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Abstract: Arabidopsis small GTPase RabF1 (ARA6) functions in endosomal vesicle transport and may
play a crucial role in recycling and degradation of molecules, thus involved in stress responses. Here we
have reported that complementary overexpression lines RabF1OE (overexpression), GTPase mutants
RabF1Q93L (constitutively active) and RabF1S47N (dominant negative) lines show longer root growth
than wild-type, rabF1 knockout and N-myristoylation deletion (∆1−29, N-terminus) complementary
overexpression mutant plants under salt induced stress, which indicates that N-myristoylation of RabF1
is indispensable for salt tolerance. Moreover, RabF1 is highly expressed during senescence and RabF1OE

lines were more tolerant of dark-induced senescence (DIS) than wild-type and rabF1.
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1. Introduction

Small GTPase Rab proteins are mainly involved in membrane transport between organelles,
through vesicle transport of cargo proteins to their destinations. They also play a role in activating
effector proteins to regulate different stages of membrane transport within the organelles and promote
the downstream application of other proteins for a variety of regulatory roles [1,2]. During vesicle
transport, Rab GTPases regulate tethering and fusion of transport vesicles to target membranes by
acting as a molecular switch, cycling between a GDP (guanosine diphosphate) bound inactive state and
a GTP (guanosine triphosphate) bound active state. Rab proteins interact with other regulatory and
effector proteins to regulate the cycle of GDP/GTP binding and GTP hydrolysis. They have regulatory
roles in vesicle budding from the donor membrane followed by uncoating, movement through the cell,
tethering and docking in the vicinity of the acceptor membrane and final delivery of cargo to the target
membrane by membrane fusion, as well as cargo sorting during coated vesicle transport [3–6].
The diversity of the Rabs mirrors their various roles in the eukaryotic cell, including membrane
and vesicle transport, growth and development, signalling pathways, defence mechanism and stress
responses and [7,8]. Out of the 57 Rabs in Arabidopsis the RabF1 is one of the most unique Rab GTPases
in higher plants and among the eukaryotic Rab families. RabF1 characterizes by its association to
the membranes with its unique N-terminal myristoylation site, rather than the common but essential
carboxy-terminal geranylgeranylation CC motif for all other Rab proteins to be prenylated (membrane
association) [4,9].

In Arabidopsis thaliana RabF1 (ARA6) has been extensively studied for its regulatory parts in
endosomal transport via the assembly of a distinct SNARE (soluble N-ethylmaleimide-sensitive factor
attachment protein receptors) complex in [10–12]. In plant N-terminal myristoylation not only plays
a crucial role in membrane targeting but modulates signal transduction in responses to environmental
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stress such as salt stress, growth regulation, disease resistance and endocytosis [13]. An Arabidopsis
gene, SOS3 (salt overly sensitive 3) which contains a consensus N-terminal myristoylation sequence showed
functional role in salt tolerance to salt [14]. RabF1 has been reported as N-myristoylated protein in vivo
and in vitro [10,15]. RabF1 may have a functional role in plants’ response to abiotic stress such as salinity
and it has been suggested that it is closely associated with membranes and expressed constitutively [10,11].
RabF1 has two homolog proteins in Arabidopsis, RabF2a/Rha1 and RabF2b/Ara7, both localized in
the prevacuolar compartment (PVC). However, AtRabF1 absolutely differs from these two proteins for
its N-terminal myristoylation site. It has been suggested that RabF1 is localized to the endosomes and
the plasma membrane but not to the trans-Golgi network (TGN), where it plays a regulatory role in
the formation of a SNARE complex comprising endosome-residing R-SNARE, VAMP727 and a plasma
membrane Q-SNARE SYP121 [11]. However, CaARA6—the RabF1 homologue in Chara australis—has
been found to be localized at the plasma membrane, the TGN, and multivesicular endosomes (MVEs),
suggesting involvement in endosomal transport [16]. Moreover, it has been suggested that a guanine
nucleotide exchange factor (GEF) VPS9a is the activator for RabF1 to conform the GTP-bound
form’s in vitro structures [17]. Overexpression of constitutively active AtRabF2b suppresses abnormal
phenotypes of atvps9a-2. In contrast, the overexpression of AtRabF1 with an equivalent mutation
does not suppress abnormal phenotypes of atvps9a-2. AtRabF1 plays a specific role in transport from
endosomes to the plasma membrane, while conventional Rab5 proteins, AtRabF2a and AtRabF2b mainly
work in transport to vacuoles through endosomes [10–12,18]. Recently, it has also been suggested that
AtRabF1 is responsible for starch and sugar homeostasis through the function of Qua-Quine Stach gene
(QQS), and the proliferation of Pseudomonas syringae pv. tomato DC3000 was repressed in AtRabF1
knockout mutant [19].

However, the complete picture of the function of RabF1 is not yet fully understood, although
several recent works on RabF1 have highlighted the unique properties of the protein [10,11,19].
We report that Arabidopsis RabF1 plays an important role in salt-induced stress, which is linked
to its N-myristoylation site. Moreover, RabF1 is highly expressed during senescence, thus showed
its protective effect in dark-induced senescence (DIS) leaves and photosynthetic parameter such as
chlorophyll content.

2. Results and Discussion

2.1. RabF1OE, RabF1Q93L and RabF1S47N Lines Are More Tolerant to Salt Stress Compared to Wild-Type,
rabF1 and RabF1∆1−29

Two knockout mutants for RabF1, rabF1-1 and rabF1-2, were collected from NASC for genotypic
and phenotypic analysis (Figure S1a). PCR with T-DNA-based primers showed that both rabF1-1 and
rabF1-2 had T-DNA insertions disrupting the RabF1 gene and were homozygous for this mutation
(Figure S1b,c). RT-PCR confirmed the absence of expression of RabF1 in both mutant lines (Figure S1d),
and no RabF1 protein was detected in total leaf extract of the mutant lines after immunoblotting
using the antibody against RabF1 (Figure S1e). Transgenic complementary lines in rabF1-1 mutant
background with overexpressing RabF1-EYFP (RabF1OE), constitutively active 35S-RabF1Q93L-EYFP
(RabF1Q93L), dominant negative 35S-RabF1S47N-EYFP (RabF1S47N) and 35S-RabF1∆1−29-EYFP
(RabF1∆1−29) plants were used for salt stress. Expression level was checked by RT-PCR for two lines
of each construct (Figure S2) but only one representative line of each construct is shown in
figures. According to the Arabidopsis eFP Browser (http://bar.utoronto.ca/efp/cgi-bin/efpWeb.cgi),
RabF1 responds to osmotic stress, and recently, it was reported that RabF1Q93L lines were more
tolerant to salt stress [11,12]. Therefore, we grew RabF1OE, RabF1Q93L, RabF1S47N and RabF1∆1−29

overexpression lines under conditions of 100 mM NaCl salt stress. Without added salt all lines exhibited
similar root lengths i.e., no differences were observed (Figure 1a). During salt stress the overexpression
lines (RabF1OE, RabF1Q93L and RabF1S47N) showed significantly longer root lengths (Figure 1b)
compared to that of wild-type, rabF1 and the overexpression line RabF1∆1−29, which indicated that

http://bar.utoronto.ca/efp/cgi-bin/efpWeb.cgi


Int. J. Mol. Sci. 2017, 18, 309 3 of 10

the RabF1 has a positive effect over salt stress. Compared with wild-type roots, RabF1OE, RabF1Q93L and
RabF1S47N overexpression lines had roots that were, respectively, 37.1%, 35.1% and 37.1% longer when
exposed to salt stress (Figure 1b). In addition, the roots of rabF1 were of similar length under salt stress
conditions as the wild-type, indicating that knockout of RabF1 had no effect on root growth in saline
conditions (Figure 1b).

In this study, both the RabF1Q93L and RabF1S47N lines exhibited similar patterns of salt tolerance
despite being different in the conformation of their GTPase domain. It was found that that all
the overexpression lines except RabF1∆1−29 were more tolerant to salt stress condition than wild-type
and rabF1 lines, indicated by significantly longer roots (Figure 1b). The roots of RabF1∆1−29 were similar
to the root length of wild-type and rabF1. Thus, we concluded that it was not the GTPase domain
(active/inactive states) of RabF1 that generated the root phenotypic effect on salt stress condition.
Therefore, it is more likely that the N-myristoylation ability of RabF1 is responsible for its salt stress
related phenotype, as it was observed in the salt tolerance gene SOS3 (salt overly sensitive 3) where
salt tolerance is dependent on N-myristoylation [14].
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expressing OsRab7B3 transgenic plants had yellowing leaves earlier than wild-type plants. Thus, it 
was suggested that OsRab7B3 is a positive factor, which promotes senescence in rice [21]. Knowing 
this we wanted to determine if RabF1 had a role in senescence. We examined the expression of the 
RabF1 gene using a publicly available microarray database and Genevestigator v3 [22,23]. Expression 
data from all high-quality ATH1 (22 k) arrays were analysed [24]. The developmental expression 
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Figure 1. RabF1 overexpression lines RabF1OE, RabF1Q93L and RabF1S47N are tolerant to salt stress
compared to wild-type, rabF1 and RabF1∆1−29. Root lengths of plants (a) without or (b) with salt stress
with graphical representation of the results below. Error bars represent± SE (n≥ 20). Asterisks indicate
values that are significant different from wild-type (** p ≤ 0.01). Bars = 1 cm.

2.2. RabF1 Is Involved in Leaf Senescence

Interestingly, salt stress promotes leaf senescence, thus improving salt tolerance delays senescence [20].
However, there is little information about the involvement of Rab proteins in senescence-related
processes. Recently, up-regulation of senescence-related genes has been reported under DIS in rice OsRab7B3
overexpression line. During the normal senescence process, over-expressing OsRab7B3 transgenic plants
had yellowing leaves earlier than wild-type plants. Thus, it was suggested that OsRab7B3 is a positive
factor, which promotes senescence in rice [21]. Knowing this we wanted to determine if RabF1
had a role in senescence. We examined the expression of the RabF1 gene using a publicly available
microarray database and Genevestigator v3 [22,23]. Expression data from all high-quality ATH1 (22 k)
arrays were analysed [24]. The developmental expression analysis revealed that RabF1 has a high
expression level throughout all tissues, with a slightly higher level in senescing tissues. In senescing
tissue, the expression value is ca. 14 Units, whereas in other tissues it is ca. 13 Units (Figure S3).
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The expression of RabF1 at the different developmental stages was verified by using leaves from two-
to five-week-old plants. RabF1 was more highly expressed in four- and five-week-old leaves than in
younger leaves (Figure 2a). Thus, the expression of RabF1 increased with the ageing of plants. Light is
very important during plants’ growth and development phases. Light levels outside the optimal range
will accelerate plant senescence. Complete darkness represents extreme conditions that will accelerate
the process of senescence. As senescence progresses, there is a sequence of physiological activities that
change as a result of catabolic processes such as, chlorophyll degradation, decline in the total amount
of mRNA and protein in the leaf tissues, devitalization of photosynthesis elements and cell lysis.
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Figure 2. The expression of RabF1. (a) RT-PCR results show that the expression of RabF1 in
different stages of Arabidopsis is upregulated with aging (in weeks); (b) Senescence-related marker
gene expression in dark induced plants of the wild-type and rabF1 lines. RT-PCR results revealed
the expression of senescence markers SAG12, SEN1, LHCB1.3 and RBCS1A. Expression of Actin
was used as a control to demonstrate the equal amount of mRNA per sample used as a template.
Relative expression versus actin was estimated for (c) SAG12, (d) SEN1; (e) LHCB1.3 and (f) RBCS1A
Three biological and four technical replicates were used for each data collected.

Over recent decades several genes have been characterized with respect to their roles in natural and
induced senescence studies. Some of them are used as good marker genes for senescence, for example;
SAG12 (senescence-associated gene 12) exhibits increased expression throughout the progression of
senescence and is highest at the final stage of senescence; SEN1 (senescence-associated protein1) expression
has been found to be highest at the beginning of DIS and to be responsive to plant defence signals
in Arabidopsis; RBCS1A (a member of the Rubisco small subunit of genes) is associated with
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accumulation of Rubisco in Arabidopsis leaves and works additively with other Rubisco small
subunit genes to yield sufficient Rubisco for photosynthesis and is expressed in leaf tissues throughout
the developmental period, but is generally down-regulated in old plants; and LHCB1.3 (CAB1) a subunit
of the light-harvesting complex II (LHCII) of Arabidopsis is generally expressed constitutively [25–32].

Under DIS both senescence marker genes, SAG12 and SEN1, were highly expressed in leaves
from rabF1 mutants compared to the wild-type plants (Figure 2b–d). This indicates that RabF1 could
have a negative regulative role of these genes. However, the expression of RBCS1A, and LHCB1.3
were in general down-regulated in four-week-old ageing rabF1 plants more rapidly than wild-type
plants exposed to the dark treatment (Figure 2b,e,f) not only indicating that the dark treatment worked
(green tissues and leaves are affected by DIS negatively) but also indicating that RabF1 could affect
these genes in a slightly positive manner when present. Thus, the absence of RabF1 indicates a more
rapid senescence in mutants than wild-type plants, and so RabF1 was identified as being involved in
senescence-related processes.

2.3. RabF1 Plays an Important Role in Dark-Induced Senescence (DIS)

To determine the role of RabF1 in DIS, the 4th leaves of four-week-old wild-type and rabF1 plants
were detached and incubated in a dark chamber for 2–4 days. After the DIS, no obvious phenotypic
difference was observed between samples from wild-type and rabF1 plants. Moreover, no significant
difference was found for chlorophyll content or electric conductance [33] measurements taken to
quantify cell damage at different time points (Figure 3a–c).
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Figure 3. Effect of DIS, chlorophyll content and conductivity among the RabF1OE overexpression lines,
wild-type and rabF1. (a–c) The wild-type and rabF1 lines responded similarly during DIS. No significant
difference in chlorophyll content or conductivity was observed between wild-type and rabF1 plants
during DIS treatment. Compared to the wild-type and rabF1 lines, the overexpression mutant (d–f)
RabF1OE line was found to be more tolerant to DIS and had significantly higher chlorophyll content after
four days of DIS treatment and lower conductivity after eight days of DIS treatment. The experiments
were repeated three times and got similar trends. Error bars represent ± SE (n ≥ 5). Asterisks indicate
values that are significant different from wild-type (** p ≤ 0.01). Bars (a, d) = 1 cm.
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However, RabF1OE lines were compared with wild-type and rabF1-1 under DIS. A visible
difference was observed after 4 days of DIS, when RabF1OE lines had green leaves while wild-type
and rabF1 showed evidence of senescence in the form of bleached leaves (Figure 3d–f). This indicates
that RabF1OE lines were more tolerant to DIS. Interestingly, the chlorophyll content at 4 days of DIS
correlated with the greenness of leaves at the same stage (Figure 3d–e), indicating that RabF1 is involved
in the mechanism protecting against chlorophyll degradation. Thus, RabF1OE lines maintained higher
chlorophyll content after 4 days of DIS compared to wild-type and rabF1 (Figure 3e). Conductivity at
different time points was also measured and RabF1OE lines had lower conductivity (Figure 3f). All these
results revealed that RabF1OE lines were more tolerant to DIS than wild-type and rabF1 mutant lines.
Therefore, RabF1 could be a negative regulator in Arabidopsis during DIS. The data shows that
even if the absence of RabF1 had a slightly negative effect on RBCS1A, and LHCB1.3 (Figure 2b,d,e)
this was not enough to distinguish any clear phenotype linked to green tissue or leaves between
rabF1 and wild-type plants during DIS (Figure 3). However, when RabF1 being overexpressed it
shows a protective phenotype (Figure 3) in accordance with the suggestion to be a negative regulator
for SAG12 and SEN1 (Figure 2b–d). In this study we did not focus on the RabF1 GTPase states or
N-myristoylation for the senescence. This can be addressed in a future elaborative study using existing
mutant lines.

2.4. Conclusions

The data reported here showed that RabF1 plays a role in recycling and degradation processes
during senescence and stress responses. Salt stress data from overexpression RabF1 lines without
the N-myristoylation site strongly indicate that membrane anchoring plays an important role in
the increased tolerance to salt stress (Figure 1). The response to salt stress might be linked to close
association of RabF1 to e.g., the plasma membrane, since it contains several transporters involved
in signaling in response to salt stress [34]. Thus, the exact mechanism behind the involvement of
the RabF1 N-myristoylation to salt stress still needs to be further investigated.

For DIS related senescence, RabF1 as a GTPase might have a protective role against senescence by
protecting the photosynthetic machinery, which is plausible considering the observations in Figure 3d,e.
Whether RabF1 has direct role with chloroplasts, as suggested by bioinformatics studies [35], remains to
be elucidated. If RabF1 is considered to be in an active state in the wild-type and overexpressed
lines when performing the DIS assays (in contrast to knockout mutants where RabF1 is not present),
the RabF1 GTPase function can be linked to the senescence phenotype (Figure 3). The N-myristoylation
should not be responsible for the DIS related phenotype as the wild-type and overexpressed lines
both contain N-myristoylation sites but did not show similar leaf senescence pattern during DIS
experiments (Figure 3). Still additional future experimental data are needed to resolve the exact role of
the GTPase for senescence.

3. Materials and Methods

3.1. Plant Material

All Arabidopsis lines were grown as previously described [35,36] unless otherwise
mentioned for specific experiments. The T-DNA insertion mutants (rabF1) for ARA6/RabF1
(At3g54840), SAIL_98_E08 (rabF1-1) and WiscDsLox481-484C9 (rabF1-2) were obtained from NASC
(http://arabidopsis.info/). The background line for all of these mutant lines, ecotype Col-0 (wild
type, WT), was used as the control for all experiments. The rabF1-1 T-DNA band was detected by LB1
(5′-GCCTTTTCAGAAATGGATAAATAGCCTTGCTTCC-3′) and atrabF1-1RP (5′-AACGAGGCTCC
AACAGTTACC-3′), while the RabF1 gene was detected by atrabF1-1LP (5′-TTGGAGAAA
CCGAATTGATTG-3′) and atrabF1-1RP (5′-AACGAGGCTCCAACAGTTACC-3′, Table S1). The rabF1-2
T-DNA band was detected by P745 (5′-AACGTCCGCAATGTGTTATTAAGTTGTC-3′) and atrabF1-2RP
(5′-TTCACTCACATCAGAGCATGG-3′), while the RabF1 gene was detected by atrabF1-2LP
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(5′-TTTCCGAAGGTGTAATCATCG-3′) and atrabF1-2RP (5′-TTCACTCACATCAGAGCATGG-3′,
Table S1).

3.2. Total RNA Isolation, RT-PCR and Semi-Quantitative RT-PCR

An RNeasy plant mini-kit (Qiagen AB Sweden) was used to purify total RNA with an in-column
DNase treatment. One microgram of total RNA/sample was used as a template while performing
RT-PCR using an illustra Ready-To-Go RT-PCR Beads (0.5 mL tubes) kit (GE Healthcare Sverige
AB, Sweden); the RT-PCR procedure was performed according to the manufacturer’s instructions.
For semi-quantitative reverse transcription-PCR, two mg of total RNA was used for the synthesis
of the first-strand of cDNA with a RevertAid™ H Minus First Strand cDNA Synthesis Kit (Life
Technologies Europe BV, Sweden) with oligo(dT)18. PCR cycle was terminated after 25 cycles for Actin,
24 cycles for RBCS1A, 27 cycles for LHCB1.3 (CAB1), 26 cycles for SEN1 (senescence-associated
protein 1), and 27 cycles for SAG12 (senescence-associated gene 12) genes. Specific primers to
respective genes were as follows: Actin (forward 5′-AGAGATTCAGATGCCCAGAAGTCTTGTT-3′,
and reverse 5′-AACGATTCCTGGACCTGCCTCATC-3′); RBCS1A (forward 5′-CCACCCGCA
AGGCTAACAAC-3′, and reverse 5′-TTCGGAATCGGTAAGGTCAGG-3′); LHCB1.3 (forward
5′-CCAGAGGCATTCGCTGAGTTG-3′, and reverse 5′-CCTTACCAGTGACGATGGCTTG-3′); SEN1
(forward 5′-GTCATCGGCTATTTCTCCACCT-3′, and reverse 5′-GTTGTCGTTGCTTTCCTCCATC-3′);
SAG12 (forward 5′-CAGCTGCGGATGTTGTTG-3′, and reverse 5′-CCACTTTCTCCCCATTTTG-3′,
Table S1). Three biological and four technical replicates were used for the semi-quantitative RT-PCR,
and relative expression was estimated using Image J 1.46r (Available online: http://rsb.info.nih.gov/ij/).

3.3. RabF1 Cloning

The RabF1 coding sequence, corresponding to the Arabidopsis Genome Initiative (AGI)
accession number At3g54840, was cloned with GatewayTM technology (Invitrogen, http://www.
invitrogen.com). The sequence was amplified by PCR from a complete cDNA clone (Gene
bank accession no. BT002860). The PCR fragment was inserted into the pDONRTM vector and
transferred into destination vectors (forward 5′-CACCATGGGATGTGCTTCTTCTCTT-3′, and reverse
5′-TGACGAAGGAGCAGGACGA-3′, Table S1). For constitutively active (locked in GTP-bound
state) mutants of RabF1 (Q93L) and dominant negative (locked in GDP-bound state) mutants of
RabF1 (S47N), each mutation was introduced by PCR-based mutagenesis into the cDNA sequence as
well as inserted into the vector for the subsequent construction of YFP (yellow fluorescence protein)
fluorescently tagged proteins. The PCR-based mutagenesis primers were as follows: RabF1 (Q93L)
(forward 5′-TGGGATACAGCAGGACTGGAGAGGTATTAAACC-3′, and reverse 5′-GGTTTAAT
ACCTCTCCAGTCCTGCTGTATCCCA-3′); RabF1 (S47N) (forward 5′-TCTGGTGTTGGTAAAA
ATTGTATTGTCC-3′, and reverse 5′-GGACAATACAATTTTTACCAACACCAGA-3′, Table S1).
For the myristoylation mutant (∆1−29) amplification by PCR was performed ignoring the first
29 amino acids of RabF1 to remove the myristoylation site (forward 5′-CACCATGGGTCAGTTTGAC
GCTACA-3′, and reverse 5′-TGACGAAGGAGCAGGACGA-3′, Table S1). The fragment was inserted
into the vector as above.

3.4. Expression of 35S::RabF1-EYFP (RabF1OE), 35S::RabF1Q93L-EYFP (RabF1Q93L), 35S::RabF1S47N-EYFP
(RabF1S47N), 35S::RabF1∆1−29-EYFP (RabF1∆1−29) in rabF1

RabF1 cDNA was transferred into the binary vector pH7FWG2/pH7YWG2 [37] to express
the 35S::RabF1-YFP fusion protein. These vectors, containing the hygromycin resistance gene,
were used to transform Agrobacterium tumefaciens strain CV3101 by the heat-shock method [38].
Stable transformation of Arabidopsis with CV3101 Agrobacteria was achieved using the floral-dip
method [39]. Transgenic plants were selected on MS medium supplemented with hygromycin B
(15 ug·mL−1). Two lines of each construct were used (Figure S2) but only one are shown as representative
in figures. Positive transgenic plants were confirmed by PCR assays. The specific primers used were for
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RabF1OE, RabF1Q93L, and RabF1S47N (forward 5′-CACCATGGGATGTGCTTCTTCTCTT-3′, and reverse
5′-GCGAAGCACTGCAGGCCGTAGCCGAA-3′); and for RabF1∆1−29 (forward 5′-CACCATGGGTCA
GTTTGACGCTACA-3′, and reverse 5′-GCGAAGCACTGCAGGCCGTAGCCGAA-3′, Table S1).

3.5. Plant Growth for Salt Stress

Plants were grown on MS plates (0.5% sucrose) for four days. Four-day-old seedlings were moved
to vertical plates containing 100 mM NaCl, and the plates were transferred into long day conditions for
another six days. Ten-day-old seedlings were used to measure root length. The root lengths of seedlings
were measured and analysed using Image J 1.46r (Available online: http://rsb.info.nih.gov/ij/).

3.6. Dark-Induced Senescence (DIS), Chlorophyll and Conductivity Measurements

For the DIS treatment, the 4th leaf from four-week-old plants grown under short day conditions
was detached and placed in a Petri dish covered with sterilized filter paper containing 10 mL of 3 mM
MES (pH 5.7). The leaf was placed with its adaxial side facing up and incubated in a dark chamber at
22 ◦C for the indicated time. The chlorophyll was determined photometrically as previously described
after DIS treatment [40,41]. The mean and standard deviation were calculated for each data set where
appropriate. For each ion leakage measurement, six 0.6 cm diameter discs were punched from a fully
expended rosette leaf from plants just prior to blotting. Three leaves were sampled per plant. The discs
were placed into 6 mL distilled water and incubated in a dark chamber at 22 ◦C. Conductance was
measured as previously described [33,42] at the desired time points and the mean and standard
deviation calculated accordingly.

Supplementary Materials: Supplementary materials can be found at www.mdpi.com/1422-0067/18/2/309/s1.

Acknowledgments: This work was supported by the Olle Engkvist Byggmästare Foundation (to Henrik Aronsson),
and student fellowships from the China Scholarship Council (CSC) and Nanjing Agricultural University
(to Congfei Yin). The authors thank Sandra Bains for technical assistance.

Author Contributions: Congfei Yin, Sazzad Karim, Hongsheng Zhang and Henrik Aronsson conceived and
designed the experiments; Congfei Yin, Sazzad Karim and Henrik Aronsson performed the experiments;
Congfei Yin, Sazzad Karim, Hongsheng Zhang and Henrik Aronsson analyzed the data; Hongsheng Zhang and
Henrik Aronsson contributed reagents/materials/analysis tools; Congfei Yin, Sazzad Karim, and Henrik Aronsson
wrote the paper.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Pfeffer, S.; Aivazian, D. Targeting RAB GTPases to distinct membrane compartments. Nat. Rev. Mol. Cell Biol.
2004, 5, 886–896. [CrossRef] [PubMed]

2. Pfeffer, S.R. Rab GTPases: Specifying and deciphering organelle identity and function. Trends Cell Biol. 2001,
11, 487–491. [CrossRef]

3. Nielsen, E.; Cheung, A.Y.; Ueda, T. The regulatory RAB and ARF GTPases for vesicular trafficking.
Plant Physiol. 2008, 147, 1516–1526. [CrossRef] [PubMed]

4. Rutherford, S.; Moore, I. The Arabidopsis Rab GTPase family: Another enigma variation. Curr. Opin.
Plant Biol. 2002, 5, 518–528. [CrossRef]

5. Stenmark, H. Rab GTPases as coordinators of vesicle traffic. Nat. Rev. Mol. Cell Biol. 2009, 10, 513–525.
[CrossRef] [PubMed]

6. Angers, C.G.; Merz, A.J. New links between vesicle coats and Rab-mediated vesicle targeting. Semin. Cell
Dev. Biol. 2011, 22, 18–26. [CrossRef] [PubMed]

7. Agarwal, P.; Reddy, M.K.; Sopory, S.K.; Agarwal, P.K. Plant Rabs: Characterization, Functional Diversity,
and Role in Stress Tolerance. Plant Mol. Biol. Rep. 2009, 27, 417–430. [CrossRef]

8. Schwartz, S.L.; Cao, C.; Pylypenko, O.; Rak, A.; Wandinger-Ness, A. Rab GTPases at a glance. J. Cell Sci.
2007, 120, 3905–3910. [CrossRef] [PubMed]

http://rsb.info.nih.gov/ij/
www.mdpi.com/1422-0067/18/2/309/s1
http://dx.doi.org/10.1038/nrm1500
http://www.ncbi.nlm.nih.gov/pubmed/15520808
http://dx.doi.org/10.1016/S0962-8924(01)02147-X
http://dx.doi.org/10.1104/pp.108.121798
http://www.ncbi.nlm.nih.gov/pubmed/18678743
http://dx.doi.org/10.1016/S1369-5266(02)00307-2
http://dx.doi.org/10.1038/nrm2728
http://www.ncbi.nlm.nih.gov/pubmed/19603039
http://dx.doi.org/10.1016/j.semcdb.2010.07.003
http://www.ncbi.nlm.nih.gov/pubmed/20643221
http://dx.doi.org/10.1007/s11105-009-0100-9
http://dx.doi.org/10.1242/jcs.015909
http://www.ncbi.nlm.nih.gov/pubmed/17989088


Int. J. Mol. Sci. 2017, 18, 309 9 of 10

9. Karim, S.; Alezzawi, M.; Garcia-Petit, C.; Solymosi, K.; Khan, N.Z.; Lindquist, E.; Dahl, P.; Hohmann, S.;
Aronsson, H. A novel chloroplast localized Rab GTPase protein CPRabA5e is involved in stress, development,
thylakoid biogenesis and vesicle transport in Arabidopsis. Plant Mol. Biol. 2014, 84, 675–692. [CrossRef]
[PubMed]

10. Ueda, T.; Yamaguchi, M.; Uchimiya, H.; Nakano, A. Ara6, a plant-unique novel type Rab GTPase, functions in
the endocytic pathway of Arabidopsis thaliana. EMBO J. 2001, 20, 4730–4741. [CrossRef] [PubMed]

11. Ebine, K.; Fujimoto, M.; Okatani, Y.; Nishiyama, T.; Goh, T.; Ito, E.; Dainobu, T.; Nishitani, A.; Uemura, T.;
Sato, M.H.; et al. A membrane trafficking pathway regulated by the plant-specific RAB GTPase ARA6.
Nat. Cell Biol. 2011, 13, 853–859. [CrossRef] [PubMed]

12. Ebine, K.; Miyakawa, N.; Fujimoto, M.; Uemura, T.; Nakano, A.; Ueda, T. Endosomal trafficking pathway
regulated by ARA6, a RAB5 GTPase unique to plants. Small GTPases 2012, 3, 23–27. [CrossRef] [PubMed]

13. Podell, S.; Gribskov, M. Predicting N-terminal myristoylation sites in plant proteins. BMC Genom. 2004, 5, 37.
[CrossRef] [PubMed]

14. Ishitani, M.; Liu, J.P.; Halfter, U.; Kim, C.S.; Shi, W.M.; Zhu, J.K. SOS3 function in plant salt tolerance requires
N-myristoylation and calcium binding. Plant Cell 2000, 12, 1667–1677. [CrossRef] [PubMed]

15. Boisson, B.; Meinnel, T. A continuous assay of myristoyl-CoA:protein N-myristoyltransferase for proteomic
analysis. Anal. Biochem. 2003, 322, 116–123. [CrossRef] [PubMed]

16. Hoepflinger, M.C.; Geretschlaeger, A.; Sommer, A.; Hoeftberger, M.; Nishiyama, T.; Sakayama, H.;
Hammerl, P.; Tenhaken, R.; Ueda, T.; Foissner, I. Molecular and biochemical analysis of the first ARA6
homologue, a RAB5 GTPase, from green algae. J. Exp. Bot. 2013, 64, 5553–5568. [CrossRef] [PubMed]

17. Goh, T.; Uchida, W.; Arakawa, S.; Ito, E.; Dainobu, T.; Ebine, K.; Takeuchi, M.; Sato, K.; Ueda, T.; Nakano, A.
VPS9a, the common activator for two distinct types of Rab5 GTPases, is essential for the development of
Arabidopsis thaliana. Plant Cell 2007, 19, 3504–3515. [CrossRef] [PubMed]

18. Ebine, K.; Ueda, T. Unique mechanism of plant endocytic/vacuolar transport pathways. J. Plant Res. 2009,
122, 21–30. [CrossRef] [PubMed]

19. Tsutsui, T.; Nakano, A.; Ueda, T. The Plant-Specific RAB5 GTPase ARA6 is Required for Starch and Sugar
Homeostasis in Arabidopsis thaliana. Plant Cell Physiol. 2015, 56, 1073–1083. [CrossRef] [PubMed]

20. Allu, A.D.; Soja, A.M.; Wu, A.; Szymanski, J.; Balazadeh, S. Salt stress and senescence: Identification of
cross-talk regulatory components. J. Exp. Bot. 2014, 65, 3993–4008. [CrossRef] [PubMed]

21. Pitakrattananukool, S.; Sitthiphrom, S.; Cutler, R.W.; Anuntalabhochai, S. Molecular cloning of senescence
related-cDNA-osrab7 from thai jasmine rice (Oryza sativa L. cv. KDML 105). Int. Res. J. Plant Sci. 2013,
4, 109–116.

22. Zimmermann, P.; Hirsch-Hoffmann, M.; Hennig, L.; Gruissem, W. GENEVESTIGATOR. Arabidopsis
microarray database and analysis toolbox. Plant Physiol. 2004, 136, 2621–2632. [CrossRef] [PubMed]

23. Grennan, A.K. Genevestigator. Facilitating Web-based gene-expression analysis. Plant Physiol. 2006,
141, 1164–1166. [CrossRef] [PubMed]

24. Hruz, T.; Laule, O.; Szabo, G.; Wessendorp, F.; Bleuler, S.; Oertle, L.; Widmayer, P.; Gruissem, W.;
Zimmermann, P. Genevestigator v3: A reference expression database for the meta-analysis of transcriptomes.
Adv. Bioinform. 2008, 2008, 420747. [CrossRef] [PubMed]

25. Lohman, K.N.G.S.; John, M.C.; Amasino, R.M. Molecular analysis of natural leaf senescence in
Arabidopsis thaliana. Physiol. Plant. 1994, 92, 322–328. [CrossRef]

26. Oh, S.A.; Lee, S.Y.; Chung, I.K.; Lee, C.H.; Nam, H.G. A senescence-associated gene of Arabidopsis thaliana
is distinctively regulated during natural and artificially induced leaf senescence. Plant Mol. Biol. 1996,
30, 739–754. [CrossRef]

27. Weaver, L.M.; Gan, S.S.; Quirino, B.; Amasino, R.M. A comparison of the expression patterns of several
senescence-associated genes in response to stress and hormone treatment. Plant Mol. Biol. 1998, 37, 455–469.
[CrossRef] [PubMed]

28. Fischer-Kilbienski, I.; Miao, Y.; Roitsch, T.; Zschiesche, W.; Humbeck, K.; Krupinska, K. Nuclear targeted
AtS40 modulates senescence associated gene expression in Arabidopsis thaliana during natural development
and in darkness. Plant Mol. Biol. 2010, 73, 379–390. [CrossRef] [PubMed]

29. Schenk, P.M.; Kazan, K.; Rusu, A.G.; Manners, J.M.; Maclean, D.J. The SEN1 gene of Arabidopsis is regulated
by signals that link plant defence responses and senescence. Plant Physiol. Biochem. 2005, 43, 997–1005.
[CrossRef] [PubMed]

http://dx.doi.org/10.1007/s11103-013-0161-x
http://www.ncbi.nlm.nih.gov/pubmed/24337800
http://dx.doi.org/10.1093/emboj/20.17.4730
http://www.ncbi.nlm.nih.gov/pubmed/11532937
http://dx.doi.org/10.1038/ncb2270
http://www.ncbi.nlm.nih.gov/pubmed/21666683
http://dx.doi.org/10.4161/sgtp.18299
http://www.ncbi.nlm.nih.gov/pubmed/22710734
http://dx.doi.org/10.1186/1471-2164-5-37
http://www.ncbi.nlm.nih.gov/pubmed/15202951
http://dx.doi.org/10.1105/tpc.12.9.1667
http://www.ncbi.nlm.nih.gov/pubmed/11006339
http://dx.doi.org/10.1016/j.ab.2003.07.007
http://www.ncbi.nlm.nih.gov/pubmed/14705787
http://dx.doi.org/10.1093/jxb/ert322
http://www.ncbi.nlm.nih.gov/pubmed/24127512
http://dx.doi.org/10.1105/tpc.107.053876
http://www.ncbi.nlm.nih.gov/pubmed/18055610
http://dx.doi.org/10.1007/s10265-008-0200-x
http://www.ncbi.nlm.nih.gov/pubmed/19082690
http://dx.doi.org/10.1093/pcp/pcv029
http://www.ncbi.nlm.nih.gov/pubmed/25713173
http://dx.doi.org/10.1093/jxb/eru173
http://www.ncbi.nlm.nih.gov/pubmed/24803504
http://dx.doi.org/10.1104/pp.104.046367
http://www.ncbi.nlm.nih.gov/pubmed/15375207
http://dx.doi.org/10.1104/pp.104.900198
http://www.ncbi.nlm.nih.gov/pubmed/16896229
http://dx.doi.org/10.1155/2008/420747
http://www.ncbi.nlm.nih.gov/pubmed/19956698
http://dx.doi.org/10.1111/j.1399-3054.1994.tb05343.x
http://dx.doi.org/10.1007/BF00019008
http://dx.doi.org/10.1023/A:1005934428906
http://www.ncbi.nlm.nih.gov/pubmed/9617813
http://dx.doi.org/10.1007/s11103-010-9618-3
http://www.ncbi.nlm.nih.gov/pubmed/20238146
http://dx.doi.org/10.1016/j.plaphy.2005.09.002
http://www.ncbi.nlm.nih.gov/pubmed/16325410


Int. J. Mol. Sci. 2017, 18, 309 10 of 10

30. Pourtau, N.J.R.; Pelzer, E.; Pallas, J.; Wingler, A. Effect of sugar-induced senescence on gene expression and
implications for the regulation of senescence in Arabidopsis. Planta 2006, 224, 556–568. [CrossRef] [PubMed]

31. Izumi, M.; Tsunoda, H.; Suzuki, Y.; Makino, A.; Ishida, H. RBCS1A and RBCS3B, two major members within
the Arabidopsis RBCS multigene family, function to yield sufficient Rubisco content for leaf photosynthetic
capacity. J. Exp. Bot. 2012, 63, 2159–2170. [CrossRef] [PubMed]

32. Izumi, M.; Tsunoda, H.; Suzuki, Y.; Makino, A.; Ishida, H. Circadian expression of the PpLhcb2 gene encoding
a major light-harvesting chlorophyll a/b-binding protein in the moss Physcomitrella patens. Plant Cell Physiol.
2004, 45, 68–76.

33. Johansson, O.N.; Fantozzi, E.; Fahlberg, P.; Nilsson, A.K.; Buhot, N.; Tör, M.; Andersson, M.X. Role of
the penetration-resistance genes PEN1, PEN2 and PEN3 in the hypersensitive response and race-specific
resistance in Arabidopsis thaliana. Plant J. 2014, 79, 466–476. [CrossRef] [PubMed]

34. Julkowska, M.M.; Testerink, C. Tuning plant signaling and growth to survive salt. Trends Plant Sci. 2015,
20, 586–594. [CrossRef] [PubMed]

35. Garcia, C.; Khan, N.Z.; Nannmark, U.; Aronsson, H. The chloroplast protein CPSAR1, dually localized in
the stroma and the inner envelope membrane, is involved in thylakoid biogenesis. Plant J. 2010, 63, 73–85.
[CrossRef] [PubMed]

36. Aronsson, H.; Jarvis, P. A simple method for isolating import-competent Arabidopsis chloroplasts. FEBS Lett.
2002, 529, 215–220. [CrossRef]

37. Karimi, M.; Inze, D.; Depicker, A. GATEWAY((TM)) vectors for Agrobacterium-mediated plant transformation.
Trends Plant Sci. 2002, 7, 193–195. [CrossRef]

38. Koncz, C.; Nemeth, K.; Redei, G.P.; Schell, J. T-DNA Insertional Mutagenesis in Arabidopsis. Plant Mol. Biol.
1992, 20, 963–976. [CrossRef] [PubMed]

39. Clough, S.J.; Bent, A.F. Floral dip: A simplified method for Agrobacterium-mediated transformation of
Arabidopsis thaliana. Plant J. 1998, 16, 735–743. [CrossRef] [PubMed]

40. Porra, R.; Thompson, W.; Kriedemann, P. Determination of accurate extinction coefficients and simultaneous
equations for assaying chlorophylls a and b extracted with four different solvents: Verification of
the concentration of chlorophyll standards by atomic absorption spectroscopy. Biochim. Biophys. Acta
1989, 975, 384–394. [CrossRef]

41. Aronsson, H.; Combe, J.; Jarvis, P. Unusual nucleotide-binding properties of the chloroplast protein import
receptor, atToc33. FEBS Lett. 2003, 544, 79–85. [CrossRef]

42. Yamatani, H.; Sato, Y.; Masuda, Y.; Kato, Y.; Morita, R.; Fukunaga, K.; Nagamura, Y.; Nishimura, M.;
Sakamoto, W.; Tanaka, A.; et al. NYC4, the rice ortholog of Arabidopsis THF1, is involved in the degradation
of chlorophyll—Protein complexes during leaf senescence. Plant J. 2013, 74, 652–662. [CrossRef] [PubMed]

© 2017 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1007/s00425-006-0243-y
http://www.ncbi.nlm.nih.gov/pubmed/16514542
http://dx.doi.org/10.1093/jxb/err434
http://www.ncbi.nlm.nih.gov/pubmed/22223809
http://dx.doi.org/10.1111/tpj.12571
http://www.ncbi.nlm.nih.gov/pubmed/24889055
http://dx.doi.org/10.1016/j.tplants.2015.06.008
http://www.ncbi.nlm.nih.gov/pubmed/26205171
http://dx.doi.org/10.1111/j.1365-313X.2010.04225.x
http://www.ncbi.nlm.nih.gov/pubmed/20408996
http://dx.doi.org/10.1016/S0014-5793(02)03342-2
http://dx.doi.org/10.1016/S1360-1385(02)02251-3
http://dx.doi.org/10.1007/BF00027166
http://www.ncbi.nlm.nih.gov/pubmed/1463832
http://dx.doi.org/10.1046/j.1365-313x.1998.00343.x
http://www.ncbi.nlm.nih.gov/pubmed/10069079
http://dx.doi.org/10.1016/S0005-2728(89)80347-0
http://dx.doi.org/10.1016/S0014-5793(03)00478-2
http://dx.doi.org/10.1111/tpj.12154
http://www.ncbi.nlm.nih.gov/pubmed/23432654
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Results and Discussion 
	RabF1OE, RabF1Q93L and RabF1S47N Lines Are More Tolerant to Salt Stress Compared to Wild-Type, rabF1 and RabF11-29 
	RabF1 Is Involved in Leaf Senescence 
	RabF1 Plays an Important Role in Dark-Induced Senescence (DIS) 
	Conclusions 

	Materials and Methods 
	Plant Material 
	Total RNA Isolation, RT-PCR and Semi-Quantitative RT-PCR 
	RabF1 Cloning 
	Expression of 35S::RabF1-EYFP (RabF1OE), 35S::RabF1Q93L-EYFP (RabF1Q93L), 35S::RabF1S47N-EYFP (RabF1S47N), 35S::RabF11-29-EYFP (RabF11-29) in rabF1 
	Plant Growth for Salt Stress 
	Dark-Induced Senescence (DIS), Chlorophyll and Conductivity Measurements 


