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Abstract

Plants produce a wide range of secondary metabolites that play important roles in plant

defense and immunity, their interaction with the environment and symbiotic associa-

tions. Sulfur-containing compounds (SCCs) are a group of important secondary metabo-

lites produced in members of the Brassicales order. SCCs constitute various groups of

phytochemicals, but not much is known about them. Findings from previous studies on

SCCs were scattered in published literatures, hence SuCComBase was developed to store

all molecular information related to the biosynthesis of SCCs. Information that includes

genes, proteins and compounds that are involved in the SCC biosynthetic pathway

was manually identified from databases and published scientific literatures. Sets of

co-expression data was analyzed to search for other possible (previously unknown)

genes that might be involved in the biosynthesis of SCC. These genes were named as

potential SCC-related encoding genes. A total of 147 known and 92 putative Arabidopsis

thaliana SCC-related genes from literatures were used to identify other potential SCC-

related encoding genes. We identified 778 potential SCC-related encoding genes, 4026

homologs to the SCC-related encoding genes and 116 SCCs as shown on SuCComBase

homepage. Data entries are searchable from the Main page, Search, Browse and Datasets

tabs. Users can easily download all data stored in SuCComBase. All publications related

to SCCs are also indexed in SuCComBase, which is currently the first and only database

dedicated to plant SCCs. SuCComBase aims to become a manually curated and au fait

knowledge-based repository for plant SCCs.
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Introduction

Secondary metabolites are metabolites synthesized by living
cells that are not directly involved in cellular metabolism of
organisms such as growth, development and reproduction
(1, 2). In plants, secondary metabolites act as chemical
defense against plant pests and pathogens. Many exper-
imental findings revealed various important functions of
secondary metabolites indicating their role and importance
in defense response against pathogens (1, 3–6). Apart from
being toxic or repellant to herbivores or pests and microbes,
they also regulate beneficial interactions such as attracting
pollinators or seed dispersal and modulation of abiotic
stress responses (7–9).

Different characteristic plant species–specific mix of
these chemicals can be used as taxonomic identifier in plant
classification (10, 11). Secondary metabolites are extremely
diverse and usually belong to one of the three major classes,
namely terpenes, phenolics and alkaloids (5, 12). However,
there is one unusual plant constituent that was found
to be highly involved in plant defense system known as
sulfur-containing compounds (SCCs) (11). SCCs are very
important in plant–pest interaction in various types of
plant families comprising species-specific defense chemicals
such as camalexin in Brassicaceae, glucosinolates (GSLs) in
Brassicales, alline in Alliaceae, thiopene in Asteraceae and
defensins in other plant families (13).

Currently, there are almost 200 SCCs found in Brassi-
caceae (11, 14). Camalexin for example, is a major phy-
toalexin SCC found in Arabidopsis thaliana that plays
an important role in deterring pathogens such as Botrytis
cinera (15) and Alternaria brassicicola (16). Research on

SCCs has contributed to new knowledge on their impor-
tant biological induction: for example, antioxidant activ-
ity, chemoprevention effects and apoptosis (17). However,
among known SCCs, only GSLs and isothiocyanates have
become popular research subjects due to their anticancer

activities (18–22). Isothiocyanates in cruciferous vegeta-
bles were shown to induce glutathione S-transferase and
NAD(P)H:quinone oxidoreductase 1 that act as cell pro-
tectants by detoxifying against potential carcinogens and

oxidants (23), which explain their effect in reducing the risk
of bladder cancer in individuals who consume loads of these

vegetables (24, 25). Besides, they also have broad antibi-
otics properties such as antimicrobial, nematocidal, antifun-
gal and antiprotozoal (26, 27). Furthermore, sulforaphane

is one of the most studied isothiocyanates in numerous
animal studies [e.g. samples taken from lung (28), colon
(29), breast (30), skin (31), stomach (32), small intestine
(33) prostate (34), pancreas (35) and oral cells (36)]. The

findings reported the ability of sulforaphane to inhibit the
carcinogenic cells at either in the early or late stages of

malignant tissues. Meanwhile, GSLs are potential putative
repellents and attractants of diamondback moth (DBM),
Plutella xylostella L., which is a widespread destructive
pest on Brassicales crops (37, 38). A number of studies
revealed the contribution of different GSL profiles toward
the behavior of DBM feeding that serve as novel findings in
plant–herbivore interactions (39–41).

Information regarding SCCs genes, proteins and com-
pounds that are involved in SCC biosynthetic pathway
is abundant due to their potential contribution in phar-
maceutical and agricultural industries. The availability of
co-expression studies has significantly contributed to the
search of new or potential SCC-related encoding genes.
However, this information was distributed in various litera-
ture and biological databases, causing difficulties in finding
all genes and molecular information of SCCs. This limita-
tion has prompted the need to develop a digital repository
that provides a platform for easy access of comprehensive
information on SCCs, hence the development of a manu-
ally curated database called SuCComBase. The collective
data in this database aims to provide valuable resources
for genomic studies on potential SCC-related genes that
might be involved in the SCC biosynthetic pathway. Herein,
the development and current status of SuCComBase were
described with the web interface systematically elaborated.
SuCComBase is accessible at http://plant-scc.org (SuCCom-
Base ver1.2, last updated on 4 January 2019).

Materials and methods

Data collection

Extensive bibliomic (all related publications published
between early 2001 and 2017) and database searching
from publication and biological databases were carried
out to identify all genes responsible in encoding the SCCs
related proteins in A. thaliana. Known SCC-related genes
and compounds were identified using various keywords
such as ‘sulfur containing compounds’, ‘sulfur containing
secondary metabolites’, ‘sulphur containing compounds’,
‘sulphur containing secondary metabolites’, ‘glucosinolate’,
‘phytoalexin’, ‘camalexin’ and ‘Brassicaceae’, ‘Arabidopsis
thaliana’, ‘Brassica rapa’, ‘cabbage’, ‘Brassica oleracea’,
‘broccoli’, ‘Carica papaya’ and ‘papaya’. These keywords
were searched in publication databases such as PubMed,
ScienceDirect and Scopus and biological databases, e.g.
AraCyc v8.0 (42), KEGG v88.2 (43), KNApSAcK (last
updated on 29 June 2018) (44) and PubChem v1.6.2
beta (45). Putative SCC-related genes were also identified
using the keyword search in AraCyc and KEGG; however,
no experimental evidence can be found to support their
contribution in SCC biosynthesis.

http://plant-scc.org
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Figure 1. SuCComBase schema contains 12 tables with the connections from table to table.

Functional annotation

Genes identified from database searching were manually
curated using all relevant information obtained from var-
ious databases such as NCBI Gene (last updated 4 Decem-
ber 2018) (46), UniProt (last updated 5 December 2018)
(47), AraCyc (42), KEGG (43), Ensembl Plants v41 (48),
KNApSAcK (44) and PubChem (45). Three co-expression
databases, i.e. ATTED v9 (49), AraNet v2 (50) and Gene-
MANIA (last updated on 14 March 2017) (51), were used
to identify potential SCC-related encoding genes. The pro-
tein sequence of known SCC encoding genes of A. thaliana
were retrieved from Phytozome v12.1.6, which is a Plant
Comparative Genomics Portal containing 93 plant genomes
(52). SCC homologs were identified via BLAST (53) against
B. rapa, B. oleracea and C. papaya in Phytozome database
using the known SCC protein sequences as queries. Gene
Ontology Consortium (last updated on 26 October 2018)
(54) was used to identify gene ontology (GO) in known
SCC-related genes, potential SCC-related genes and puta-
tive SCC-related genes to provide a clearer understanding
of SCC biosynthesis in A. thaliana.

Database organization and architecture

SuCComBase consisted of 12 linked tables (Figure 1) with
information on the SCC encoding genes and compounds,
their functional information and references. MySQL Server
5.0.11 was used to host SuCComBase relational database.
The SuCComBase web interfaces were developed using Lar-
avel 5.3.31 (PHP web framework), HTML and JavaScript.

Results and Discussion

Database summary

Figure 2 shows the organization of data types whereby
SCC-related genes in A. thaliana are assigned as the main
data in SuCComBase. A total of 147 known SCC-related
genes were manually curated and supported with added
information obtained from KEGG and AraCyc. We have
identified 92 computationally predicted genes that might
be involved in the production of SCCs and classified
them as putative SCC-related genes. The known SCC-
related genes were used as queries in identifying potential
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Figure 2. SuCComBase data types structure organization. These data types are tables that can be found in ‘Browse’ and ‘Datasets’ menu.

Figure 3. Identification of 92 putative A. thaliana SCC-related genes, 778 potential A. thaliana SCC-related genes and 4026 SCC homologs using 147

known A. thaliana SCC-related genes as queries.

SCC-related genes from the co-expression data, and 778
potential SCC-related genes were successfully identified
from three co-expression databases: e.g. ATTED (49),

AraNet (50) and GeneMANIA (51). BLAST analysis
against Phytozome database has identified 4026 SCC
homologs from three Brassicales plant genomes, i.e. 1970
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Figure 4. Detailed overview on the approaches used to identify and annotate GO terms to each SCC-related genes entry. Known, potential and

putative A. thaliana SCC-related genes were used to search for the GO annotation information.
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Table 1. Number of entries in SuCComBase

Data set Entries

Known A. thaliana SCC-related genes 147
Putative A. thaliana SCC-related genes 92

KEGG putative A. thaliana SCC-related genes 3
AraCyc putative A. thaliana SCC-related genes 89

Potential A. thaliana SCC-related genes 778
SCC homologs 4026

B. rapa SCC homologs 1970
B. oleracea SCC homologs 1319
C. papaya SCC homologs 737

Compounds 116
A. thaliana SCCs 47
B. rapa SCCs 28
B. oleracea SCCs 40
C. papaya SCCs 1

Publications 206

SCC homologs in B. rapa, 1319 SCC homologs in B.
oleracea and 737 SCC homologs in C. papaya. Figure 3
summarizes the steps involved in identifying putative A.

thaliana SCC-related genes, potential A. thaliana SCC-
related genes and the SCC homologs. Furthermore, we have
included GO terms of the SCC-related genes where a total
of 800 biological process, 656 molecular functions and
119 cellular components were included in this database.
Figure 4 shows the steps performed in identifying the GO
terms and the results obtained from the analysis. We have
also identified 116 SCCs in A. thaliana, B. rapa, B. oleracea
and C. papaya and included them in SuCComBase. Table 1
shows the summary of each data set in SuCComBase.

Database interface and access

The interface of SuCComBase contains a homepage and
seven main menus, i.e. About, Browse, Search, Datasets,
Download, Help and Contact. These menus are used to
facilitate the users in navigating the pages effortlessly.

(i) SuCComBase Homepage displays data statistics in
each table and provides a brief overview of this
database.

(ii) The background of SuCComBase can be viewed in
the ‘About’ page.

Figure 5. The integration of three co-expression gene networks reveals potential SCC-related genes. Different colors refer to the function of known

SCC-related genes in GSL biosynthesis: yellow (transcription factor), blue (core structure synthesis), green (side-chain elongation), purple (side-

chain modification) and red (GSL degradation). Known SCC-related genes were used as query to identify the co-expressed genes to be classified as

potential SCC-related genes.



Database, Vol. 2019, Article ID baz021 Page 7 of 9

(iii) The ‘Browse’ page allows users to assess all six
data sets in SuCComBase. Each data set varied
based on their biological information as described
below:

(a) Known A. thaliana SCC-related gene data set:
contains SCC-related encoding genes in A.
thaliana including protein-encoding genes that
involve in the GSL and camalexin biosynthetic
pathways based on experiments reported in
various publications and pathway databases
(KEGG and AraCyc).

(b) Putative A. thaliana SCC-related gene data
set: contains computationally predicted GSL
and camalexin genes from KEGG and AraCyc
databases.

(c) Potential A. thaliana SCC-related gene data set:
contains 778 A. thaliana genes that might be
involved in the SCC biosynthetic pathway based
on the bioinformatic analysis using co-expression
data retrieved from AraNet, GeneMANIA and
ATTED. Figure 5 shows an example of the net-
work constructed between the potential SCC-
related encoding genes.

(d) SCC homolog data set: contains SCC homologs
in C. papaya, B. rapa and B. oleracea.

(e) Compound data set: contains SCCs produced in
A. thaliana, C. papaya, B. rapa and B. oleracea.
All information was obtained from extensive lit-
erature search and from KNApSAcK as well as
PubChem databases.

(f) Publication data set: contains 206 published arti-
cles that were used in identifying SCCs and all
SCC-related encoding genes.

(iv) The ‘Search’ page is used to search for genes, com-
pounds or any biological term that match to a par-
ticular keyword. For example, if ‘sulfur’ keyword is
searched, all entries (Genes, Putative genes, Potential
genes, SCC homologs, Compounds, Publications) in
SuCComBase that contain ‘sulfur’ will appear.

(v) The ‘Datasets’ dropdown menu provides links to all
data sets in SuCComBase. These Dataset tabs are
located at the header of SuCComBase to help users
navigate the database.

(vi) The ‘Download’ page provides access to current and
archived data sources in SuCComBase.

(vii) The ‘Help’ menu contains manual of SuCComBase,
database schema, data sources and all references
used to retrieve the information in SuCComBase. All
scientific terms, definition and FAQs that are related
to SuCComBase were also provided in the ‘Help’
page.

(viii) The ‘Contact’ menu provides information on the
SuCComBase developer contacts and email address.

Conclusion and future work

SuCComBase is publicly available online at http://plant-scc.
org and will be periodically updated. Currently, SuCCom-
Base is the first and only database that provides the infor-
mation on SCCs that are related to plant defense system
in Brassicales. All information provided in this database is
important to plant scientists, synthetic biologists, systems
biologists, chemists or anyone who are interested working
on the secondary metabolites or potential compounds, as
well as those who study plant–host interactions specifically
in Brassicales crops, hence continuous comprehensive cata-
loguing and curation is a priority.
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