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Abstract: The identification of compounds in complex mixtures remains challenging despite recent advances in analytical
techniques. At present, no single method can detect and quantify the vast array of compounds that might be of potential interest in
metabolomics studies. High performance liquid chromatography/ mass spectrometry (HPLC/ MS) is often considered the

analytical method of choice for analysis of biofluids. The positive identification of an unknown involves matching at least two

orthogonal HPLC /MS measurements (exact mass, retention index, drift time etc.) against an authentic standard. However, due to
the limited availability of authentic standards, an alternative approach involves matching known and measured features of the

unknown compound with computationally predicted features for a set of candidate compounds downloaded from a chemical
database. Computationally predicted features include retention index, ECOMso (energy required to decompose S0% of a selected

precursor ion in a collision induced dissociation cell), drift time, whether the unknown compound is biological or synthetic and a
collision induced dissociation (CID) spectrum. Computational predictions are used to filter the initial “bin” of candidate

compounds. The final output is a ranked list of candidates that best match the known and measured features. In this mini review,
we discuss cheminformatics methods underlying this database search-filter identification approach.

MINI REVIEW ARTICLE

Introduction

Metabolomics focuses on the study of small molecules (usually <
1000 Da) produced by metabolic processes within a cell. These small
molecules, called metabolites, encompass a broad range of compounds
composed of a variety of chemical functional groups [1,2]. The term
“metabolome” is used to identify the collection of such small
molecules in an organism [3]. It is estimated that a metabolome may
comprise anywhere from 1000 — 200,000 distinct chemical
compounds depending on the organism [1]. A typical human biofluid
such as blood or urine may contain several hundreds to thousands of
unique chemical compounds. For example, as of August 8, 2012, the
human metabolome database (HMDDB) [4] listed 942, 4651, and 468
compounds in urine, blood and cerebrospinal fluid respectively. The
separation and concurrent identification of chemical structures in such
complex mixtures often require multiple analytical techniques. The
most commonly used analytical techniques include nuclear magnetic
(NMR), gas
(GC/MS) and high performance  liquid chromatography/ mass
spectrometry (HPLC/MS) Positive identification of an unknown
involves matching at least two orthogonal experimental features with
an authentic standard. In the case of NMR, a match against 'H NMR
and BC NMR or a match against a 2D NMR is considered sufficient
GC/MS and HPLC/MS,

experimental features may include retention index (RI) or retention

resonance chromatography/mass spectrometry

for identification. In orthogonal
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time, accurate mass, isotope abundance pattern and a collision
induced dissociation (CID) spectrum. When analyzing complex
mixtures containing polar compounds, HPLC/MS is generally
preferred over GC/MS as GC often requires sample derivatization. In
metabolomics, HPLC/MS based identification is more frequently
used compared to NMR due to its increased sensitivity.

Regardless of the analytical method, the structural identification
of unknowns is severely limited by the number of commercially
available authentic standards available to any one lab. For HPLC/MS
methods considered in this review, an alternative approach involves
matching experimentally determined “features” (such as RI, mass
spectrum etc.) with computationally simulated features for a set of
compounds downloaded from a general chemical structure database
such as PubChem [5-7] (Fig ).

In this approach, a “bin” of candidate compounds matching an
experimentally determined monoisotopic molecular weight (MIMW)
(£ mass accuracy of the instrument) is first retrieved from the
database. If we assume that the sample is a mammalian biofluid (for
example human urine or serum) the remaining compounds can then
be filtered based on whether or not they contain only 6 allowed
elements (C, H, N, O, P and S). Making the same assumption, the
remaining compounds can then be filtered based on whether or not
they are “biochemical” structures. For the remaining candidates,
experimental measurements such as RI, ECOMso (energy required to
decompose 50% of a selected precursor ion in a CID cell) and drift
time are modeled using quantitative structure-property relationships
(QSPR). Candidate compounds whose predicted features lie outside
the range of values allowed by the QSPR models are removed from
the bin. For each of the remaining candidates, a simulated collision
induced dissociation (CID) spectrum is calculated and matched
against the experimental CID spectrum. Candidates are then ranked
according to the number of predicted peaks matching the
experimental peaks. All steps in the structure identification protocol
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described above can be performed with the free java based software
package MolFind [8]. In the discussion that follows, each step of the
aforementioned protocol will be discussed in detail. Topics are
arranged according to the numbered steps in figure 1.

1. Candidate Structures
(PUBCHEM, HMDB, KEGG)

MIMW + 10 ppm

Ry

C,H,N, O, P, S Only

L

[

2. Biological - Likeness

(3}

3. QSPR Filters ( RI, ECOMs, Drift Time )

4. Ranking (MetFrag, Mass Frontier)
[ ]

®
°
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Figure 1. Filtering database candidates using simulated experimental data.

1. Candidate Structures

Database structure identification involves downloading a “bin” of
potential candidate structures matching a MIMW (% mass accuracy
of the instrument) from an online chemical structure database.
Databases range from general chemical structure databases such as
PubChem [9], ZINC [10] or ChemSpider [I1] to specialized
databases such as HMDB [4], DrugBank [12], or HumanCyc [13]. A
list of freely accessible small molecule databases useful in
metabolomics research is presented in Table I.

A typical MIMW (£ 10 ppm) search in PubChem may yield
several thousand chemical structures, whereas the same search in
HMDB often results in less than a dozen. Both types of databases
have advantages and disadvantages. Querying a focused small database
such as HMDB makes identification relatively trivial if the
“unknown” happens to be among the candidates. However, this
approach cannot be used to identify previously unknown metabolites.
On the other hand, searching a large chemical database such as
PubChem greatly improves the odds of finding the unknown
compound in the database. On the downside, the excessive number of
potential candidates in PubChem may lead to a large number of false
positives making the identification of the correct “unknown”
extremely difficult. However, by applying carefully configured
curation steps, the candidate list from a large database may be
shortened substantially. Initial curation steps may include removing
disconnected structures, eliminating charged species, clustering
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stereoisomers and eliminating compounds containing elements other
than C, H, N, O, P and S. These curation steps alone can eliminate
anywhere from 40% to 90% of candidates from the initial bin of
structures matching the MIMW of the unknown.

Special Purpose Databases

Biofluids often contain compounds that are not endogenous
metabolites. Examples include drugs, drug metabolites, plant
compounds and other compounds found in food. Specialized
databases may be used as prescreens to exclude or identify such
compounds. For example, a database containing all known drugs and
their metabolites can exclude compounds coming from drugs. Also,
existing databases containing plant metabolites (KEGG, PMN and
others), food metabolites (HMDB) or bacterial metabolites can be
screened.

Table 1. Freely accessible databases useful in metabolomics

research.
Database Type # of cpds Ref
PubChem General chemical structure database ~ ~ 33 million [9]
ChemSpider ~ General chemical structure database - 28 million [11]
General chemical structure database
Zinc (commercially available small ~ 20 million [10]
molecules)
Metlin Metabolites and MS/MS data ~ 64 000 [14]
HMDB Human metabolome database 8608 [4]
KEGG A collection of small molecules,
biopolymers and other compounds 16834 [15]
compound o floect
relevant to biological systems
, illicit, with,
DrugBank Drugs (ap.proved illicit, withdrawn 6711 (12]
and experimental)
PlantCyc Plant metabolites and pathways 3334 [16]
HumanCyc  Human metabolites and pathways 1321 [13]

2. Biological — Likeness Filter

Although it is trivial to eliminate candidate compounds using the
6 element filter described above (C, H, N, O, P and S) if the source
of the sample is a mammalian biofluid, many synthetic compounds
also contain only these 6 elements. Thus, it would be helpful to be
able to determine whether a database derived candidate satisfying the
6 element filter was biochemical (and thus retained) or synthetic (and
thus eliminated) based solely on its structure. Structurally similar
molecules tend to have similar properties and similar molecules exert
similar biological activities [17]. Using two-dimensional (2D)
molecular structures of 745 E. coli metabolites and a variety of
chemoinformatics tools, Nobeli er a/. [18] reported the first attempt
to examine the metabolome of an organism on the basis of molecular
structure  information. Structures were analyzed and clustered
according to fingerprints (fragments describing physiochemical
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properties).  Graph-matching algorithms for finding common
substructures were employed. The authors visually examined and
derived a library of 57 substructures of known metabolites, acting as
scaffolds, to provide a high coverage of the metabolome. Those
fragments were used to analyze the molecular composition of
metabolites. Preliminary efforts of correlating the similarities between
metabolites with protein structures as well as with metabolic pathways
were reported. It was observed that most of the £ coli metabolites
were hydrophilic and had molecular weights between 100 and 300
Da.

Several studies investigated statistical methods distinguishing the
molecular structures of natural products, synthetic products and drugs
[19-22]. Gupta and Aires-de-Sousa [23] carried out a comparative
study of the chemical space occupied by metabolites versus the
chemical space occupied by a diverse set of commercially available
synthetic compounds. The KEGG/LIGAND database (including
metabolites from different species as well as XenobiotiCs) was used to
define the biochemical space of metabolites. The average molecular
weight of this set of compounds was 311 * 267 Da with a maximum
molecular weight of 2,250 Da.
metabolites was represented by a random set of commercially available
compounds in the mass range 17 — 1,006 Da (average 374 +95 Da)
from the ZINC [24] chemical database. Both chemical spaces were

compared based on 2D and3D structures and descriptors of global

The chemical space of non-

properties. It was observed that the overlap between metabolites and
non-metabolites was least in the space defined by the global
descriptors. It was found that the most discriminatory features were
the molecular weight, the presence of aromatic systems, and the
number of OH groups. Using a random forest (RF) [25] classifier
and global molecular descriptors they were able to correctly identify
95% of the 1,811 KEGG compounds used for training the model.

Peironcely er al. [26] extended Gupta and Aires-de-Sousa’s work
by using molecules in HMDB to represent endogenous human
metabolites and used an updated collection of compounds from
ZINC as non-biological structures. They used different molecular
descriptors, such as ECFP_4 [27] and MDL public keys [28], as well
as classifiers such as support vector machines [29], RF and naive
bayes [30], to evaluate the reliability of distinguishing metabolites
from non-metabolites. They showed that using MDL public keys and
REF resulted in the best accuracy for their classifier. The authors
reported that 96% of 457 HMDB compounds, 54% of 6,532
DrugBank compounds and 22% of 6,312 compounds from
ChEMBL [31] were classified as biological.

Both Gupta and Aires-de-Sousa and Peironcely er al employed
fingerprints [32] for classification. Finding common substructures has
the potential to describe structural similarity more accurately than
fingerprint-based methods but it is much slower [18]. With the
current advances in technology such as threading and the use of
multiple cores this is no longer a significant limitation.

Recently, Hamdalla er a/ [33] developed a cheminformatics tool
that utilizes the molecular structures of known human metabolites to
identify potential unknowns from a list of candidate structures. It uses
a graph matching tool (SMSD [34]) and a curated set of 1,400
endogenous human metabolites from KEGG (scaffolds) to guide its
classification process. This process is based on a scoring scheme that
combines all matches of scaffolds to substructures of a candidate
compound as well as matches of the candidate compound to
substructures of the scaffolds. Preliminary results using leave-one-out
cross validation experiments showed that 96% of 1,400 KEGG
endogenous human metabolites were scored as biological. However,
when a set of synthetic chemical compounds obtained from
Chembridge [35] and Chemsynthesis [30] databases were examined,
46% of 5,320 structures were predicted to be biological. Hence, this
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approach allows the user to search large chemical databases, but
removes a significant number of synthetic chemical compounds from
the final candidate list.

3. Quantitative Structure Property Relationship (QSPR)
Models

Quantitative structure property relationship (QSPR) based
models can be used to predict physiochemical properties of
compounds in databases. QSPR models relate measurements of a set
of predictor variables to a response variable via a regression procedure
[37]. In QSPR, the predictor variables comprise properties of
chemicals in the form of molecular descriptors. Often, a molecular
descriptor is a theoretical value derived from a symbolic
representation of the chemical structure. The response variable can be
an experimentally derived property such as retention index. Regression
procedures used in QSPR models range from simple multiple linear
correlations to non-linear models such as artificial neural networks
(ANN) and random forests (RF). The physiochemical properties
chosen for HPLC/MS based QSPR modeling might include HPLC
retention index (RI), ECOMso and drift time. Candidate compounds
whose predicted values deviate substantiaﬂy from the experimental
value are excluded from the final candidate list.

3.1 Retention Index

Chromatographic retention times are frequently used as an aid in
characterizing compounds. In HPLC, analytes dissolved in a mobile
phase are moved across a stationary phase. The relative affinity of the
analyte (via non-covalent interactions) between the mobile phase and
the stationary phase determines the amount of analyte retention. Since
non-covalent interactions between the analyte and the mobile and
stationary phases are a function of structure, even subtle changes in
structure can result in well-separated analytes. However, factors such
as small variations in the composition of the mobile phase, the pH of
the eluent and even temperature can alter the retention time, thus
making comparisons over time and between instruments difficult. To
alleviate this problem, retention indices are often used. The retention
index is a measure of the retention time relative to a homologous
series of compounds such as n-nitroalkanes [7,8,38,39]. In this
approach, retention time is converted to a retention index by
comparing the number of carbons in the standard that elutes just
before and just after the analyte. HPLC retention indices are shown to
be quite robust with a high degree of reproducibility within a single
instrument over a long period of time as well as between different
instruments [7,38—40].

QSPR models have been developed for predicting HPLC
retention times and retention indices based on molecular structure.
Moon er al. modeled HPLC retention times for a set of poly aromatic
hydrocarbon compounds using one and two descriptor multiple linear
regression (MLR) models [41]. Several molecular descriptors were
tested including molecular weight, molecular connectivity, length to
breadth ratio, highest occupied and lowest unoccupied molecular
orbital energies, volume, Connolly surface area and dipole moment
using MOPAC software package. The authors found several two
descriptor models that show a good correlation with the retention
time. The best predictive model included molecular connectivity and
dipole moment as descriptors.

Ghosh er al. developed a partial least squares based
quantitative model for predicting HPLC retention times of various
aromatic and poly aromatic hydrocarbons [42]. Forty-four aromatic
compounds containing one to three ring structures were used in the
QSPR model. Molecular descriptors were calculated using the

program CAChe. Geometry optimizations were carried out using the
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semi empirical method PM3 as implemented in program MOPAC. It
was found that both electronic and geometric descriptors play a vital
role in determining the retention time of a molecule. The most
significant molecular descriptors included ionization potential,
electron affinity, molecular weight, valence connectivity index of order
I, valence connectivity index of order 2 and number of rings. The
authors found a good agreement between the predicted and
experimental retention times with correlation coefficients of 0.905 in
the training set and 0.831 in the testing set.

Albaugh er al. reported the first retention index model suitable for
predicting HPLC retention indices of unknown compounds in
complex mixtures [39]. The authors developed two predictive models
based on MLR and ANN using a diverse set of drug-like compounds.
The dataset contained 498 compounds with structures ranging from
simple aromatic hydrocarbons to compounds containing a large
number of heteroatoms and fused ring systems. The QSPR models
were built using a novel set of descriptors called interaction groups
(IGroup). These descriptors combine atomic E-state descriptors,
which encode the electron accessibilities of individual atoms in
molecules. The IGroup descriptors can be regarded as a variation of
functional group type E-state indices that combine E-states of atoms
in similar functional groups. Several other global descriptors related to
molecular connectivity, volume and polar surface area were also used
in the models. The MLR model showed a minimally acceptable
correlation coefficient of 0.65 in the training set, 0.45 in the cross
validation set and 0.49 in the external validation set. The mean
absolute error (MAE) for the MLR model was 83.6 RI units in the
training set, 83.5 RI units in the cross validation set and 79.5 RI
units in the external validation set. The ANN model showed much
better correlation coefficients; 0.93 in the training set, 0.76 in the
cross validation set and 0.83 in the external validation set. The MAEs
were 30.3, 53.7 and 40.8 RI units for the training, cross validation
and external validation sets respectively. One limitation of retention
index predictive models is the specificity of the model to the type of
column and mobile phase used in the experiment. Therefore, a change
in mobile phase or column type will require development of a new
predictive model. The predictive model developed in the Albaugh er
al. study is not suitable for HPLC/MS as the mobile phase used is
not compatible with electrospray ionization mass spectrometry.

In a recent study, Hall er al reported an ANN based retention
index model suitable for use in HPLC/MS applications [7]. The
model was developed using 33 Molconn structure descriptors. Four
hundred endogenous and drug-like compounds were used in the
training of the neural network model. The predictive model had
correlation coefficients of 0.95 in the training set, 0.83 in the cross
validation set and 0.87 in the external validation set. The MAE for
the RI model was 19 RI units in the training set, 36 RI units in the
cross validation set and 30 RI units in the external validation set.
Ninety percent of cross validation predictions and ninety three
percent of external validation predictions were within 75 RI units of
the measured retention index. The authors were able to use the RI
model developed in this study as an aid in identifying I,3-
dicyclohexylurea in human plasma. This compound was not
previously known to exist in human biofluids and was not found in
any of the biological databases.

3.2 ECOMso

In CID mass spectrometry, an accelerated molecular ion is allowed
to collide with inert gas molecules such as argon or nitrogen. Upon
collision, some of the kinetic energy of the accelerated ion is
converted into internal energy. The absorbed energy is redistributed
throughout the molecule via molecular vibrations. When the energy
absorbed by the molecular ion exceeds a certain threshold, molecular
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vibrations cause the ion to dissociate. This suggests that the external
energy (collision energy) required to start fragmentation is a unique
property of the structure and can be used as a parameter for
identifying unknown compounds. Previous survival yield analysis
studies have shown that there exists a sigmoidal relationship between
the amount of intact precursor ion and collision energy, and that the
collision energy at which 50% of the precursor ion remains intact
(CEso) is a unique and highly reproducible quantity [43].
Furthermore, it has been shown that CEso values are independent of
cone potential and orthogonal to exact mass. A preliminary study by
Kertesz er all showed that it is possible to discriminate among similar
structural isomers using CEso [43]. The authors measured CEso values
for seven isomers (including three positional isomers) of the
molecular formula CoHulNOz. The CEso values ranged from 8.24 to
16.52 with significantly different values for three positional isomers.
In the same study, a QSPR model was developed for predicting CEso
values. The MLR based model comprised eight E-state descriptors
and showed a correlation coefficient of 0.81.

In addition to the structure of the molecular ion, the type of
collision gas used also affects the CEso. A collision gas independent
form of CEso can be obtained by using the following formula:

ECOMso = (CEs0X Myg) / (Mrg + My)

where, ECOMso is the center of mass energy at 50% survival yield
and Myand Mx are the MIMW:s of reagent gas and analyte molecular
ion respectively.

A QSPR model for predicting ECOMso would be most useful if
the measured values are comparable between different instruments. In
a recent study, Hill er al investigated the influence of physical and
electrical characteristics of different mass spectrometry instruments on
ECOMSso [44]. The ECOMso values measured on four different
instruments were highly correlated, with correlation coefficients that
ranged from 0.953 to 0.992. However, the authors suggested caution
when comparing ECOMso values (and CID spectra) measured on
different instruments without correcting for ion transfer efficiencies.
Hall er al developed several ECOMso models using MLR and partial
least squares (PLS) methods [7]. The dataset used to construct
ECOMso models comprised 52 compounds covering the mass range
from 88.2 to 607.7 Da. Separate models were developed for neutral
and singly protonated forms of the training data. Two types of
models were developed using Molconn topological descriptors and
AMPAC-CODESSA  quantum mechanical descriptors. Correlation
coefficients for the Molconn based models ranged from 0.848
(neutral structures with MLR)) to 0.931 (protonated structures with
PLS) depending on the type of algorithm chosen and whether
protonated or neutral forms were used. The MLR based AMPAC-
CODESSA models also showed a good correlation with a correlation
coefficient of 0.920 for the neutral structure model and 0.943 for the
singly protonated structure model. In general, the use of singly
protonated structures resulted in improved predictions although the
improvement was not significant for CODESSA models. The
ECOMSso models developed in this study should be considered as
preliminary models because the data set used for training lacked
certain types of chemical functional groups. Despite these limitations,
the authors were able to use the protonated structure based Molconn
PLS model to filter out 10% of compounds from a PubChem bin
leading to the identification of a previously unknown metabolite I,3-

dicyclohexylurea.

3.3 Drift Time
Ion mobility spectrometry [45,46] is a molecular shape based
separation method where compounds are separated by the time (drift
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time) a compound takes to traverse a gas-filled cell under the
influence of an external electric field. When coupled with mass
spectrometry, it allows for the separation of ions with identical m/z
values. Jon mobility-mass spectrometry (IMMS) is used as a
technique for discriminating closely related structures such as
enantiomers [47], diastereomers [48], protein conformers [49,50] and
isomeric drug metabolites [SI]. In conventional drift tube based
IMMS, the drift time is proportional to the average collisional cross
sectional area of the gas phase ion. Structure identification often
involves comparing experimentally derived cross sectional areas with
theoretically calculated cross sectional areas. However, conventional
IMMS is limited by its low ion transfer efficiency. This shortcoming
has been addressed in modern travelling wave (T-Wave) based Synapt
IMMS systems [52]. In T-Wave instruments, the drift time shows a
power-law relationship with cross sectional area due to the complex
electric field used [53]. An experimentally derived cross sectional area
comparable to that of a conventional drift tube can be obtained by
calibrating a T-wave instrument with poly alanine standards
[51,54,55].

The open source program Mobcal [56,57] is often used for
Mobcal calculates
theoretical cross sectional area by three methods: projection

theoretical cross sectional area calculations.

approximation (PA), exact hard sphere scattering approximation
(EHSS) and trajectory method (TM). The trajectory method (with
optimized parameters for a given drift gas) has shown to be the most
accurate of the three for small to medium and fairly rigid molecules
[48,51]. However, Mobcal cross sectional areas of large and flexible
molecules deviate substantially from experimental values [58]. The
errors often point to inaccuracies associated with the optimized
molecular structures. In many cases, optimizing the starting geometry
with high level theory (using high level quantum chemistry methods
with a larger basis set) or using an ensemble of starting geometries
instead of a single geometry did not improve calculated cross sectional
areas. In a recent study [8], we proposed an alternative method using
QSPR models. In this approach, molecular descriptors were used to
compensate for inaccuracies associated with the starting geometries. In
addition, descriptors provide a way to include characteristics of
flexible molecules. The RF based models developed in this study
outperformed the widely used Mobcal trajectory (with optimized
parameters for N2) method.

4. Computational Prediction of CID Spectra

Ranking candidate compounds based on CID spectra matching is
the final step of the identification process. In this step, a
matched
experimentally observed spectrum using either the number of peaks

computationally  predicted ~ spectrum s against  an
matching or a score, which may include intensity information and
bond energies in addition to matched peaks. CID prediction
algorithms can be broadly categorized into 2 groups: rule based and
combinatorial fragmentation based. Rule based algorithms use a set of
from the literature. The

decomposition reactions may include generic McLafferty type rules

known decomposition reactions

[59], a library of structure specific reactions or a combination of both.
Mass Frontier [60] and ACD/MS Fragmenter [61] are examples for
programs using rule-based methods. Some of the limitations of rule-
based methods include over prediction due to broadly generic rules,
lack of specific rules for certain types of compounds and slowness in
the library search mode. Combinatorial fragmenters such as FiD [62]
and MetFrag [63] use a simple bond disconnection approach. One
downside to this approach is not being able to account for
rearrangement products. Previous studies using both approaches have

shown both to be effective in identifying unknowns [5,7,63]. A

Volume No: 5, Issue: 6, February 2013, 201302005

Chemical Structure ldentification in Metabolomics

previous study by Hill er al identified 65 out of 102 compounds
using Mass Frontier (version 4.0) peaks matching [5]. The surrogate
unknown was found within the top 20 candidates for 87 bins. Wolf
er al. were able to achieve a slightly better result than Hill er a/ using
the same dataset, but with MetFrag [63]. Our own study [8] suggests
advantages and disadvantages of both approaches; where one might
work better than the other on a case-by-case basis.

Summary and Outlook

Database searching and filtering offers an alternative to
identifying unknowns using purified standards. In addition, it
complements authentic standards based identification techniques by
providing a short list of potential standards to experimentally
compare to the unknown. Current RI and ECOMso models allow for
the removal of 28% of compounds from PubChem bins [8]. In a
recent study, we have shown that this could be improved to as much
as 87% with more chemical structures in the QSPR models [8]. In
addition to RI and ECOMso, drift time can also be used as a potential
filter. The drift time model was shown to be quite effective for large
molecular weight bins containing compounds with more flexible
structures. Furthermore, the entire workflow can be executed in an
automated fashion using the program MolFind [8]. We expect that
filtering and identification of metabolites will be much more reliable
and efficient with improved computational models.

Acknowledgements

Funding for this work was provided by NIH grant IRO1IGM087714.

Citation

Menikarachchi LC, Hamdalla MA, Hill DW, Grant DF (2013)
Chemical Structure Identification in Metabolomics: Computational
Modeling of Experimental Features. Computational and Structural
Biotechnology Journal. 5 (6): €201302005. doi:
hetp://dx.doi.org/10.5936/csbj.201302005

References

1. Wishart DS (2011) Advances in metabolite identification.
Bioanalysis 3: 1769-1782.

2. Wishart DS (2007) Current progress in computational

metabolomics. Brief Bioinform 8: 279-293.

3. Oliver SG, Winson MK, Kell DB, Baganz F (1998) Systematic
functional analysis of the yeast genome Trends Biotechnol 16: 373
378.

4. Wishart DS, Tzur D, Knox C, Eisner R, Guo AC, et al. (2007)
HMDB: the Human Metabolome Database. Nucleic Acids Res 35:
D521-526.

5. Hill DW, Kertesz TM, Fontaine D, Friedman R, Grant DF (2008)
Mass spectral metabonomics beyond elemental formula: chemical
database querying by matching experimental with computational
fragmentation spectra. Anal Chem 80: 5574-5582.

6. Kertesz TM, Hill DW, Albaugh DR, Hall LH, Hall LM, et al.
(2009) Database searching for structural identification of metabolites
in complex biofluids for mass spectrometry-based metabonomics.
Bioanalysis 1: 1627-1643.

7. Hall LM, Hall LH, Kertesz TM, Hill DW, Sharp TR, et al. (2012)
Development of Ecom(50) and Retention Index Models for

Computational and Structural Biotechnology Journal | www.csbj.org



10.

11.
12.

13.

14.

15.

16.

17.

18

19.

20.

21.

22.

23.

24.

25.
26.

27.

Nontargeted Metabolomics: Identification of 1,3-Dicyclohexylurea
in Human Serum by HPLC/Mass Spectrometry. ] Chem Inf Model
52:1222-1237.

Menikarachchi LC, Cawley S, Hill DW, Hall LM, Hall L, et al.
(2012) MolFind: A Software Package Enabling HPLC/MS-Based
Identification of Unknown Chemical Structures. Anal Chem 84:
9388-93394.

Bolton EE, Wang Y, Thiessen PA, Bryant SH (2008) PubChem:
Integrated Platform of Small Molecules and Biological Activities.
Annual Reports in Computational Chemistry. Washington, DC:
American Chemical Society, Vol. 4. pp. 217-241.

Irwin JJ, Sterling T, Mysinger MM, Bolstad ES, Coleman RG
(2012) ZINC: A Free Tool to Discover Chemistry for Biology. ]
Chem Inf Model 52: 1757-1768.

Chemspider (2012) http://www.chemspider.com.

Knox C, Law V, Jewison T, Liu P, Ly S, et al. (2011) DrugBank 3.0:
a comprehensive resource for “omics” research on drugs. Nucleic
Acids Res 39: D1035-41.

Romero P, Wagg J, Green ML, Kaiser D, Krummenacker M, et al.
(2005) Computational prediction of human metabolic pathways
from the complete human genome. Genome Biol 6: R2.

Smith C a, O’Maille G, Want EJ, Qin C, Trauger S a, et al. (2005)
METLIN: a metabolite mass spectral database. Ther Drug Monit 27:
747-751.

Kanehisa M, Goto S (2000) KEGG: kyoto encyclopedia of genes and
genomes. Nucleic Acids Res 28: 27-30.

Chae L, Lee I, Shin J, Rhee SY (2012) Towards understanding how
molecular networks evolve in plants. Curr Opin Plant Biol 15: 177—
184.

Maggiora GM, Shanmugasundaram V (2011) Molecular similarity
measures. Methods in molecular biology (Clifton, NJ) 672: 39-100.

. Nobeli I, Ponstingl H, Krissinel EB, Thornton JM (2003) A

Structure-based Anatomy of the E.coli Metabolome ] Mol Biol 334:
697-719.

Henkel T, Brunne RM, Miiller H, Reichel F (1999) Statistical
Investigation into the Structural Complementarity of Natural
Products and Synthetic Compounds Angew Chem Int Ed 38: 643
647.

Lee M-L, Schneider G (2001) Scaffold Architecture and
Pharmacophoric Properties of Natural Products and Trade Drugs:
Application in the Design of Natural Product-Based Combinatorial
Libraries ] Comb Chem 3: 284-289.

Koch M a, Schuffenhauer A, Scheck M, Wetzel S, Casaulta M, et al.
(2005) Charting biologically relevant chemical space: a structural
classification of natural products (SCONP). Proc Natl Acad Sci U S
A 102: 17272-17277.

Ortholand J-Y, Ganesan A (2004)
combinatorial chemistry: back to the future. Curr Opin Chem Biol
8: 271-280.

Gupta S, Aires-de-Sousa J (2007) Comparing the chemical spaces of

Natural products and

metabolites and available chemicals: models of metabolite-likeness.
Mol Diversity 11: 23-36.

Irwin JJ, Shoichet BK (2005) ZINC-a free database of commercially
available compounds for virtual screening. J Chem Inf Model 45:
177-182.

Breiman L (2001) Random forests Machine Learning 45: 5-32.
Peironcely JE, Reijmers T, Coulier L, Bender A, Hankemeier T
(2011) Understanding and classifying metabolite space and
metabolite-likeness. PLoS One 6: €28966.

Rogers D, Hahn M (2010) Extended-connectivity fingerprints. J
Chem Inf Model 50: 742-754.

Volume No: 5, Issue: 6, February 2013, 201302005

28.

29.

30.

31.

32.

33.

34.

35.
36.
37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

Chemical Structure ldentification in Metabolomics

Durant J, Leland B, Henry DR, Nourse JG (2002) Reoptimization
of MDL Keys for Use in Drug Discovery ] Chem Inf Model 42:
1273-1280.

Noble WS (2006) What is a support vector machine? Nat
Biotechnol 24: 1565-1567.

Klon AE, Glick M, Davies JW (2004) Combination of a naive Bayes
classifier with consensus scoring improves enrichment of high-
throughput docking results. ] Med Chem 47: 4356-4359.
Opverington ] (2009) ChEMBL. An interview with John Overington,
team leader, chemogenomics at the European Bioinformatics
Institute Outstation of the European Molecular Biology Laboratory
(EMBL-EBI). Interview by Wendy A. Warr. ] Comput-Aided Mol
Des 23: 195-198.

James CA, Weininger D, Delany ] (2000) Fingerprints - Screening
and Similarity. Daylight Theory Manual. Irvine, CA and Santa Fe,
NM: Daylight Chemical Information Systems, Inc. pp. 30-40.
Hamdalla M, Grant D, Mandoiu I, Hill D, Rajasekaran S, et al.
(2012) The wuse of graph matching algorithms to identify
biochemical substructures in synthetic chemical compounds:
Application to metabolomics. 2012 IEEE 2nd International
Conference on Computational Advances in Bio and medical Sciences
(ICCABS). IEEE. pp. 1-6.

Rahman SA, Bashton M, Holliday GL, Schrader R, Thornton JM
(2009) Small Molecule Subgraph Detector (SMSD) toolkit. Journal
of Cheminformatics 1: 12.

Chembridge (2011) http://www.chembridge.com/.

Chemsynthesis (2011) heep://www.chemsynthesis.com/.

Leach A, Gillet V (2007) An introduction to chemoinformatics
Springer. pp. 75-97.

Hill DW, Kind AJ (1994) Reversed-Phase Solvent-Gradient HPLC
Retention Indexes of Drugs Journal of Analytical Toxicology 18 :
233-242.

Albaugh DR, Hall LM, Hill DW, Kertesz TM, Parham M, et al.
(2009) Prediction of HPLC retention index using artificial neural
networks and IGroup E-state indices. ] Chem Inf Model 49: 788—
799.

Bogusz M, Neidl-Fischer G, Aderjan R (1988) Use of Corrected
Retention Indices Based on 1-Nitroalkane and Alkyl Arylketone
Scales for HPLC Identification of Basic Drugs ] Anal Toxicol 12:
325-329.

Moon T, Whan Chi M, Ja Park S, No Yoon C (2003) Prediction of
HPLC Retention Time Using Multiple Linear Regression: Using
One and Two Descriptors ] Liq Chromatogr Relat Technol 26:
2987-3002.

Ghosh P, Chawla B, Joshi P V., Jaffe SB (2006) Prediction of
Chromatographic Retention Times for Aromatic Hydrocarbons
Energy Fuels 20: 609-619.

Kertesz TM, Hall LH, Hill DW, Grant DF (2009) CE50:
quantifying collision induced dissociation energy for small molecule
characterization and identification. ] Am Soc Mass Spectrom 20:
1759-1767.

Hill DW, Baveghems CL, Albaugh DR, Kormos TM, Lai S, et al.
(2012) Correlation of Ecom50 values between mass spectrometers:
effect of collision cell radiofrequency voltage on calculated survival
yield Rapid Commun Mass Spectrom 26: 2303-2310.

Kanu AB, Dwivedi P, Tam M, Matz L, Hill HH (2008) Ion
mobility-mass spectrometry. ] Mass Spectrom 43: 1-22.

Creaser CS, Griffiths JR, Bramwell CJ, Noreen S, Hill CA, et al.
(2004) Ion mobility spectrometry: a review. Part 1. Structural
analysis by mobility measurement The Analyst 129: 984-994.

Computational and Structural Biotechnology Journal | www.csbj.org



47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

Dwivedi P, Wu C, Matz LM, Clowers BH, Siems WF, et al. (2006)
Gas-phase chiral separations by ion mobility spectrometry. Anal
Chem 78: 8200-8206.

Campuzano I, Bush MF, Robinson C V, Beaumont C, Richardson
K, et al. (2012) Structural Characterization of Drug-like Compounds
by Ion Mobility Mass Spectrometry: Comparison of Theoretical and
Experimentally Derived Nitrogen Collision Cross Sections. Anal
Chem 84: 1026-1033.

Smith DP, Giles K, Bateman RH, Radford SE, Ashcroft AE (2007)
Monitoring copopulated conformational states during protein
folding mobility
spectrometry-mass spectrometry. ] Am Soc Mass Spectrom 18:
2180-2190.

Valentine SJ, Clemmer DE (1997) H/D Exchange Levels of Shape-
Resolved Cytochrome ¢ Conformers in the Gas Phase ] Am Chem
Soc 119: 3558-35606.

Dear GJ, Munoz-Muriedas J, Beaumont C, Roberts A, Kirk J, et al.
(2010) Sites of metabolic substitution: investigating metabolite

events using electrospray  ionization-ion

structures utilising ion mobility and molecular modelling Rapid
Commun Mass Spectrom 24: 3157-3162.

Giles K, Williams JP, Campuzano I (2011) Enhancements in
travelling wave ion mobility resolution. Rapid Communications in
Mass Spectrometry : RCM 25: 1559-1566.

Smith DP, Knapman TW, Campuzano I, Malham RW, Berryman
JT, et al. (2009) Deciphering drift time measurements from
travelling wave ion mobility spectrometry-mass spectrometry studies.
Eur ] Mass Spectrom 15: 113-130.

Williams JP, Bugarcic T, Habtemariam A, Giles K, Campuzano I, et
al. (2009) Isomer separation and gas-phase configurations of
mobility mass
spectrometry and modeling. ] Am Soc Mass Spectrom 20: 1119—
1122,

Kim HI, Kim H, Pang ES, Ryu EK, Beegle LW, et al. (2009)
Structural characterization of unsaturated phosphatidylcholines using
traveling wave ion mobility spectrometry. Anal Chem 81: 8289-
8297.

Shvartsburg A (1996) An exact hard-spheres scattering model for the
mobilities of polyatomic ions Chem Phys Lett 261: 86-91.

Mesleh MF, Hunter JM, Shvartsburg AA, Schatz GC, Jarrold MF
(1996) Structural Information from Ion Mobility Measurements:
Effects of the Long-Range Potential J Phys Chem 100: 16082-
16086.

Zakharova NL, Crawford CL, Hauck BC, Quinton JK, Seims WF,
et al. (2012) An assessment of computational methods for obtaining

organoruthenium  anticancer complexes: ion

structural information of moderately flexible biomolecules from ion
mobility spectrometry. ] Am Soc Mass Spectrom 23: 792-805.

Volume No: 5, Issue: 6, February 2013, 201302005

Chemical Structure ldentification in Metabolomics

59. McLafferty FW (1980) Unimolecular decompositions of even-

electron ions Org Mass Spectrom 15: 114-121.

60. Mass Frontier 7.0 (2012) htep://www.thermoscientific.com.
61. ACD/MS Fragmenter (2012) http://www.acdlabs.com.
62. Heinonen M, Rantanen A, Mielikiinen T, Kokkonen J, Kiuru J, et

al. (2008) FiD: a software for ab initio structural identification of
product ions from tandem mass spectrometric data Rapid Commun
Mass Spectrom 22: 3043-3052.

63. Wolf S, Schmidt S, Miiller-Hannemann M, Neumann S (2010) In

silico fragmentation for computer assisted identification of

metabolite mass spectra. BMC Bioinf 11: 148.

Keywords:
metabolomics, mass spectrometry, HPLC, QSPR, retention index, ion
mobility

Competing Interests:
The authors have declared that no competing interests exist.

© 2013 Menikarachchi et al.

Licensee: Computational and Structural Biotechnology Journal.

This is an open-access article distributed under the terms of the Creative
Commons Attribution License, which permits unrestricted use,
distribution, and reproduction in any medium, provided the original
author and source are properly cited.

What is the advantage to you of publishing in Computational and
Structural Biotechnology Journal (CSBJ) ?

Easy 5 step online submission system & online manuscript tracking
Fastest turnaround time with thorough peer review

Inclusion in scholarly databases

Low Article Processing Charges

Author Copyright

Open access, available to anyone in the world to download for free

FEEEEE

WWW.CSBJ.ORG

Computational and Structural Biotechnology Journal | www.csbj.org


http://www.csbj.org/

