
 

  

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 

 
Introduction 
 

Metabolomics focuses on the study of small molecules (usually < 
1000 Da) produced by metabolic processes within a cell. These small 
molecules, called metabolites, encompass a broad range of compounds 
composed of a variety of chemical functional groups [1,2]. The term 
“metabolome” is used to identify the collection of such small 
molecules in an organism [3]. It is estimated that a metabolome may 
comprise anywhere from 1000 – 200,000 distinct chemical 
compounds depending on the organism [1]. A typical human biofluid 
such as blood or urine may contain several hundreds to thousands of 
unique chemical compounds. For example, as of August 8, 2012, the 
human metabolome database (HMDB) [4] listed 942, 4651, and 468 
compounds in urine, blood and cerebrospinal fluid respectively. The 
separation and concurrent identification of chemical structures in such 
complex mixtures often require multiple analytical techniques. The 
most commonly used analytical techniques include nuclear magnetic 
resonance (NMR), gas chromatography/mass spectrometry 
(GC/MS) and high performance liquid chromatography/mass 
spectrometry (HPLC/MS). Positive identification of an unknown 
involves matching at least two orthogonal experimental features with 
an authentic standard. In the case of NMR, a match against 1H NMR 
and 13C NMR or a match against a 2D NMR is considered sufficient 
for identification. In GC/MS and HPLC/MS, orthogonal 
experimental features may include retention index  (RI) or  retention  

 
 
 
 
 
 

 
 

 
  

time, accurate mass, isotope abundance pattern and a collision 
induced dissociation (CID) spectrum. When analyzing complex 
mixtures containing polar compounds, HPLC/MS is generally 
preferred over GC/MS as GC often requires sample derivatization. In 
metabolomics, HPLC/MS based identification is more frequently 
used compared to NMR due to its increased sensitivity.  

Regardless of the analytical method, the structural identification 
of unknowns is severely limited by the number of commercially 
available authentic standards available to any one lab. For HPLC/MS 
methods considered in this review, an alternative approach involves 
matching experimentally determined “features” (such as RI, mass 
spectrum etc.) with computationally simulated features for a set of 
compounds downloaded from a general chemical structure database 
such as PubChem [5–7] (Fig 1). 

In this approach, a “bin” of candidate compounds matching an 
experimentally determined monoisotopic molecular weight (MIMW) 
(± mass accuracy of the instrument) is first retrieved from the 
database. If we assume that the sample is a mammalian biofluid (for 
example human urine or serum) the remaining compounds can then 
be filtered based on whether or not they contain only 6 allowed 
elements (C, H, N, O, P and S). Making the same assumption, the 
remaining compounds can then be filtered based on whether or not 
they are “biochemical” structures.  For the remaining candidates, 
experimental measurements such as RI, ECOM50 (energy required to 
decompose 50% of a selected precursor ion in a CID cell) and drift 
time are modeled using quantitative structure-property relationships 
(QSPR). Candidate compounds whose predicted features lie outside 
the range of values allowed by the QSPR models are removed from 
the bin.  For each of the remaining candidates, a simulated collision 
induced dissociation (CID) spectrum is calculated and matched 
against the experimental CID spectrum. Candidates are then ranked 
according to the number of predicted peaks matching the 
experimental peaks. All steps in the structure identification protocol 

CSBJ 

Abstract: The identification of compounds in complex mixtures remains challenging despite recent advances in analytical 
techniques. At present, no single method can detect and quantify the vast array of compounds that might be of potential interest in 
metabolomics studies. High performance liquid chromatography/mass spectrometry (HPLC/MS) is often considered the 
analytical method of choice for analysis of biofluids. The positive identification of an unknown involves matching at least two 
orthogonal HPLC/MS measurements (exact mass, retention index, drift time etc.) against an authentic standard. However, due to 
the limited availability of authentic standards, an alternative approach involves matching known and measured features of the 
unknown compound with computationally predicted features for a set of candidate compounds downloaded from a chemical 
database. Computationally predicted features include retention index, ECOM50 (energy required to decompose 50% of a selected 
precursor ion in a collision induced dissociation cell), drift time, whether the unknown compound is biological or synthetic and a 
collision induced dissociation (CID) spectrum. Computational predictions are used to filter the initial “bin” of candidate 
compounds. The final output is a ranked list of candidates that best match the known and measured features. In this mini review, 
we discuss cheminformatics methods underlying this database search-filter identification approach. 
 

 

Chemical Structure Identification in Metabolomics: Computational 

Modeling of Experimental Features 

Lochana C. Menikarachchi a, Mai A. Hamdalla b, Dennis W. Hill a and David F. Grant a,* 

Volume No: 5, Issue: 6, February 2013, e201302005, http://dx.doi.org/10.5936/csbj.201302005 
 

 

aDepartment of Pharmaceutical Sciences, University of Connecticut, 69 N 

Eagleville Rd, Storrs, CT 06269, United States 
bDepartment of Computer Science & Engineering, University of Connecticut, 

371 Fairfield Road, Unit 2155 Storrs, CT 06269, United States 

 
* Corresponding author. Tel.: +1 8604864265; Fax: +1 8604865792 

E-mail address: david.grant@uconn.edu (David F. Grant) 

1 

 



described above can be performed with the free java based software 
package MolFind [8]. In the discussion that follows, each step of the 
aforementioned protocol will be discussed in detail. Topics are 
arranged according to the numbered steps in figure 1. 

 

 
 
 
 

 

Database structure identification involves downloading a “bin” of 
potential candidate structures matching a MIMW (± mass accuracy 
of the instrument) from an online chemical structure database. 
Databases range from general chemical structure databases such as 
PubChem [9], ZINC [10] or ChemSpider [11] to specialized 
databases such as HMDB [4], DrugBank [12], or HumanCyc [13]. A 
list of freely accessible small molecule databases useful in 
metabolomics research is presented in Table 1. 

A typical MIMW (± 10 ppm) search in PubChem may yield 
several thousand chemical structures, whereas the same search in 
HMDB often results in less than a dozen.  Both types of databases 
have advantages and disadvantages. Querying a focused small database 
such as HMDB makes identification relatively trivial if the 
“unknown” happens to be among the candidates. However, this 
approach cannot be used to identify previously unknown metabolites. 
On the other hand, searching a large chemical database such as 
PubChem greatly improves the odds of finding the unknown 
compound in the database. On the downside, the excessive number of 
potential candidates in PubChem may lead to a large number of false 
positives making the identification of the correct “unknown” 
extremely difficult. However, by applying carefully configured 
curation steps, the candidate list from a large database may be 
shortened substantially. Initial curation steps may include removing 
disconnected structures, eliminating charged species, clustering 

stereoisomers and eliminating compounds containing elements other 
than C, H, N, O, P and S. These curation steps alone can eliminate 
anywhere from 40% to 90% of candidates from the initial bin of 
structures matching the MIMW of the unknown.  

 
Special Purpose Databases  

Biofluids often contain compounds that are not endogenous 
metabolites. Examples include drugs, drug metabolites, plant 
compounds and other compounds found in food. Specialized 
databases may be used as prescreens to exclude or identify such 
compounds. For example, a database containing all known drugs and 
their metabolites can exclude compounds coming from drugs. Also, 
existing databases containing plant metabolites (KEGG, PMN and 
others), food metabolites (HMDB) or bacterial metabolites can be 
screened. 

 

 

Although it is trivial to eliminate candidate compounds using the 
6 element filter described above (C, H, N, O, P and S) if the source 
of the sample is a mammalian biofluid, many synthetic compounds 
also contain only these 6 elements. Thus, it would be helpful to be 
able to determine whether a database derived candidate satisfying the 
6 element filter was biochemical (and thus retained) or synthetic (and 
thus eliminated) based solely on its structure. Structurally similar 
molecules tend to have similar properties and similar molecules exert 
similar biological activities [17]. Using two-dimensional (2D) 
molecular structures of 745 E. coli metabolites and a variety of 
chemoinformatics tools, Nobeli et al. [18] reported the first attempt 
to examine the metabolome of an organism on the basis of molecular 
structure information. Structures were analyzed and clustered 
according to fingerprints (fragments describing physiochemical 

Figure 1. Filtering database candidates using simulated experimental data. 
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properties). Graph-matching algorithms for finding common 
substructures were employed. The authors visually examined and 
derived a library of 57 substructures of known metabolites, acting as 
scaffolds, to provide a high coverage of the metabolome. Those 
fragments were used to analyze the molecular composition of 
metabolites. Preliminary efforts of correlating the similarities between 
metabolites with protein structures as well as with metabolic pathways 
were reported. It was observed that most of the E. coli metabolites 
were hydrophilic and had molecular weights between 100 and 300 
Da. 

Several studies investigated statistical methods distinguishing the 
molecular structures of natural products, synthetic products and drugs 
[19–22]. Gupta and Aires-de-Sousa [23] carried out a comparative 
study of the chemical space occupied by metabolites versus the 
chemical space occupied by a diverse set of commercially available 
synthetic compounds. The KEGG/LIGAND database (including 
metabolites from different species as well as xenobiotics) was used to 
define the biochemical space of metabolites. The average molecular 
weight of this set of compounds was 311 ± 267 Da with a maximum 
molecular weight of 2,250 Da.  The chemical space of non-
metabolites was represented by a random set of commercially available 
compounds in the mass range 17 – 1,006 Da (average 374 ± 95 Da) 
from the ZINC [24] chemical database. Both chemical spaces were 
compared based on 2D and3D structures and descriptors of global 
properties. It was observed that the overlap between metabolites and 
non-metabolites was least in the space defined by the global 
descriptors. It was found that the most discriminatory features were 
the molecular weight, the presence of aromatic systems, and the 
number of OH groups. Using a random forest (RF) [25] classifier 
and global molecular descriptors they were able to correctly identify 
95% of the 1,811 KEGG compounds used for training the model. 

Peironcely et al. [26] extended Gupta and Aires-de-Sousa’s work 
by using molecules in HMDB to represent endogenous human 
metabolites and used an updated collection of compounds from 
ZINC as non-biological structures. They used different molecular 
descriptors, such as ECFP_4 [27] and MDL public keys [28], as well 
as classifiers such as support vector machines [29], RF and naïve 
bayes [30], to evaluate the reliability of distinguishing metabolites 
from non-metabolites. They showed that using MDL public keys and 
RF resulted in the best accuracy for their classifier. The authors 
reported that 96% of 457 HMDB compounds, 54% of 6,532 
DrugBank compounds and 22% of 6,312 compounds from 
ChEMBL [31] were classified as biological. 

Both Gupta and Aires-de-Sousa and Peironcely et al. employed 
fingerprints [32] for classification. Finding common substructures has 
the potential to describe structural similarity more accurately than 
fingerprint-based methods but it is much slower [18]. With the 
current advances in technology such as threading and the use of 
multiple cores this is no longer a significant limitation.  

Recently, Hamdalla et al. [33] developed a cheminformatics tool 
that utilizes the molecular structures of known human metabolites to 
identify potential unknowns from a list of candidate structures. It uses 
a graph matching tool (SMSD [34]) and a curated set of 1,400 
endogenous human metabolites from KEGG (scaffolds) to guide its 
classification process. This process is based on a scoring scheme that 
combines all matches of scaffolds to substructures of a candidate 
compound as well as matches of the candidate compound to 
substructures of the scaffolds. Preliminary results using leave-one-out 
cross validation experiments showed that 96% of 1,400 KEGG 
endogenous human metabolites were scored as biological. However, 
when a set of synthetic chemical compounds obtained from 
Chembridge [35] and Chemsynthesis [36] databases were examined, 
46% of 5,320 structures were predicted to be biological. Hence, this 

approach allows the user to search large chemical databases, but 
removes a significant number of synthetic chemical compounds from 
the final candidate list.  

 

Quantitative structure property relationship (QSPR) based 
models can be used to predict physiochemical properties of 
compounds in databases. QSPR models relate measurements of a set 
of predictor variables to a response variable via a regression procedure 
[37]. In QSPR, the predictor variables comprise properties of 
chemicals in the form of molecular descriptors. Often, a molecular 
descriptor is a theoretical value derived from a symbolic 
representation of the chemical structure. The response variable can be 
an experimentally derived property such as retention index. Regression 
procedures used in QSPR models range from simple multiple linear 
correlations to non-linear models such as artificial neural networks 
(ANN) and random forests (RF). The physiochemical properties 
chosen for HPLC/MS based QSPR modeling might include HPLC 
retention index (RI), ECOM50 and drift time. Candidate compounds 
whose predicted values deviate substantially from the experimental 
value are excluded from the final candidate list.  

 
3.1 Retention Index 

Chromatographic retention times are frequently used as an aid in 
characterizing compounds. In HPLC, analytes dissolved in a mobile 
phase are moved across a stationary phase. The relative affinity of the 
analyte (via non-covalent interactions) between the mobile phase and 
the stationary phase determines the amount of analyte retention. Since 
non-covalent interactions between the analyte and the mobile and 
stationary phases are a function of structure, even subtle changes in 
structure can result in well-separated analytes. However, factors such 
as small variations in the composition of the mobile phase, the pH of 
the eluent and even temperature can alter the retention time, thus 
making comparisons over time and between instruments difficult. To 
alleviate this problem, retention indices are often used. The retention 
index is a measure of the retention time relative to a homologous 
series of compounds such as n-nitroalkanes [7,8,38,39]. In this 
approach, retention time is converted to a retention index by 
comparing the number of carbons in the standard that elutes just 
before and just after the analyte. HPLC retention indices are shown to 
be quite robust with a high degree of reproducibility within a single 
instrument over a long period of time as well as between different 
instruments [7,38–40].  

QSPR models have been developed for predicting HPLC 
retention times and retention indices based on molecular structure. 
Moon et al. modeled HPLC retention times for a set of poly aromatic 
hydrocarbon compounds using one and two descriptor multiple linear 
regression (MLR) models [41]. Several molecular descriptors were 
tested including molecular weight, molecular connectivity, length to 
breadth ratio, highest occupied and lowest unoccupied molecular 
orbital energies, volume, Connolly surface area and dipole moment 
using MOPAC software package. The authors found several two 
descriptor models that show a good correlation with the retention 
time. The best predictive model included molecular connectivity and 
dipole moment as descriptors.  

 Ghosh et al. developed a partial least squares based 
quantitative model for predicting HPLC retention times of various 
aromatic and poly aromatic hydrocarbons [42]. Forty-four aromatic 
compounds containing one to three ring structures were used in the 
QSPR model. Molecular descriptors were calculated using the 
program CAChe. Geometry optimizations were carried out using the 
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semi empirical method PM3 as implemented in program MOPAC. It 
was found that both electronic and geometric descriptors play a vital 
role in determining the retention time of a molecule. The most 
significant molecular descriptors included ionization potential, 
electron affinity, molecular weight, valence connectivity index of order 
1, valence connectivity index of order 2 and number of rings. The 
authors found a good agreement between the predicted and 
experimental retention times with correlation coefficients of 0.905 in 
the training set and 0.831 in the testing set. 

Albaugh et al. reported the first retention index model suitable for 
predicting HPLC retention indices of unknown compounds in 
complex mixtures [39]. The authors developed two predictive models 
based on MLR and ANN using a diverse set of drug-like compounds. 
The dataset contained 498 compounds with structures ranging from 
simple aromatic hydrocarbons to compounds containing a large 
number of heteroatoms and fused ring systems. The QSPR models 
were built using a novel set of descriptors called interaction groups 
(IGroup). These descriptors combine atomic E-state descriptors, 
which encode the electron accessibilities of individual atoms in 
molecules. The IGroup descriptors can be regarded as a variation of 
functional group type E-state indices that combine E-states of atoms 
in similar functional groups. Several other global descriptors related to 
molecular connectivity, volume and polar surface area were also used 
in the models. The MLR model showed a minimally acceptable 
correlation coefficient of 0.65 in the training set, 0.45 in the cross 
validation set and 0.49 in the external validation set. The mean 
absolute error (MAE) for the MLR model was 83.6 RI units in the 
training set, 83.5 RI units in the cross validation set and 79.5 RI 
units in the external validation set. The ANN model showed much 
better correlation coefficients; 0.93 in the training set, 0.76 in the 
cross validation set and 0.83 in the external validation set. The MAEs 
were 30.3, 53.7 and 40.8 RI units for the training, cross validation 
and external validation sets respectively. One limitation of retention 
index predictive models is the specificity of the model to the type of 
column and mobile phase used in the experiment. Therefore, a change 
in mobile phase or column type will require development of a new 
predictive model. The predictive model developed in the Albaugh et 
al. study is not suitable for HPLC/MS as the mobile phase used is 
not compatible with electrospray ionization mass spectrometry. 

In a recent study, Hall et al. reported an ANN based retention 
index model suitable for use in HPLC/MS applications [7]. The 
model was developed using 33 Molconn structure descriptors. Four 
hundred endogenous and drug-like compounds were used in the 
training of the neural network model. The predictive model had 
correlation coefficients of 0.95 in the training set, 0.83 in the cross 
validation set and 0.87 in the external validation set. The MAE for 
the RI model was 19 RI units in the training set, 36 RI units in the 
cross validation set and 30 RI units in the external validation set. 
Ninety percent of cross validation predictions and ninety three 
percent of external validation predictions were within 75 RI units of 
the measured retention index. The authors were able to use the RI 
model developed in this study as an aid in identifying 1,3-
dicyclohexylurea in human plasma. This compound was not 
previously known to exist in human biofluids and was not found in 
any of the biological databases.  
 
3.2 ECOM50 

In CID mass spectrometry, an accelerated molecular ion is allowed 
to collide with inert gas molecules such as argon or nitrogen. Upon 
collision, some of the kinetic energy of the accelerated ion is 
converted into internal energy. The absorbed energy is redistributed 
throughout the molecule via molecular vibrations. When the energy 
absorbed by the molecular ion exceeds a certain threshold, molecular 

vibrations cause the ion to dissociate. This suggests that the external 
energy (collision energy) required to start fragmentation is a unique 
property of the structure and can be used as a parameter for 
identifying unknown compounds. Previous survival yield analysis 
studies have shown that there exists a sigmoidal relationship between 
the amount of intact precursor ion and collision energy, and that the 
collision energy at which 50% of the precursor ion remains intact 
(CE50) is a unique and highly reproducible quantity [43]. 
Furthermore, it has been shown that CE50 values are independent of 
cone potential and orthogonal to exact mass. A preliminary study by 
Kertesz et al. showed that it is possible to discriminate among similar 
structural isomers using CE50 [43]. The authors measured CE50 values 
for seven isomers (including three positional isomers) of the 
molecular formula C9H11NO2.  The CE50 values ranged from 8.24 to 
16.52 with significantly different values for three positional isomers. 
In the same study, a QSPR model was developed for predicting CE50 
values. The MLR based model comprised eight E-state descriptors 
and showed a correlation coefficient of 0.81. 

In addition to the structure of the molecular ion, the type of 
collision gas used also affects the CE50. A collision gas independent 
form of CE50 can be obtained by using the following formula: 

 

ECOM50 = (CE50 x Mrg) / (Mrg + Mx) 
 

where, ECOM50 is the center of mass energy at 50% survival yield 
and  Mrg and Mx are the MIMWs of reagent gas and analyte molecular 
ion respectively.  

A QSPR model for predicting ECOM50 would be most useful if 
the measured values are comparable between different instruments. In 
a recent study, Hill et al. investigated the influence of physical and 
electrical characteristics of different mass spectrometry instruments on 
ECOM50 [44]. The ECOM50 values measured on four different 
instruments were highly correlated, with correlation coefficients that 
ranged from 0.953 to 0.992. However, the authors suggested caution 
when comparing ECOM50 values (and CID spectra) measured on 
different instruments without correcting for ion transfer efficiencies. 
Hall et al. developed several ECOM50 models using MLR and partial 
least squares (PLS) methods [7]. The dataset used to construct 
ECOM50 models comprised 52 compounds covering the mass range 
from 88.2 to 607.7 Da. Separate models were developed for neutral 
and singly protonated forms of the training data. Two types of 
models were developed using Molconn topological descriptors and 
AMPAC-CODESSA quantum mechanical descriptors. Correlation 
coefficients for the Molconn based models ranged from 0.848 
(neutral structures with MLR) to 0.931 (protonated structures with 
PLS) depending on the type of algorithm chosen and whether 
protonated or neutral forms were used. The MLR based AMPAC-
CODESSA models also showed a good correlation with a correlation 
coefficient of 0.920 for the neutral structure model and 0.943 for the 
singly protonated structure model. In general, the use of singly 
protonated structures resulted in improved predictions although the 
improvement was not significant for CODESSA models. The 
ECOM50 models developed in this study should be considered as 
preliminary models because the data set used for training lacked 
certain types of chemical functional groups. Despite these limitations, 
the authors were able to use the protonated structure based Molconn 
PLS model to filter out 10% of compounds from a PubChem bin 
leading to the identification of a previously unknown metabolite 1,3-
dicyclohexylurea.   
 
3.3 Drift Time 

Ion mobility spectrometry [45,46] is a molecular shape based 
separation method where compounds are separated by the time (drift 
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time) a compound takes to traverse a gas-filled cell under the 
influence of an external electric field. When coupled with mass 
spectrometry, it allows for the separation of ions with identical m/z 
values. Ion mobility-mass spectrometry (IMMS) is used as a 
technique for discriminating closely related structures such as 
enantiomers [47], diastereomers [48], protein conformers [49,50] and 
isomeric drug metabolites [51]. In conventional drift tube based 
IMMS, the drift time is proportional to the average collisional cross 
sectional area of the gas phase ion. Structure identification often 
involves comparing experimentally derived cross sectional areas with 
theoretically calculated cross sectional areas. However, conventional 
IMMS is limited by its low ion transfer efficiency. This shortcoming 
has been addressed in modern travelling wave (T-Wave) based Synapt 
IMMS systems [52]. In T-Wave instruments, the drift time shows a 
power-law relationship with cross sectional area due to the complex 
electric field used [53]. An experimentally derived cross sectional area 
comparable to that of a conventional drift tube can be obtained by 
calibrating a T-wave instrument with poly alanine standards 
[51,54,55].  

The open source program Mobcal [56,57] is often used for 
theoretical cross sectional area calculations. Mobcal calculates 
theoretical cross sectional area by three methods: projection 
approximation (PA), exact hard sphere scattering approximation 
(EHSS) and trajectory method (TM). The trajectory method (with 
optimized parameters for a given drift gas) has shown to be the most 
accurate of the three for small to medium and fairly rigid molecules 
[48,51]. However, Mobcal cross sectional areas of large and flexible 
molecules deviate substantially from experimental values [58]. The 
errors often point to inaccuracies associated with the optimized 
molecular structures. In many cases, optimizing the starting geometry 
with high level theory (using high level quantum chemistry methods 
with a larger basis set) or using an ensemble of starting geometries 
instead of a single geometry did not improve calculated cross sectional 
areas. In a recent study [8], we proposed an alternative method using 
QSPR models. In this approach, molecular descriptors were used to 
compensate for inaccuracies associated with the starting geometries. In 
addition, descriptors provide a way to include characteristics of 
flexible molecules. The RF based models developed in this study 
outperformed the widely used Mobcal trajectory (with optimized 
parameters for N2) method. 

 

Ranking candidate compounds based on CID spectra matching is 
the final step of the identification process. In this step, a 
computationally predicted spectrum is matched against an 
experimentally observed spectrum using either the number of peaks 
matching or a score, which may include intensity information and 
bond energies in addition to matched peaks. CID prediction 
algorithms can be broadly categorized into 2 groups: rule based and 
combinatorial fragmentation based. Rule based algorithms use a set of 
known decomposition reactions from the literature. The 
decomposition reactions may include generic McLafferty type rules 
[59], a library of structure specific reactions or a combination of both. 
Mass Frontier [60] and ACD/MS Fragmenter [61] are examples for 
programs using rule-based methods. Some of the limitations of rule-
based methods include over prediction due to broadly generic rules, 
lack of specific rules for certain types of compounds and slowness in 
the library search mode. Combinatorial fragmenters such as FiD [62] 
and MetFrag [63] use a simple bond disconnection approach. One 
downside to this approach is not being able to account for 
rearrangement products. Previous studies using both approaches have 
shown both to be effective in identifying unknowns [5,7,63]. A 

previous study by Hill et al. identified 65 out of 102 compounds 
using Mass Frontier (version 4.0) peaks matching [5]. The surrogate 
unknown was found within the top 20 candidates for 87 bins. Wolf 
et al. were able to achieve a slightly better result than Hill et al. using 
the same dataset, but with MetFrag [63]. Our own study [8] suggests 
advantages and disadvantages of both approaches; where one might 
work better than the other on a case-by-case basis. 

 
Summary and Outlook  
 

Database searching and filtering offers an alternative to 
identifying unknowns using purified standards. In addition, it 
complements authentic standards based identification techniques by 
providing a short list of potential standards to experimentally 
compare to the unknown. Current RI and ECOM50 models allow for 
the removal of 28% of compounds from PubChem bins [8]. In a 
recent study, we have shown that this could be improved to as much 
as 87% with more chemical structures in the QSPR models [8]. In 
addition to RI and ECOM50, drift time can also be used as a potential 
filter. The drift time model was shown to be quite effective for large 
molecular weight bins containing compounds with more flexible 
structures. Furthermore, the entire workflow can be executed in an 
automated fashion using the program MolFind [8]. We expect that 
filtering and identification of metabolites will be much more reliable 
and efficient with improved computational models.  
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