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ABSTRACT Healthcare-associated infections (HAIs) cause mortality, morbidity, and
waste of health care resources. HAIs are also an important driver of antimicrobial re-
sistance, which is increasing around the world. Beginning in November 2016, we
instituted an initiative to detect outbreaks of HAIs using prospective whole-genome
sequencing-based surveillance of bacterial pathogens collected from hospitalized
patients. Here, we describe the diversity of bacteria sampled from hospitalized
patients at a single center, as revealed through systematic analysis of bacterial iso-
late genomes. We sequenced the genomes of 3,004 bacterial isolates from hospital-
ized patients collected over a 25-month period. We identified bacteria belonging to
97 distinct species, which were distributed among 14 groups of related species.
Within these groups, isolates could be distinguished from one another by both aver-
age nucleotide identity (ANI) and principal-component analysis of accessory genes
(PCA-A). Core genome genetic distances and rates of evolution varied among spe-
cies, which has practical implications for defining shared ancestry during outbreaks
and for our broader understanding of the origins of bacterial strains and species.
Finally, antimicrobial resistance genes and putative mobile genetic elements were
frequently observed, and our systematic analysis revealed patterns of occurrence
across the different species sampled from our hospital. Overall, this study shows
how understanding the population structure of diverse pathogens circulating in a
single health care setting can improve the discriminatory power of genomic epide-
miology studies and can help define the processes leading to strain and species
differentiation.

IMPORTANCE Hospitalized patients are at increased risk of becoming infected with
antibiotic-resistant organisms. We used whole-genome sequencing to survey and
compare over 3,000 clinical bacterial isolates collected from hospitalized patients at
a large medical center over a 2-year period. We identified nearly 100 different bacte-
rial species, which we divided into 14 different groups of related species. When we
examined how genetic relatedness differed between species, we found that different
species were likely evolving at different rates within our hospital. This is significant
because the identification of bacterial outbreaks in the hospital currently relies on
genetic similarity cutoffs, which are often applied uniformly across organisms. Finally,
we found that antibiotic resistance genes and mobile genetic elements were abun-
dant and were shared among the bacterial isolates we sampled. Overall, this study
provides an in-depth view of the genomic diversity and evolutionary processes of
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bacteria sampled from hospitalized patients, as well as genetic similarity estimates
that can inform hospital outbreak detection and prevention efforts.

KEYWORDS whole-genome sequencing, hospital-acquired infections, pangenome,
antimicrobial resistance, horizontal gene transfer, bacterial evolution

Healthcare-associated infections (HAIs) affect over half a million people in the
United States each year, and annual direct hospital costs for treating HAIs are esti-

mated at over $30 billion (1–3). A relatively small number of bacterial species account for
the majority of the burden of antibiotic-resistant HAIs. Organisms belonging to the
ESKAPE (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter
baumannii, Pseudomonas aeruginosa, and Enterobacter spp.) group of pathogens are par-
ticularly problematic, due to their high burden of HAIs and frequent multidrug resistance
(2, 4). In addition, while Clostridioides difficile is not highly antibiotic resistant, toxin-produc-
ing C. difficile lineages associated with significant patient morbidity and mortality have
emerged in recent years, making this organism an urgent health threat (5).

Healthcare institutions such as hospitals and long-term-care facilities constitute a
unique ecological niche for the proliferation and spread of antibiotic-resistant patho-
gens. The hospital environment has a constant flow of vulnerable populations, and
widespread use of antimicrobial medications and cleaning agents provide selective
pressure for the emergence and expansion of drug-resistant bacteria (6). Likewise,
pathogens causing HAIs possess several common biological traits that facilitate their
survival and spread in health care environments. These traits include frequent pres-
ence and acquisition of antimicrobial resistance, asymptomatic carriage, and the ability
to survive for prolonged periods on environmental surfaces such as medical equip-
ment or in water systems (7–9). These factors make health care settings a key contribu-
tor to the increase of antibiotic-resistant bacterial infections worldwide.

Epidemiologic surveillance of HAIs requires timely and accurate ascertainment of
strain type to identify patients infected with genetically related strains of the same
pathogen. Surveillance using whole-genome sequencing (WGS) is the gold standard
for the detection of outbreaks and has provided significant insight into the population
structure of hospital-associated bacterial infections (10, 11). To improve the detection
of hospital-associated transmission at our medical center, we began conducting pro-
spective WGS surveillance of clinical bacterial isolates from hospitalized patients in
November 2016, with the aim of identifying previously undetected outbreaks and char-
acterizing pathogen transmission routes. Our approach, called Enhanced Detection of
Hospital-Associated Transmission (EDS-HAT), combines prospective bacterial WGS sur-
veillance with data mining of the electronic health record to identify outbreaks and
their transmission routes, many of which would otherwise go undetected (12–16). In
conducting this work, we have collected and sequenced the genomes of thousands of
bacterial isolates. Systematic analysis of these genomes can increase our understand-
ing of the diversity of bacteria causing HAIs (17).

Here, we describe the genomic diversity, evolutionary rates, antimicrobial resistance
gene repertoires, and mobile genetic elements carried by over 3,000 bacterial isolates
sampled from patients at an academic medical center over 25 months. We uncovered
a large and diverse number of species causing HAIs at our center and showed how dif-
ferent population structures and evolutionary rates among these species can impact
epidemiologic studies. These findings also shed light on the processes giving rise to
bacterial lineages and species. Systematic analyses of antimicrobial resistance genes
and mobile genetic elements revealed both species-specific differences as well as
broader trends and uncovered new avenues for further investigation.

RESULTS
Pangenome analysis highlights the diversity of bacteria causing HAIs. The

objective of this study was to use WGS to examine the genetic diversity of HAIs at a
single medical center over a multiyear period, and to understand how this diversity
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impacts genomic epidemiology and outbreak investigations. A total of 3,004 bacterial
isolates collected from 2,046 unique patients at the University of Pittsburgh Medical
Center (UPMC) from November 2016 through November 2018 were sequenced and an-
alyzed. Isolates were distributed among 14 groups of species belonging to the same
genus, which we called species groups (Tables S1 and S2, Fig. 1). The largest propor-
tion of isolates were sampled from the respiratory tract (33.4%) followed by tissue/
wound (21.3%), urinary tract (20.1%), stool (16.7%, all C. difficile), and blood (8.5%)
(Fig. 1). The distribution of isolated species was similar between blood and tissue/
wound, while the urinary tract, respiratory tract, and stool samples had different spe-
cies compositions. P. aeruginosa was the most prevalent species isolated, with 863 iso-
lates (28.7% of all isolates) collected from 653 unique patients (Table S1). Other preva-
lent species included toxin-producing C. difficile (16.7%), methicillin-resistant S. aureus
(MRSA, 14%) and vancomycin-resistant E. faecalis and E. faecium (VRE, 8.2%). The
remaining 10 species groups contained less than 200 isolates each (Table S1). Genome
sizes were highly variable, and ranged from a median length of 2.9 Mb for MRSA to
7.6 Mb for Burkholderia spp. (Fig. 2A). Pangenome collection curves constructed for
genera containing multiple species showed that Citrobacter spp. and Acinetobacter
spp. had the greatest pangenome diversity, perhaps due to the large number of dis-
tinct species sampled for these groups (Fig. 2B, Table S2). Pangenome collection curves
for individual species showed large differences in pangenome diversity between spe-
cies (Fig. 2C), with MRSA and VRE faecium genomes having the lowest diversity, while
P. aeruginosa, C. freundii, and S. marcescens had the greatest pangenome diversity. The
large and open pangenome of P. aeruginosa is well known (18); however, the pange-
nome diversity of C. freundii and S. marcescens are not well described.

FIG 1 Species and body site distribution of 3,004 clinical bacterial isolates from hospitalized patients.
Isolates were collected from a single hospital over 25 months as part of the Enhanced Detection System
for Healthcare-Associated Transmission (EDS-HAT) project. Pie charts show the distribution of isolates
belonging to 14 different species groups collected from different types of clinical specimens.
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FIG 2 Genome length and pangenome size among sampled species. (A) Distribution of genome lengths of isolates belonging to each
species group, ordered from shortest to longest median genome length. Vertical lines show median values. (B) Pangenome collection

(Continued on next page)
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Differences in bacterial population structures revealed by average nucleotide
identity (ANI) and accessory gene content analysis. Analysis of ANI and accessory
genome contents are useful methods for assigning bacterial species, as well as under-
standing bacterial population structures (19–21). Because the species of each isolate
collected by the EDS-HAT project was initially assigned by the clinical microbiology
laboratory, we first conducted pairwise comparisons of ANI for all isolate genomes,
plus additional reference genomes downloaded from the NCBI database, and used a
standard 95% ANI cutoff to group genomes into the same or different species (19).
This method resulted in the identification of 97 different species among the collected
isolates (Table S2). An example of ANI-based classification of Citrobacter spp. is shown
in Fig. 3A As expected, several species groups were highly diverse and were composed
of multiple different species, including Acinetobacter spp., Burkholderia spp., Citrobacter
spp., Providencia spp., Pseudomonas spp., and Stenotrophomonas spp. (Fig. 3A, Fig. S1).
Several other species groups, such as ESBL-producing Klebsiella spp., Proteus spp. and
Serratia spp., were composed of one dominant species (K. pneumoniae, P. mirabilis, and
S. marcescens), and a small number of isolates belonging to other species (Table S1).
ANI analysis of P. aeruginosa identified 15 isolates (1.7% of all P. aeruginosa collected)
that could be clearly separated from the rest of the P. aeruginosa population by ANI
(Fig. S2). These 15 isolates all had greater than 95% ANI with the group 3 PA7 genome
(22), indicating that they belonged to this divergent group of P. aeruginosa. These
results suggest that comparison of ANI-based species identification with information
provided by clinical laboratory testing could improve species assignments made for
diagnostic purposes.

While ANI measures nucleotide identity in regions that are shared between two
genomes, the accessory genes, which by definition are variably present in different
genomes, can also be used to differentiate between bacterial species (20, 21). We con-
structed principal-component analysis plots based on accessory gene content (PCA-A)
for species groups containing multiple species (Fig. 3B, Fig. S1). The PCA-A plot for
Citrobacter spp. isolates was largely congruent with species clustering by ANI (Fig. 3B),
and the same was true for Acinetobacter spp. and Stenotrophomonas spp. as well
(Fig. S1). The S. marcescens isolates we collected could be clearly separated into five
different clades by both ANI and PCA-A; we arbitrarily named these clades A-E
(Table S1, Fig. S3). We observed that the pairwise ANI distribution among all S. marces-
cens isolates included comparisons of isolates in different clades that fell below the
95% ANI threshold used to distinguish species from one another (Fig. 3C, Fig. S3).
Isolates within each S. marcescens clade always shared greater than 95% ANI with iso-
lates in at least one other clade; however, comparisons of isolates in Clade A with iso-
lates in either Clade C or Clade E fell below the 95% ANI threshold for same-species
comparisons (Fig. S3). PCA-A clearly separated S. marcescens clades from one another
(Fig. 3D), suggesting that each clade possessed a unique set of clade-specifying genes
(Data set S1). These data suggest that the S. marcescens population we sampled may
be in the process of diverging into distinct subspecies.

We also explored whether PCA-A could be used to cluster isolates belonging to dif-
ferent genetic lineages within a single species (Fig. 3E to G). We analyzed isolates
belonging to the dominant lineages of toxin-producing C. difficile (Fig. 3E), VRE faecium
(Fig. 3F), and MRSA (Fig. 3G), and found in all cases that PCA-A could generally sepa-
rate isolates belonging to different multilocus sequence types (STs). C. difficile isolates
belonging to ST1, ST2, ST8, and ST42 were clearly separated from one another (Fig. 3E).
E. faecium isolates belonging to ST736 were clearly separated from isolates belonging
to ST17, ST18, and ST1471, which showed some overlap one another (Fig. 3F). Finally,

FIG 2 Legend (Continued)
curves for up to 250 genomes from genera containing multiple species and with at least 50 genomes collected. Pangenomes were
generated by Roary with an 80% protein identity cutoff. (C) Pangenome collection curves for up to 250 genomes from species with at
least 40 genomes collected. Pangenomes were generated by Roary with an 95% protein identity cutoff. Curves show the mean pan-
genome size and shading shows the standard deviation.
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MRSA isolates belonging to ST8 were clearly separated from isolates belonging to ST5
and ST105; however, the latter STs (which belong to the same clonal complex) were
not distinguishable from one another (Fig. 3G). Analysis of gene enrichment among
these different STs revealed ST-specific gene repertoires, which were largely composed

FIG 3 Average nucleotide identity (ANI) and principal-component analysis of accessory genes (PCA-A) distinguish between and within species. (A)
Phylogeny and pairwise ANI values for Citrobacter spp. sampled by EDS-HAT. Gray shading indicates ANI values .95%, with darker shading showing higher
identity. (B) PCA-A plot for Citrobacter species with .2 isolates. (C) Pairwise ANI distribution of S. marcescens isolate genomes, showing pairwise ANI
comparisons between isolates in different clades that fall below the species cutoff (95% ANI, vertical dashed line). (D) PCA-A plot for S. marcescens isolates,
showing clear separation of five distinct clades. (E-G) PCA-A plots for dominant sequence types (STs) of C. difficile (E), E. faecium (F), and S. aureus (G).
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of predicted mobile element genes and hypothetical proteins (Data set S1). These data
suggest that analysis of variable gene content may be a useful complement to SNP-
based methods in epidemiologic investigations.

Genetic diversity and evolutionary rates vary by species. The EDS-HAT project
was designed to detect genetically and epidemiologically connected isolates sampled
from different patients, and has successfully identified dozens of clusters containing
isolates that share common exposures or transmission chains (14–16, 23). In addition, a
significant number of patients in this study were repeatedly sampled. To understand
how genetic diversity originated and varied by species, we compared within-patient,
within-cluster, and between-patient diversity for six different species. We calculated
pairwise core genome SNP distances for all isolate pairs belonging to the same ST,
which is commonly used to define clonal lineages within species (Fig. 4A). In all cases,

FIG 4 Pairwise SNP distances and genome evolution vary between species. (A) Comparison of within-patient, within-
cluster, and between-patient single nucleotide polymorphisms (SNPs) for select species. Pairwise comparisons are shown
for all isolate pairs belonging to the same sequence type (ST) within each species. Boxes show the median, 25th and 75th

percentiles. (B) Genome evolution rates for dominant STs within C. difficile (CD), vancomycin-resistant E. faecium (VRE),
methicillin-resistant S. aureus (MRSA) and P. aeruginosa (PSA). Isolates belonging to the four largest STs (three largest for
MRSA) of each species were considered, and nucleotide substitution rate (SNPs/genome/year) was calculated for each ST
separately. Individual data points are labeled with the corresponding ST, and boxes show the median, 25th and 75th

percentiles. (C) Recombination events per mutation (R/Theta) for select species. Each data point represents a distinct ST,
and data are grouped by species. STs with at least 10 isolates are shown. Boxes show the median, 25th and 75th

percentiles. PRO=P. mirabilis, SER=S. marcescens, KLP=K. pneumoniae, EC=E. coli, ACIN=A. baumannii.
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isolates collected from the same patient were on average more similar to one another
than those collected from different patients, suggesting that patients were persistently
colonized or infected with the same bacterial strain that was repeatedly sampled.
Despite only comparing isolates belonging to the same ST, some within-patient com-
parisons for P. aeruginosa resulted in hundreds or thousands of SNPs, which could
reflect reinfection with a different strain of a lineage that is diversifying in our hospital,
or the presence of hypermutator strains in the infecting bacterial population.
Nonetheless, we observed substantial differences in SNP distances among within-
patient comparisons across different species, with C. difficile isolates having the lowest
median pairwise SNPs (2 SNPs), and P. aeruginosa having the highest (18 SNPs). These
data likely reflect the different genome sizes, evolution and recombination rates, as
well as the different biology of these organisms. They also suggest that genomic epi-
demiologic investigations should consider applying different SNP cutoffs for different
organisms.

We recently published a comprehensive analysis of bacterial outbreaks identified in
this data set (16). As part of this analysis, we identified clusters of genetically related
isolates and then investigated whether the infected patients in each cluster were
linked epidemiologically or not. Isolates belonging to epidemiologically linked clusters
were highly related to one another, consistent with the rapid spread of clonal outbreak
strains (Fig. 4A). Isolates in clusters that did not have epidemiologic links were less
closely related to one another (Fig. S4), suggesting possible secondary transmission via
patients or other routes that were not sampled.

We next compared the evolutionary rates of the C. difficile, VRE, MRSA, and P. aeru-
ginosa populations that we sampled. We used TreeTime (24) to estimate the nucleotide
substitution rates for the most frequently observed STs for each species (Fig. 4B,
Table S3). Consistent with our observations of pairwise SNP differences (Fig. 4A), we
found that C. difficile had the lowest evolutionary rate, VRE and MRSA had intermediate
rates, and P. aeruginosa had the highest rate (Fig. 4B). Within each species group, how-
ever, we observed a range of nucleotide substitution rates between the different STs
that were sampled. Rates overall varied nearly 100-fold among the species and STs we
examined, from a minimum of 0.40 SNPs/genome/year for C. difficile ST42, to 28.80 SNPs/
genome/year for P. aeruginosa ST179 (Fig. 4B, Table S3). To understand how recombina-
tion might influence these calculations, we used ClonalFrameML (25) to quantify the num-
ber of recombination events per point mutation (R/Theta) for each ST across all species for
which at least 10 different isolates belonging to the same ST were sampled (Fig. 4C). MRSA
genomes were found to have the lowest rates of recombination, while K. pneumoniae,
E. coli, and A. baumannii had the highest rates. These data show that rates of nucleotide
substitution and recombination are variable across STs as well as across species; this vari-
ability should be considered when assessing genomic similarity between isolates during
epidemiologic investigations.

Systematic analysis of acquired antimicrobial resistance (AMR) genes uncovers
broad and species-specific trends. AMR threatens the effective treatment and pre-
vention of bacterial infections. To understand the diversity and distribution of AMR
genes among the 3,004 isolates we sampled, we identified acquired resistance genes
within each genome by querying the ResFinder database with BLASTn (26) (Fig. S5,
Data set S2). The total number of AMR genes identified per genome ranged from 0–19,
with an average of 4.6 AMR genes per genome. The species groups carrying the most
AMR genes were Klebsiella spp. (average 13.1 AMR genes per genome), E. coli (7.7 AMR
genes per genome), and VRE (average 7.4 AMR genes per genome) (Data set S2). We
also classified each AMR gene by drug class and examined the distribution of AMR genes
found in more than one species group (Fig. 5A). Several genes encoding aminoglycoside
and sulfonamide resistance were observed in the majority of different species groups,
suggesting that AMR genes for these antibiotic classes are relatively widespread among
bacterial pathogens within our hospital. The Gram-positive species we collected (C. diffi-
cile, VRE, and MRSA) carried different AMR genes compared to the sampled Gram-nega-
tive species, and all Gram-positive species were found to carry the aminoglycoside
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resistance genes aac(6’)-aph(2’) and aph(39)-III and the tetracycline resistance gene
tet(M), albeit at various frequencies (Fig. 5A).

We next examined the co-occurrence of AMR gene pairs across different species
groups (Fig. 5B). We found that the aminoglycoside resistance genes aph(3”)-Ib and

FIG 5 Acquired antimicrobial resistance gene abundance and diversity. (A) Prevalence of resistance genes found in more than one species group. Genes are
grouped by antibiotic class, and gray shading shows the prevalence of each gene within and across each group. Darker shading indicates higher prevalence.
ACIN = Acinetobacter spp.; KL = Klebsiella spp.; CB = Citrobacter spp.; EC = E. coli; PRV = Providencia spp.; PR = Proteus spp.; SER = Serratia spp.; PSA =
P. aeruginosa; PSB = Pseudomonas spp.; STEN = Stenotrophomonas spp.; BC = Burkholderia spp.; VRE = vancomycin-resistant Enterococcus spp.; MRSA =
methicillin-resistant S. aureus; CD = C. difficile. (B) Resistance gene co-occurrence. Relative frequency versus number of genomes is plotted for pairs of resistance
genes that co-occur at $ 50% relative frequency. Blue dots indicate AMR genes in the same drug class, while orange dots indicate genes in different classes.
The size of each dot corresponds to the number of different species groups found to carry each pair. AMR gene pairs found in $ 4 different species groups are
labeled. (C) Distribution of extended-spectrum beta-lactamase (ESBL) and carbapenemase enzymes among E. coli and Klebsiella spp. isolates.
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aph(6)-Id were almost always found together and co-occurred in eight different species
groups (all Gram-negative species groups except for Burkholderia spp., Providencia
spp., and Stenotrophomonas spp.). Both of these genes also frequently co-occurred
with the sulfonamide resistance gene sul2 (Fig. 5B). A separate aminoglycoside resist-
ance gene, aac(6’)-Ib-cr, was found to frequently co-occur with the narrow-spectrum
beta-lactamase blaOXA-1, as well as with the extended-spectrum beta-lactamase (ESBL)
blaCTX-M-15. Finally, we examined the distribution of ESBL and carbapenemase enzymes
among the ESBL-producing E. coli and Klebsiella spp. isolates that we sampled (Fig. 5C).
The most frequently observed ESBL enzyme was CTX-M-15, which was found in
roughly half of all E. coli and Klebsiella spp. genomes (Fig. 5C). The other half of isolates
within each species group carried largely different enzymes from one another, with
most E. coli isolates carrying other CTX-M-type and a small number of TEM-type ESBLs,
while Klebsiella spp. isolates carried CTX-M-14 and SHV-type ESBLs. The carbapene-
mases KPC-2, KPC-3, KPC-8, and KPC-31 were found almost exclusively among Klebsiella
spp. genomes (Fig. 5C). These data highlight the abundant diversity of AMR genes car-
ried by the bacteria in our hospital. Large surveys of AMR gene occurrence such as this
are useful for establishing local patterns of antibiotic resistance, which can guide antibi-
otic prescribing efforts that are tailored to local pathogen epidemiology.

Mobile genetic element (MGE) distribution and cargo. MGEs are frequently found
within the genomes of bacteria residing in the hospital environment, and they often
encode useful functions like AMR and virulence factors (27). To assess the presence of
MGEs in our data set in a systematic and unbiased manner, we used a previously devel-
oped approach to identify nucleotide sequences with high homology (.99.9% identity
over at least 10Kb) that were present in the genomes of different species (28) (Fig. 6A).
This approach resulted in the identification of 186 clusters of shared sequences, which
were present in 805 (26.8%) genomes in our data set (Fig. 6B). While each of the 14 dif-
ferent species groups we sampled contained at least one genome encoding a shared
sequence, species groups that were particularly enriched for shared sequences included
Klebsiella spp., P. aeruginosa, and Stenotrophomonas spp. (Fig. 6B). We next used compar-
isons with available MGE databases and manual curation to assign an MGE type to each
of the 186 clustered sequences based on sequence homology to previously described
MGEs (Fig. 6C). We identified similar numbers of sequences that resembled insertion
sequences (ISs) or transposons and that resembled prophages or integrative conjugative
elements (ICEs). Slightly more sequences showed homology to plasmids, and a large
number of sequences resembled multiple MGE types (Fig. 6C). Importantly, 53 (28.5%)
shared sequence clusters could not be assigned to an MGE type. Some of these sequen-
ces are likely fragments of larger MGEs that lacked genetic features that would enable
their classification. Alternately, some of these may constitute novel MGEs.

To understand more about the cargo encoded by the putative MGEs we identified,
we first assessed the distribution of AMR genes among the 186 shared sequence clus-
ters we studied (Fig. 6D and Data set S2). Only 10/186 shared sequence clusters (5.4%)
carried AMR genes; however, these clusters were found among 116/805 isolates (14.4%).
The most frequently observed AMR gene classes (which were each only present in four
shared sequence clusters) were sulfonamide and trimethoprim resistance, while amino-
glycoside resistance genes, tetracycline resistance genes, and beta-lactamases were each
found in three shared sequence clusters (Fig. 6D). We next examined the distribution of
clusters of orthologous groups of proteins (COG) categories among all genes present in
all shared sequence clusters in our data set. A total of 938 genes (12.1% of all shared
sequence cluster genes) had COG categories assigned. Among these genes, the two
COG categories observed most frequently were genes involved in replication, recombi-
nation and repair, and genes involved in inorganic ion transport and metabolism
(Fig. 6E). These data suggest that prominent cargo among the shared sequences we
identified included genes for MGE maintenance and mobilization, as well as genes
required for the utilization of and resistance to heavy metals, which pathogens fre-
quently encounter in the hospital environment (29).
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FIG 6 Mobile genetic element (MGE) distribution and cargo. (A) Clusters of putative MGEs identified in 3,004 study isolate genomes. Nodes within
each cluster correspond to bacterial isolates, and are color coded by species group (color key provided in panel B). (B) Distribution of isolates in the
entire data set (left) versus isolates encoding one or more putative MGEs (right). (C) Distribution of putative MGEs resembling plasmid, IS/transposon,
or prophage/ICE sequences, determined by nucleotide sequence comparisons and manual curation. (D) Distribution of antimicrobial resistance (AMR)
genes detected among 186 putative MGEs. (E) Distribution of clusters of orthologous groups of proteins (COG) categories of MGE genes with COG
categories assigned.
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DISCUSSION

The broader aim of the EDS-HAT project is to improve the detection of bacterial
outbreaks in hospitals, and the project has been successful in this regard (14–16, 23).
The EDS-HAT project has also provided a large data set of microbial genomes sampled
from thousands of patients within a single medical center over time. Here, we highlight
the genetic diversity among bacterial pathogens causing HAIs; understanding this di-
versity can better inform genomic epidemiology and outbreak investigations. As bacte-
rial WGS becomes increasingly routine in health care settings, this study also provides
a baseline for future comparisons, both at our center and elsewhere.

Using comparative genomics methods, we revealed the vast diversity among bacterial
pathogens within our hospital. We identified bacteria belonging to 97 different species,
which spanned 14 different species groups. We also identified 23 species which have not
been previously described, including potentially novel species of Acinetobacter, Citrobacter,
Proteus, Providencia, Pseudomonas, Serratia, and Stenotrophomonas. A total of 41 isolates
(1.4% of sampled isolates) belonged to these potentially novel species, which was a lower
proportion than that observed in a prior study of HAIs among ICU patients conducted in
2015 (17). This could be due to additional species having been described in recent years,
as well as different inclusion criteria and study populations between the prior study and
our own. Further investigation into these new species can aid in the clinical diagnosis of
bacteria causing infections.

Our finding that both ANI and PCA-A are effective at distinguishing between different
groups at both the species and subspecies levels is consistent with prior studies (30, 31).
The 15 P. aeruginosa isolates we identified as having 93–94% ANI with the remaining P.
aeruginosa population is also consistent with prior reports of the P. aeruginosa popula-
tion (32). Conversely, S. marcescens is known to have a population structure comprised
of multiple clades (33–35), however, we found that pairwise comparisons between some
of these clades had less than 95% ANI, suggesting significant divergence and possible
ongoing subspeciation. Additionally, we were able to use accessory gene content differ-
ences to distinguish between the clades of S. marcescens as well as between the domi-
nant genetic lineages of C. difficile, VRE faecium, and MRSA. Further investigation of these
accessory genes would likely enhance our understanding of how different bacterial line-
ages are able to coexist in the same hospital and could provide useful biomarkers for
tracking lineages of interest.

Comparing within-patient versus between-patient genetic diversity can provide
guidance in defining SNP cutoffs for outbreak investigations. We found that the num-
ber of SNPs among genomes isolated from the same patient at different time points var-
ied by species, with within-patient SNPs being lowest for C. difficile, moderate for MRSA
and VRE, and greatest for P. aeruginosa. Differences between species likely reflect both
genome size as well as the biology of these organisms. For example, C. difficile can spend
long periods of time in a nonreplicative spore state, while P. aeruginosa genomes are
more than double the size of MRSA and VRE genomes. The SNP distances among same-
patient isolates we observed are comparable to those used in outbreak investigations in
our setting and elsewhere (14, 36, 37). The EDS-HAT project is currently using SNP cutoffs
of #2 for C. difficile and #15 for all other organisms (16). We suggest that researchers
performing genomic epidemiology studies should calibrate SNP cutoffs using compari-
sons of same-patient and confirmed outbreak isolates from their own setting and with
their own bioinformatic analysis pipelines.

Evolutionary rates assessed for the four most common species in our hospital were
also consistent with previous studies (38, 39). Within each species, however, we
observed differences in substitution rates that were 10-fold or more, suggesting that
different genetic lineages of the same species may be evolving at different rates within
our hospital. While it is possible that these estimates could change with a different or
larger sample size, exploring how evolution varies by genetic lineage would provide
important insights into the emergence and persistence of these pathogens in the hos-
pital environment. When we compared evolutionary rates across different species, we
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observed a nearly 100-fold difference in substitution rates, which was most pro-
nounced when comparing C. difficile with P. aeruginosa. These differences likely drive
the differences in pairwise SNP distances we observed between these species, and fur-
ther suggest that different SNP cutoffs should be considered for different bacterial spe-
cies for the purposes of hospital outbreak investigations. In the future we also plan to
examine more closely rates of bacterial evolution in the same patients over time.

This study established the diversity of acquired antimicrobial resistance genes
among pathogenic bacteria circulating at our hospital and provides a point of compari-
son with other studies of antibiotic resistance spread in the hospital environment (23,
28, 40, 41). Using a moderately stringent cutoff for sequence coverage and identity, we
found that aminoglycoside and sulfonamide resistance genes were highly abundant
and were found in the majority of species that we sampled. Although the presence of
aminoglycoside resistance is well documented among both Gram-positive and Gram-
negative bacteria—and more specifically among the ESKAPE pathogens—less atten-
tion has been focused on sulfonamide resistance (42–44). The co-occurrence of aph
(3”)-Ib, aph(6)-Id, and sul2 that we observed has also been previously observed in a vari-
ety of different genetic contexts, including in plasmids, integrative conjugative ele-
ments, and chromosomal genomic islands (43, 45). Additionally, we found that the
ESBL enzyme blaCTX-M-15 was widely distributed among both E. coli and Klebsiella spp.
isolates, which is consistent with prior reports (46). Among the other ESBL-producing E.
coli and Klebsiella spp. isolates collected, ESBL enzymes were largely restricted to one
species group or the other. Finally, while we did not explicitly collect carbapenemase-
producing organisms during this study period, a subset of the ESBL-producing E. coli and
Klebsiella spp. isolates collected also carried carbapenemase enzymes. Co-occurrence of
ESBL enzymes and carbapenemases was more frequent among Klebsiella spp., especially
ST258 K. pneumoniae (23).

This study also offers an overview of highly similar sequences (which we suspect
largely belong to MGEs) shared among the genomes of distantly related bacteria
sampled from patients residing in the same hospital environment. We found that
Enterobacteriaceae such as Klebsiella spp. and Citrobacter spp., as well as P. aeruginosa
and Stenotrophomonas spp., were overrepresented among shared sequence clusters
compared to their overall distribution in the data set. Most of the shared sequences
identified in Enterobacteriaceae genomes resembled sequences carried on plasmids,
consistent with the frequent plasmid exchange known to happen among species in
this family (47). While we did not fully resolve these plasmids in this study, investigat-
ing plasmid transmission dynamics in this setting will be a focus of our future work. In
contrast to the sequences shared between Enterobacteriaceae genomes, many of the
shared sequences identified among P. aeruginosa and Stenotrophomonas spp. resembled
prophages and integrated conjugative elements, suggesting that these organisms may
rely on different MGEs to exchange genetic material. Somewhat surprisingly, our analysis
identified fewer shared sequences carrying AMR genes compared to a prior study we
conducted within the same hospital (28). This may be due to our use of a longer
sequence length cutoff for shared sequence identification in this study, as AMR genes
are known to be carried on smaller MGE units that can rapidly shuffle, interchange, and
mutate (48). Finally, we found it notable that genes encoding metal transport and resist-
ance were frequently observed within the shared sequences we identified. Inorganic
ions are required for catalysis of many bacterial enzymes (49), and heavy metals such as
silver, copper, and mercury have long been used as disinfectants in hospitals (50).
Further study of MGEs encoding metal-interacting genes will be a focus of our future
work.

This study had several limitations. The organisms we collected were prespecified,
and certain groups, such as Enterobacter spp. or carbapenemase-producing organisms
without a noted ESBL phenotype, were not collected. Furthermore, our definition of
“hospital-acquired infections” was quite broad; some of the collected isolates likely
represent commensal organisms or pathogen colonization, rather than true infection.
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We also cannot say for sure whether the sampled bacteria were acquired from the
health care setting or not, as we only considered bacterial isolates from clinical speci-
mens and did not include environmental sampling. Additionally, our 25-month collec-
tion window was quite short, thus we were unable to draw conclusions regarding
trends over time. We focused our study of AMR genes on acquired resistance genes,
and the coverage and identity cutoffs we used may have caused us to miss divergent
and potentially novel resistance genes. Finally, the inclusion of both broad species
groups as well as more defined sets of specific pathogens made it difficult to conduct
systematic analyses or draw broader conclusions across the entire data set. Nonetheless,
the large number of isolates collected offers a high-resolution view of the genomic diver-
sity and evolution of important bacterial pathogens found within our hospital. Our future
work will include following these bacterial populations over time and comparing our
results with similar studies conducted in other settings.

In assessing the genomes of major infection-associated bacterial species isolated
from patients at our hospital, we have provided a survey of the genomic diversity of
bacterial HAIs at a single clinical center. Our findings demonstrate that studying popu-
lation dynamics and evolution of these pathogens can inform genomics-based out-
break investigations. In addition to forming a basis for future comparisons, this study
also provides a deeper understanding of the breadth of different species that cause
HAIs and demonstrates the utility of systematic genome sequencing and comparative
genomics analysis of clinical bacterial isolates from hospitalized patients.

MATERIALS ANDMETHODS
Isolate collection. Bacterial isolates were collected from the University of Pittsburgh Medical Center

(UPMC) Presbyterian Hospital, an adult tertiary care hospital with over 750 beds, 150 critical care unit
beds, more than 32,000 yearly inpatient admissions, and over 400 solid organ transplants per year. All
isolates were collected from hospitalized patients and were isolated from clinical cultures prompted by
clinician suspected infection. Clinical specimens were processed by the UPMC clinical microbiology labo-
ratory. Processing varied by sample type but always resulted in isolation of a representative bacterial
clone (or clones) from each specimen for the purposes of species identification and antimicrobial sus-
ceptibility testing. Isolates were collected from November 2016 through November 2018 from admitted
patients as part of a prospective genomic epidemiology surveillance project called Enhanced Detection
System for Healthcare-Associated Transmission (EDS-HAT) (16). Inclusion criteria were hospital admission
greater than 2 days before the culture date, and/or a recent inpatient or outpatient UPMC hospital en-
counter in the 30 days before the culture date, and isolation of an organism on a defined list of high-priority
health care-associated pathogens. After patients to be included in the study were identified, the bacterial
clone that was isolated and tested by the clinical microbiology laboratory was streaked onto a blood agar
plate (BD, Franklin Lakes, NJ), grown overnight at 37°C, and then the plate was scraped and genomic DNA
was extracted from the bacterial pellet. For Clostridioides difficile, stool specimens that were culture-inde-
pendent diagnostic test–positive for C. difficile were cultured to isolate a single representative clone. A total
of 3,004 isolates were included in this study (Table S1).

Isolates were classified as belonging to one of 14 groups of related species, which we called species
groups: Acinetobacter spp., Burkholderia spp., Citrobacter spp., Clostridioides difficile, Enterococcus spp.
(VRE), Escherichia coli (ESBL-producing), Klebsiella spp. (ESBL-producing), Proteus spp., Providencia spp.,
Pseudomonas aeruginosa, Pseudomonas spp. (non-aeruginosa), Serratia spp., Staphylococcus aureus
(MRSA), and Stenotrophomonas spp. Isolate collection was limited to only toxin-producing strains of
Clostridioides difficile, vancomycin-resistant Enterococcus spp. (VRE), extended-spectrum beta-lactamase
(ESBL)-producing Escherichia coli and Klebsiella spp., and methicillin-resistant Staphylococcus aureus
(MRSA). This study was approved by the University of Pittsburgh Institutional Review Board and was clas-
sified as being exempt from patient-informed consent.

Whole-genome sequencing and genome assembly. Genomic DNA was extracted from pure over-
night cultures of single bacterial colonies using a Qiagen DNeasy Tissue kit according to the manufacturer’s
instructions (Qiagen, Germantown, MD). Illumina library construction and sequencing were conducted using
an Illumina Nextera DNA Sample Prep kit with 150 bp paired-end reads, and libraries were sequenced on the
NextSeq 550 sequencing platform (Illumina, San Diego, CA). Selected isolates were re-sequenced with long-
read technology on a MinION device (Oxford Nanopore Technologies, Oxford, United Kingdom). Long-read
sequencing libraries were prepared and multiplexed using a rapid multiplex barcoding kit (catalog SQK-
RBK004) and were sequenced on R9.4.1 flow cells. Base-calling on raw reads was performed using Albacore
v2.3.3 or Guppy v2.3.1 (Oxford Nanopore Technologies, Oxford, UK).

Genome sequence analyses were performed on a BioLinux v8 server (51) using publicly available
genomic analysis tools wrapped together into a high-throughput genome analysis pipeline. Briefly, Illumina
sequencing data were processed with Trim Galore v0.6.1 (https://www.bioinformatics.babraham.ac.uk/projects/
trim_galore/) to remove sequencing adaptors, low-quality bases, and poor-quality reads. Kraken v1 (52) taxo-
nomic sequence classification of raw reads was used to confirm species designation, and to rule out
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contamination. Illumina reads were assembled with SPAdes v3.11 to generate contigs with a 200 bp minimum
length cutoff (53). Long-read sequence data generated for other studies (16, 23, 28, 41) were combined with
Illumina data for the same isolate, and hybrid assembly was conducted using unicycler v0.4.7 or v0.4.8-beta
(54). Assembled genomes were annotated using Prokka v1.14 and assembly quality was verified using QUAST
(55). Genomes were included in the study if they had at least 35-fold Illumina read coverage, had assemblies
with # 350 contigs, and had total genome lengths 6 25% of the median of all isolates within each species
group. Antimicrobial resistance and toxin genes were confirmed using BLASTn in line with EDS-HAT study phe-
notypic inclusion criteria. Specifically, all S. aureus genomes were confirmed to encode themecA gene, all E. fae-
calis and E. faecium genomes were confirmed to encode a VanA or VanB operon, all E. coli and Klebsiella spp.
genomes were confirmed to encode an identifiable extended-spectrum beta-lactamase (ESBL) enzyme, and all
C. difficile genomes were confirmed to encode either toxin A and/or toxin B genes.

Classification of genomospecies and lineages. Within each species group, genome assemblies
from this study and reference genome assemblies downloaded from the NCBI RefSeq database underwent
pairwise average nucleotide identity (ANI) analysis using FastANI v1.3 (19). Genomes with ANI values
.95% then underwent single-linkage hierarchical clustering using the hclust function from the R package
stats v3.6. Each ANI cluster was manually assessed and assigned to a species based on the predominant
nomenclature of genomes of type/reference strains within each cluster. Clusters that did not contain refer-
ence genomes, or where reference genomes were only named at the genus level, were named “genomo-
species.” Sequential numbers were appended to each uncharacterized genomospecies within each genus.
Species identified using ANI and having greater than 100 isolates were further subdivided into clades and
lineages based on multilocus sequence typing (ST), or phylogenetic analysis. STs were determined from
assembled contigs using mlst v2 (https://github.com/tseemann/mlst). Species without a defined ST
scheme (P. mirabilis and S. marcescens) were classified into clades or lineages by grouping isolates that
shared,1000 core genome single nucleotide polymorphism (SNP) differences into the same lineage, with
SNPs identified using snippy (https://github.com/tseemann/snippy). Stenotrophomonas genomospecies
were named according to Gröschel et al. (56).

Gene content and pangenome analyses. Gene content matrices were obtained for all species
groups with more than 50 isolates using the pangenome analysis program Roary v3.11 (57). Roary was
run using a protein identity cutoff 80% for genera containing multiple species, and a cutoff 95% for indi-
vidual species. Pangenome collector’s curves were generated for each species group by calculating the
number of unique genes present at increasing numbers of sampled genomes, with 1000 iterations of
each sample size up to 250. Genetic clustering of genomes within species groups based on variable
gene content was calculated and visualized using principal-component analysis of accessory genes
(PCA-A) using the R packages vegan v2.5-7, and ggbiplot v0.55, with matrices of gene presence/absence
used as input. Genes that were present in all isolates, present in only one isolate, or absent in only one
isolate, were removed from analysis. PCA-A coordinate plots were visualized using GraphPad Prism ver-
sion 7.0c.

Core genome SNP comparisons, phylogenetic trees, evolutionary rate, and recombination
analyses. Within each genus, species, ST, or clade, SNPs were identified using snippy (https://github
.com/tseemann/snippy). The most complete genome assembly (i.e., highest N50) was used as a reference
genome for SNP analysis. Core genome SNPs, defined as SNPs at nucleotide positions shared across all
genomes in the sample group being compared, were used to calculate pairwise SNP distances and to
generate maximum likelihood phylogenetic trees. Trees were generated with RAxML v8.2 using the gen-
eral time reversible model of evolution (GTRCAT), Lewis correction for ascertainment bias, and 100 boot-
strap replicates (58). Unless otherwise specified, reported SNP distances refer to core genome SNPs for
all isolates belonging to the same ST. Pairwise SNP distances were visualized using the R package
ggplot2 v3.3.5. Recombination and evolutionary rates were calculated for STs in four species groups
(P. aeruginosa, Clostridioides difficile, VRE, and MRSA), and for STs within each group with more than
25 isolates. Estimates of relative recombination rates (R/Theta) and average size of recombinant sequen-
ces (delta) were assessed from core genome alignments using ClonalFrameML v1.12 (25), with default
settings. The relative rate of recombination, which reflects the number of nucleotide changes introduced
by recombination relative to each point mutation (r/m) was calculated as r/m = (R/Theta) � delta � �

(25), where � is the average distance between recombined sequences. A core genome alignment and
recombination-corrected phylogenetic tree were used to estimate evolutionary rates using TreeTime
(24). Isolates that were found to be highly divergent from other isolates of the same ST (as revealed by
an excess number of SNPs separating them from other isolates) were removed from the analysis.

Antibiotic resistance gene detection and analysis. Acquired antimicrobial resistance genes were
detected by querying genome assemblies against the ResFinder database using BLASTn (26). A gene
was considered present if the BLASTn percent identity multiplied by the sequence coverage was .80%.
Resistance gene presence was mapped to a global phylogenetic tree constructed from amino acid
sequences of 120 ubiquitous protein coding genes from the Genome Taxonomy Database Tool kit (59).
Resistance gene co-occurrence was calculated using the %*% operator in R. This operator works by iden-
tifying the cross-products between any two genes found in a matrix of resistance genes identified in all
isolates. The results were used to construct a relative frequency plot using the R package ggplot2 v3.3.5.
To include only the most frequently co-occurring gene pairs in the plot, a relative frequency of 80% and
a combined frequency of 50% were used as cutoff thresholds. Additionally, genes found in.250 isolates
were excluded as they were suspected of not being acquired resistance genes. ESBL and carbapenemase
enzyme distributions were determined by assigning enzyme types based on protein sequence, and only
100% protein sequence matches are reported.
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Shared sequence detection and analysis. Putative mobile genetic elements were identified by
searching for sequences .10kb that were present at high identity (.99.9%) in the genomes of isolates
belonging to different species (,95% ANI) using nucmer (60). Sequences were organized into clusters
using all-by-all BLASTn v2.7.1 (61), and clusters were visualized with Cytoscape v3.8.2 (62). Clustered
shared sequences were determined as resembling plasmids, insertion sequences (ISs), transposons, pro-
phages, or integrative conjugative elements by BLAST against complete plasmids from NCBI databases
(63), MobileElementFinder (64), PHASTER (65), ProphET (66), and ICEberg (67), as well as comparison to
the NCBI nr database and manual curation. Antimicrobial resistance genes in clustered sequences were
identified by BLASTn against the ResFinder database (26). Clusters of orthologous groups of proteins
(COG) categories were assigned to genes present in one or more clustered sequences, and the distribu-
tion of genes in each COG category was visualized with the pie function in R.

Data availability. Raw sequencing reads and genome assemblies were submitted to the NCBI
Sequence Read Archive (SRA) and GenBank, with accession numbers listed in Table S2.
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