typically below the number of nodes or genes in the network
(Online Methods). In brief, our method uses the concept of
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probabilistic principle component analysis** to compute partial
response coefficients (PRC) that are asymptotically unbiased with
respect to Gaussian measurement noise. In addition, the algo-
rithm provides a feature to identify non-inferable links, which are
removed before statistical analysis. In the absence of noise, our
numerical method correctly predicts the fraction of links that are
inferable, F(q) (Supplementary Note 1), for a network with links
represented by linear functions of slope one. To evaluate the
performance of our method we generated two synthetic knockout
data sets that closely resemble the gene-regulatory network
structure of baker’s yeast, using the GeneNetWeaver software?”
that uses a hierarchical network structure and our own generative
model that uses a scale-free network structure (Supplementary
Note 3). We added Gaussian measurement noise to the synthetic
data with a standard deviation of 10% the log, fold-change in
expression level for each perturbation for each gene. Residual
bootstrapping among replicates was used to quantify the statis-
tical significance of the inferred link strengths. In comparison
with standard inference methods, such as partial correlations'?~

14,2627 our method shows a significantly higher performance in
the absence of any penalties that enforce sparse network struc-
tures (Fig. 4b, left panel). The improved performance of our
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approach can be assigned to the fact that the method is unbiased
with respect to measurement noise (Online Methods).

To further improve the predictive power of our method we
included the prior knowledge that transcriptional networks are
highly sparse. Sparsity constraints are typically realised by
penalising either the existence of links or the link strengths by
adding approprlate cost functions, such as L!-norm regularised
regression (Lasso)?®. Adding a cost function to the main objective
comes with the problem to trade-off the log-likelihood against the
number of links in the network whose strength is allowed to be
non-zero. In the absence of experimentally verified interactions
there is no obvious way how to determine a suitable regularisa-
tion parameter that weights the likelihood against the cost
function, which is one of the great weaknesses of such methods.

In our approach we reduce network complexity by assuming
that functionally relevant information in molecular networks can
only pass through nodes whose response to perturbations is
significantly above the base line that is given by the variability
among biological replicates. The individual noise levels can be
estimated from natural variations among wild-type experimental
replicates (Fig. 3a). The significance level that removes nodes
from the network with low signal-to-noise ratio can be set to a
desired false discovery rate. It can be shown that removal of noisy
nodes imposes a sparsity constraint on the inference problem
(Online Methods). The different steps required to arrive at a list
of significant links are illustrated in Fig. 4a. In the first step, genes
are grouped in clusters that are co-expressed under all
perturbations. These clusters are treated as single network nodes
in the subsequent steps. In the second step, only those samples
are extracted from the data set that correspond to a perturbation
of a chosen gene—the source node—with no other genes
perturbed (node 5 in Fig. 4a). From this reduced data set, we
identify all nodes in the network that change expression above a
given significance level upon perturbing the source node. These
significantly responding nodes define a subnetwork for each
source node, which is typically much smaller in size than the
complete network. In the third step, we collect all perturbation

Fig. 4 Performance of our method. a Flow-chart showing the algorithmic
steps for network inference as explained in the main text. b Receiver
Operating Characteristic (ROC) curves for 300-node scale-free networks
with additive Gaussian measurement noise of 10% of the expression level
and 25% of the nodes perturbed. Data were generated using
GeneNetWeaver (left and middle panel) as well as using scale-free network
structure with mean degree of (k) =2 and scaling exponent y = 2.5 (right
panel, Supplementary Note 3). Here, the true positive rate is computed with
respect to the inferable links3®. Performance of inference methods without
sparsity constraints (left panel): PRC (red), partial correlations/linear
regression (turquoise) and conditional mutual information (orange).
Performance of inference methods with sparsity constraints (middle and
right panel): PRC with subnetwork method (green) and Lasso (black) both
applied to a subset of significantly responding nodes that were selected
with 1% false discovery rate, Lasso regression applied to all 300 nodes
(blue), and PRC from left panel (red) for comparison. ¢ True positives for
the same scale-free network of b, with 2, 4 and 8 experimental replicates
with 5% false discovery rate for both significantly responding nodes and
link strength: PRC (red), PRC with subnetwork method (green), PRC with
subnetwork and clustering method (blue), and F(g) (black line). d The S.
cerevisiae GAL network as an example for a gene-regulatory network where
phosphorylated Mig1 sets the basal expression levels of Gal4 and one of its
many regulatory targets, Gal3. Gal4 protein can activate Gal3 expression
but is inactivated upon binding of Gal80 protein. The transcriptome data
set contains knockout mutants for GAL80 and MIG1 but not for the
remaining GAL genes. A schematic representation of the key molecular
mechanisms (left) and links inferred from transcriptome data3 (right)
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data from the complete data set for all nodes that are part of the
subnetwork. Before inferring a direct interaction that points from
the source node to a given target node in the subnetwork (green
arrows in Fig. 4a), we remove all experiments from the data set
where the target node is perturbed. The second and third steps
essentially realise the counting procedure of inferable links as
illustrated in Fig. 2a, with the difference that significant links are
identified by PRCs in combination with residual bootstrapping
over replicates (Online Methods, Supplementary Note 3). In the
fourth step, we collect all clusters of co-expressed genes that
contain exactly two nodes, with one of the nodes perturbed and
check statistical significance of the directed link between them. In
the fifth step, all significant links are collected in an edge list. We
refer to these five steps as the clustering method. If we remove all
links from the edge list that have more than one node in a source
cluster or more than one node in a target cluster, we obtain an
edge list that corresponds to links between single genes. This
reduced edge list would also arise by skipping the clustering step
and we refer to the remaining inference steps that compute links
between single genes as subnetwork method.

Performance of the proposed inference algorithm. The Lasso
method in combination with bootstrapping has been bench-
marked as one of the highest performing network inference
methods for in silico generated expression data. The receiver
operating characteristic (ROC) curve of the subnetwork method
shows better performance than the Lasso method (Fig. 4b, middle
and right panel) after adjusting the regularisation parameter of
the Lasso method such that the area under the ROC curve is
maximised. However, a significant performance boost for the
Lasso method can be achieved by applying the second step of our
method that removes noisy nodes, resulting in comparable per-
formance of Lasso with the subnetwork method for the case that
validation data exist such that the regularisation parameter can be
determined (Fig. 4b, middle and right panel).

To get insight into the optimal experimental design for
generating data for network inference, we computed the fraction
of correctly inferred links and compared them against the fraction
of independently perturbed nodes for different numbers of
experimental replicates. We compared three different variants of
our approach: PRC, PRC together with subnetwork method and
PRC together with clustering method (Fig. 4c). As all variants
share PRC as underlying inference method (Online Methods), the
observed strong increase in performance can be assigned to the
sparsity constraint that comes with the subnetwork method or the
clustering method. Owing to this constraint, both the subnetwork
method and the clustering method can have higher accuracy than
the noise-free analytical solution, as the latter does not enforce
sparse network structures. The results show that in the presence
of 10% measurement noise the amount of available replicates
limits the true positive rate, even if 100% of nodes are perturbed.
Inference of >80% of the network can only be achieved if the
number of replicates is sufficiently high.

To benchmark the performance of our algorithms in
comparison to others, we applied our method to the DREAM3

in silico network inference challenge®®. The provided data set of
this challenge has the advantage that full information about the
identity of perturbed nodes is given. We ignored the transient
information from time series and used the stationary state of time
course data to estimate the variation in expression between
biological replicates. To identify the significantly responding
nodes, we used a Bonferroni corrected significance level of a=
0.05/N, where the number of alternative hypotheses—or the
number of possible incoming links for a given target node in our
case—are bounded by number of possible source nodes in the
network, N— 1. To make sure that we correctly implemented the
published performance evaluation method that is based on curve
fitting a sampled null hypothesis®!, we followed the proposed
curve fitting procedure suggested by the organisers of the
challenge by using different exponential family distributions for
each tail, and alternatively by using a single ¢-distribution to fit
AUROC null hypothesis samples. The results are shown in
Table 1 and Supplementary Data 4. The overall second place
among the other 29 inference methods should be interpreted in
the light that the better performing algorithm uses extensive
hyperparameter tuning, makes use of transient data, and does not
scale well with network size®?. Furthermore, our approach seems
to be robust with respect to the chosen significance level as
changing a by one order of magnitude did not affect the ranking.
However, we emphasise that for ‘large p small #’ problems, where
the number of parameters exceeds the number of independent
data points, preprocessing often has a larger effect on perfor-
mance than the inference method itself*’. For our algorithm the
performance boost is a consequence of generating subnetworks as
preprocessing step.

Application to yeast genome knockout data. To evaluate the
performance of our approach on real data, we use one of the
largest publicly available transcriptome data sets®, comprising of
transcriptomes that cover 6170 genes for 1441 single-gene
knockouts that can be utilised for network inference using PRC.
We use the galactose utilisation network as a gene-regulatory
example, which is one of the best characterised gene-regulatory
modules in yeast®. The regulatory mechanism of the GAL4 gene
as a key regulator is shown in Fig. 4d, left panel. As information
about phosphorylation and protein interaction is absent in
expression data, the inferred network structure from tran-
scriptome data with GAL4 and GAL80 perturbed is different
from the known gene regulation but can identify major regulators
and their targets. Whether the gene AIM32—which is not known
to be part of the GAL network—is co-regulated with GAL80 or
an artefact of the knockout screen is difficult to judge. Both
options are possible as AIM32 is located in close vicinity to
GALBO on the genome. By sorting genes with respect to their
number of statistically significant outgoing links, we can identify
potential key regulators. Besides transcription factors, the reg-
ulators with highest statistical significance are factors involved in
chromatin remodelling, signalling kinases, and genes involved in
ubiquitination (Supplementary Data 1-3). This result—although
expected for eukaryotes—is inaccessible for inference methods

challenge

Table 1 Ranking and overall scores (in parantheses) among the original participants of the DREAMS in silico network inference

10 nodes a = 0.05/10

50 nodes a = 0.05/50 100 nodes a = 0.05/100

2nd (4.64)
2nd (4.14)

Original scoring method
AUROC background fitted with t-distribution

2nd (31.43)
3rd (30.10)

2nd/1st (55.98)
2nd/1st (50.06)

identification of nodes that are significantly affected by perturbations

Scores were obtained with the original scoring method and a scoring method in which the AUROC background distribution was fitted with a t-distribution. Here, a denotes the significance level for the
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that a priori fix known transcription factors as regulatory sources.
However, as the number of deleted genes in this data set comprise
just 23% of the genes for which transcript levels have been
measured, we can estimate from our simulations that we have
inferred <10% of the direct interactions in the transcriptional
network of yeast.

Discussion

We have developed an unbiased network inference method for
perturbation experiments that target individual nodes in the
network. Consequently, node activity data that result from
unspecific perturbations cannot be exploited by this algorithm in
its present form. As individual gene knockout or knockdowns
dominate many large-scale experimental studies of node activities
in biological networks® 23 and their genome-wide coverage is
constantly improving®% 34, we expect that the biological data sets
to which the algorithm can be applied will rapidly increase in the
near future. However, currently most of the large-scale knockout
or knockdown screens lack complete coverage of mutants and
often come with low number of experimental replicates, if any. In
this work we have shown that insufficient coverage of perturbed
nodes in transciptome data fundamentally limit the amount of
links that can be inferred, independently of the employed infer-
ence algorithm and that high statistical power requires a sig-
nificant amount of replicates to drive down effects of
experimental variability and measurement noise. We therefore
introduced a network inference approach that is able to detect
significant links for the case that only a fraction of nodes are
perturbed, removes nodes with low signal-to-noise ratio from the
network, and makes use of an inference algorithm that is insen-
sitive to measurement noise. Including prior knowledge about
network complexity and reducing the effects of noise is crucial for
network inference problems, where the number of parameters,
e.g., link strengths, scale quadratically with network size and often
exceed the number of measured data points. Good scaling
behaviour and the absence of time-consuming hyperparameter
tuning make our approach an easily applicable network inference
tool that shows competitive performance with state-of-the-art
methods. However, even when complete coverage of single-gene
perturbations together with a high number of experimental
replicates of transcriptome data are available, the inferred tran-
scriptional network cannot be directly translated into a model
that reflects the biochemical reality of gene regulation. The reason
is that gene regulation can involve complex molecular interac-
tions on DNA, RNA, protein and small molecule level that result
in direct interactions between mRNA levels. An example of such
complex interactions is the observed regulation by the human
oncogene IDH1—a metabolic enzyme involved in the citric acid
cycle. Mutational loss of normal enzymatic function of IDH1 and
production of the metabolite 2-hydroxyglutarate can affect the
activity of an epigenetic regulator, which promotes tumorgenesis
by reprogramming transcriptional activity on genome scale®”.
Inference of such complex molecular interactions would require a
combination of different high-throughput technologies, with the
challenge that different methods typically show large differences
in sensitivity and coverage®.

Methods

PRC. We aim at inferring direct interactions between N observable molecular
components, such as transcripts or proteins, by measuring their concentrations.
We define by y € RY an N dimensional vector that represents the logarithm of
these concentrations, which is the natural scale where experimental data are
reported. We assume that the available data set has been generated from P per-
turbation experiments, {yk}le, which may also include experimental replicates.
We further assume that the molecular targets of the perturbations are known, as it
is the case for gene knockout or knockdown experiments. The elements of the
interaction matrix A € RY*Y define the strengths of the directed interactions
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among the molecular components, for example, A;; quantifies the direct impact of
component j on component i. Given the available experimental data, our aim is to
correctly classify the off-diagonal elements of A as zero or non-zero to obtain the
structural organisation of the interaction network. We assume that the observed
component abundance on log-scale, y°s, differs from the true value, y, by additive
measurement noise, €, which is characterised by zero mean, E[¢] = 0, and variance,
Elee’] = 6*Iy, with Iy the N dimensional identity matrix. We assume that the
observed data can by described to sufficient accuracy by a linear stationary model

0:A(y7ymf)+Bu

yr=y+e

(1)

with A negative definite to ensure stability. Equations of this type typically arise
from linear expansion of a non-linear model around a reference state, y"?. Linear
models are usually preferred for network inference a on larger scale, as the amount
of data often limit model complexity and the fact that linear models can give
surprisingly good resuits for non-linear cases. The perturbation vector u reflects
perturbations that persist long enough to propagate through the network, such as
mutations that affect gene activity. Here, u is defined such that for u =0 the system
approaches the reference state y=y"%. Note that the reference state, 3¢ is not
necessarily the unperturbed state but could be also defined as the average over
perturbed and unperturbed states. We assume that the perturbation forces are
sampled from a standard normal distribution, with mean E[u] = 0 and covariance
matrix E[uu’] = Iy. The identity matrix is a consequence of the fact that we can
absorb the associated standard deviations of the perturbative forces, u, in the
matrix B € RV*N. We introduce normal distributed perturbations for mathema-
tical convenience, as this implies that also y is normal distributed and the resulting
maximum likelihood approach is analytically solvable. In general, only the posi-
tions of the non-zero elements of B are known from the experimental setup but
their actual values are unknown. Using a linear model that operates on log-scale of
physical quantities implies that only perturbations can be modelled that act mul-
tiplicatively on molecular concentrations. Fortunately, most enzymatic reactions
typically fall into this class, such as sequestration and inhibition by other com-
ponents and also knockout and knockdown experiments can be described on
multiplicative level. From Eq. (1) we can derive a relation between the interaction
matrix A and the covariance matrix of observed component abundances

C:=F {(yubs _ yref) (yohs _ yvef)T]
=A"'BB"A™" + &Iy

)

We exploit Eq. (2) to infer directed networks from correlation data. Here, we
assume that component abundances are obtained from averaging over a large
number of cells. In this case, fast fluctuating perturbations that arise from thermal
noise and can be observed only on single-cell level average out. To infer the
interaction matrix, A, we start with singular value decomposition of the matrix
product A™!B

Uzv':=A"'B = B=AUzVT (3)

with U and V orthogonal matrices and X a diagonal matrix containing the singular
values. The negative definite matrix A has full rank and hence is invertible. In the
following, we show that it is possible to infer the strength of a directed link between
a sender node j and a receiver node i, if all direct perturbations on receiver node i
are removed from the data set and if a significant partial correlation between i and j
exists. Removing the perturbation data for node i implies that the matrix B has at
least one zero entry. As a consequence, Ny 2 1 singular values are zero—as in general
not all nodes are perturbed—and the corresponding rows of U span the left null-
space of A7!B. In the absence of fast fluctuating perturbations, y = 0, we can rewrite
the covariance matrix as

C=A"'BB"A T + &Iy (4)

= U(2* +o*Iy)U". ©)

Assuming that the observed node activities follow a multivariate normal
distribution, we can find estimates for the unknown orthogonal matrix U, the
singular values X, and the observational noise ¢ by maximising the log-likelihood
function £ under the constraint U} Uy = &y, with Uy the k-th column vector of U
and 5y the Kronecker delta. It fact, it suffices to constrain the norm of the vectors,
||Uk||, as the corresponding maximum likelihood solution leads to an eigenvalue
problem with Uy as eigenvectors, which can always be made orthogonal. We can
therefore define the likelihood function by

P N
L= [[ Ny, C)+ > &(UfU—1) (6)
n=1 k=1

N
= —2{MIn27 +1In|C| + tr(C'S)} + Y~ 4 (U Uk — 1) (7)
k=1
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Here, §:= 3 St (3 =) _yref) and y =3 En 1 ¥ denote
maximum likelihood estimates of the covariance matrix®”. From this definition of
3% follows that the initially introduced perturbation vector, u, must satisfy,
3 25:1 u, = 0. We further defined with 4, a Lagrange multiplier and denoted by
tr(.) the trace of a matrix. In the following calculations, we substitute S by the
unbiased sample covariance matrix, S » P(P— 1)!S. Note that V must disappear in
the likelihood function as the covarlance matrix of u is invariant under any
orthogonal transformation u - V7u.

The maximum of the log-likelihood function is determined by the conditions
dL/dUy = 0, dL/dZ) = 0, and d£/d6* = 0, which results in

SUy =AU withA <A, < .. <Ay (8)
1
A2
&= ;Ak (9)
=1
N VAL — 0% f k> N
Zkk= k o or > Np (10)
0 for k<N

showing that maximum likelihood estimates of U, &%, and % are determined by the
sample covariance matrix S. If Ny > 1 and the full-rank sample covariance matrix is
significantly different from a block-diagonal form—e.g., the network is not
separable in subnetworks—the orientations of the corresponding Nj eigenvectors
are determined by sampling noise in the space orthogonal to remaining N — Ny
eigenvectors. In case that we have less data points than nodes in the network—e.g.,
the number of perturbed nodes times their replicates is smaller than the network
size—some of the N, smallest eigenvalues become exactly zero and as a
consequence the noise level, 6, is underestimated. Although a maximum likelihood
solution exists in this case, it is necessary to regularise the covariance matrix,
S — (1 — €)S + ely, with € a regularisation parameter®, as a correct estimate of
the noise level is essential for statistical analysis. Note that the derivation of the
maximum likelihood solution is mathematically equivalent to the derivation of
principle component analysis from a probabilistic perspective*

Solving the matrix equation, Eq. (3), for A gives

A= (BVZt+w2)U" (11)
with 2* the pseudoinverse of X. As the matrix A has full rank, we complement X*
with an unknown diagonal matrix 20 that has non-zero values where X* has zero
values and vice versa and complement BV with an unknown orthogonal matrix W.
Note that by construction, £*UT and Z*U” map from complementary subspaces
and thereby ensure that A has full rank. The fact that V, W and 2 cannot be
determined from § shows that A cannot be computed from a single covariance
matrix. A more general case arises when measurement noise is independent but not
isotropic, I - ¢*D, with D= diag(ry, 12, ..., n) a diagonal matrix with known
positive elements that contains scaled noise variances, r; := 67 /62, resulting in

C=A"'BB"AT + 6D (12)
A transformatlon to isotropic noise is possible by multiplying both sides of Eq. (12)
by D™ 3, which changes the result Eq. (11) to

A= (BVXI' +WX)U'D> (13)

with U the eigenvectors of D iSD 3.

Case No =1. We assume that the i-th node is the only unperturbed node in the
network and hence set B;=0 for all I. From Eq. (11) we obtain a unique solution
for the i-th row of A relative to the diagonal element, A;;

4y ket B VieZke + Yiy Wi U, _ U_g _Un (14)
Ai YN BaViZw + Yo, WaZR UL Ul Un

with Uj; the j-th element of the eigenvector that has the smallest eigenvalue. Note
that the first term in the brackets vanishes as B;=0 and X9, is the only non-zero
element of X°. The important point is that any dependency on o-which affects
eigenvalues but not eigenfunctions—has dropped out, making this method
asymptotically unbiased with respect to measurement noise. The fact that we can
determine the elements of the i-th row of A only relative to a reference value, A;; is
rooted in fact that we have to determine the N parameters {A;, ..., Aji, ..., Ain}
from N —1 perturbations. As a consequence, the strengths of the links onto the
target nodes cannot be compared directly if their restoring forces or degradation
rates, A;;, are different. Generally, only relative values of A can be determined, as
the average perturbation strength on node i cannot be disentangled from its
restoring force A;—a problem that is typically circumvented by defining A;; := —1
for all /> 1315, For the case that all nodes in the network are perturbed one-by-one,
we can cycle through the network and remove the perturbations that act on the
current receiver node, whereas keeping the perturbations on the remaining nodes.
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By computing the N corresponding covariance matrices and their eigenvectors, we
can infer the complete network structure from Eq. (14) if the data quality is
sufficiently high. Note that the method makes use of the fact that multi-node
perturbations can be realised by superposition of single-node perturbations, which
is a special property of linear models.

Case No > 1. If more than one node are not perturbed we get from Eq. (11)

Ay Zk L Wiz}, Uk)

A" Zk 1 lkzkk UTi
Non-unique solutions of Eq. (15) can arise if a given fraction of the variance of the
receiver node i can be explained by more than one sender node, for example, when
a perturbed node j targets two nodes with index i and I In this case it is unclear
from the node activity data whether i is affected directly by j or indirectly through I,
or by a combination of both routes. If node  is not perturbed or only weakly
perturbed, a statistical criterion is needed to decide about inferability or identify-
ability of the link j — i, which can be computed numerically as follows: To find out
whether j transmits a significant amount of information to i that is not passing
through [, we first remove node j from the observable nodes of the network but
keep its perturbative effect on other nodes in the data set. We then determine the
link strengths A’ for the remaining network of size N—1. To construct a possible
realisation of A" we set in Eq. (15) the non-zero values of 30t unity and use W=U
to arrive at the expression

(15)

A'y Zkl
AW U

with U’ determined from the sample covariance matrix with the j-th column and j-
th row removed. Fixing W and 20 to seemingly arbitrary values does not affect the
result we are after. If / is the only unperturbed node besides i, then in the A" system
I can now be treated as perturbed—as it may receive perturbations from the
unobserved node j—and thus Eq. (14) applies. If [ is part of many unperturbed
nodes that are affected by j, then the knowledge how much each of these nodes
contributes to the variance of the target node i (which is determined by W and 2°)
is irrelevant as we are only interested in the total effect of the alternative routes on
node i. Using the inferred link strength from Eq. (16) we can rewrite Eq. (2) as a
two-node residual inference problem between j and i, where we obtain a lower
bound for link strength from node j to i by using the variation of i that could not be
explained by A'. This concept is similar to computing partial correlations. Defining
by A, B and D the 2 x 2 analogues to the full problem we obtain

Uik
lkUtk

(16)

C=A"'BB"A"' +6*D (17)

with C the covariance matrix of the vector °* =

()’]Dbs R+ Zl:{i,}} Aln(A%)” )’fbs) and Dyy =1, Dy =i + Zl:{x:j} AA
using the scaled variances r; = o—f /o?. Note that A; < 0 for all i as these elements
represent sufficiently strong restoring forces that ensure negative definiteness of A
and that we have 0 = A',,y;’b’ + D A'dy;”” from Eq. (1) in the stationary case. An
estimate for the minimum relative link strength from node j to node i can be
calculated from Eq. (13) and is given by

A _ LID”/ (18)
All U11 l/

Eq. (18) can be considered as an asymptotically unbiased response coefficient
between node 1 as target node and node 2 as source node, as again any dependency
on ¢ has dropped out. An estimate for the maximum relative link strength from
node j to node i follows from Eq. (18) with the off-diagonal elements of A" set to
zero. We classify a link as non-inferable if there exists (i) a significant difference
between the minimum und maximum estimated link strength and (ii) a minimum
link strength that is not significantly different from noise.

Computational complexity of PRC. The computational cost for computing PRCs
scales as O(Nfub), with Ny, the size of the subnetwork under consideration.
However, as we infer directed networks, we first have to remove the perturbations
on each target node before its incoming links can be inferred. The cycling through
up to Ny, — 1 perturbed target nodes increases the computational complexity to
O(N%,) in the worst case. As we have generated a subnetwork for perturbed node
and used residual bootstrapping to infer statistically significant links, the total
computational complexity is given by (’)(Nboa,Npe,<Nfub>), where (.) denotes
averaging over all subnetworks, Np,, the number of perturbed nodes, and Ny, the
number of bootstrap samples. If the travelling distance of perturbations (correla-
tion length) in the network is significantly shorter than the network diameter, such
that N;,;,/N - 0 in the limit of large networks, N — «, the computational complexity
scales linearly with network size. In contrast, using Lasso to infer directed links
requires O(‘NbuotN;l;g operations, as the more efficient Graphical Lasso method?®
is only applicable to undirected networks. Whether our method is computationally
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more efficient than Lasso depends on the inference problem. However, for the
networks investigated in this work our method required significantly lesscompu-
tational time than inference via Lasso using parallel computing.

Fraction of inferable links. Inferability of a directed link between source and
target node requires that the remaining network may not contain the same
information that is transmitted between them. A sufficient condition is that all
information that the remaining network receives from the source node is destroyed
by sufficiently strong perturbations. If the target node is not perturbed, information
from the source node may reach the remaining network through the target node. In
this case also the targets of the target node must be perturbed (Fig. 2a). Counting
network motifs that satisfy these conditions gives the number of inferable links. If
the network size, N, is significantly larger than the number of outgoing links for
both the source and target nodes, we can approximate the fraction of inferable
links, F(q), by the expression (Supplementary Note 1)

min(k—1,1)

Fg)~ ) > @+ (- 9] Pk, mlk — 1)

k=1 1=0 m=0

Here, P(k, I, mlk - 1) is the conditional probability of finding two connected nodes
in the directed network, where the source node has k 2 1 outgoing links, the target
node has /20 outgoing links, and both share m nodes as common targets of their
outgoing links. The first term in the brackets corresponds to the case that inde-
pendent perturbation data for node B exists (Fig. 2a, left panel) and the second
term to the case where independent perturbation data for node B are absent
(Fig. 2a, right panel). In the calculation of F(q) we assumed that the links in the
network are represented by noiseless, linear functions with non-zero slope and that
ensure that information of source nodes is neither destroyed nor absorbed in the
process of transmission.

Data preparation. Kemmeren et al.> provided a transcriptome data set of a Sac-
charomyces cerevisiae genome-wide knockout library (with mutant strains isogenic
to S288c). This data set comprises transcript levels of 6170 genes for 1484 deletion
mutants. The data are presented as the logarithm of the fluorescence intensity
ratios (M-values) of transcripts relative to their average abundance across a large
number of wild-type replicates, resulting in logarithmic fold changes of mutant/
wild-type gene expression levels compared with a wild-type reference level. Kem-
meren et al. also used a dye swap setup for several experiments to average out the
effect of a possible dye bias. Their chip design measures most of the genes twice per
biological sample, thus allowing to estimate the technical variance. The pre-
processing of the data is described in Kemmeren et al.%, Supplementary
Information.

Residual bootstrapping. We make use of the 748 measured wild-type experi-
mental replicates to determine the natural variation among biological replicates,

Sin = log, (rin) — <10g2(r,-,,)>n, with 7;, := x,n/foOI, X, the expression of gene i in

wild-type replicate n, x! ! the expression level of gene i measured after pooling
over wild-type replicates, and (.),, denoting the average over replicates. To generate
the bootstrap samples we randomly select 200 different &;, from the replicates for
each gene i, and add these values to the log fold changes of the perturbed

expression levels, (log, (")), , with 15y = ;" /! *! and the average is taken
over the two replicates for each knockout.

Sparsity constraints by removing noisy nodes. As network inference typically
comes with an insufficient amount of independent perturbations and experimental
replicates we run into the problem of overfitting the data. In this case, noisy
information from many network nodes is collected to explain the response of a
given target node. L!-norm regularised regression (Lasso) systematically removes
many links, where each link explains only a small part of the variation of the target
node, in favour of few links, where each link contributes significantly. In our
approach we remove noisy nodes and thus their potential outgoing links, where the
critical noise level is determined by the variability among biological replicates. In
the presence of noise, our algorithm removes weakly responding nodes from the
network. We thereby assume that the existence of many indirect interactions
between source and target node by first distributing the signal of the source node
among many weakly responding nodes and then collecting these weak signals to
generate a significantly responding target node is much less likely than the exis-
tence of a single direct interaction. However, in the noise-free case we run into the
same problem as Lasso to determine the right cutoff (regularisation parameter).

Synthetic data. Synthetic data were generated using our own model and Gene-
NetWeaver>>—an open access software that has been designed for benchmarking
network inference methods. With GeneNetWeaver, networks were generated from
a model that closely resembles the structure of the yeast regulatory network?>, and
steady state levels of node activities were computed using ordinary differential
equations. In our data generating model, we first generated scale-free networks
with an exponent of 2.5 and an average degree of 2. Then, we solved a system of
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ordinary differential equations with non-linear regulatory interactions between
nodes to obtain steady state values of node activities, e.g., transcript levels. For both
models, logarithmic fold changes of node activities were calculated (transcriptional
levels upon perturbation relative to wild levels), and gaussian noise was added.

Code availability. MATLAB and Python codes for the network inference algo-
rithm and the data preprocessing steps are available on request.

Data availability. The data sets analysed during the current study are described in
ref.? and are available from Gene Expression Omnibus https://www.ncbi.nlm.nih.
gov/geo/ under the accession numbers GSE42527, GSE42526, GSE42215,
GSE42217, GSE42241 and GSE42240.
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